
	 Preface 1

Version 8.0

QQQ Software, Inc.

http://www.qqqsoftware.com
support@qqqsoftware.com

	 Preface 2

The software described in this document is furnished under a license agreement and may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy the software except as specifically allowed
in the license agreement. No part of this manual may be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of
QQQ Software, Inc.

TPL TABLES User Manual Version 8.0

© Copyright 2014 QQQ Software, Inc. All rights reserved.

U.S. GOVERNMENT RESTRICTED RIGHTS. The program and documentation are provided with RESTRICTED
RIGHTS. Any use, duplication or disclosure by the U.S. Government or authorized Government contractors is subject
to restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, FAR 52.227-19 and other applicable agreements. The contractor/manufacturer is QQQ Soft-
ware, Inc., 302 N. Irving St., Arlington, VA 22201.

TPL TABLES is a registered trademark of QQQ Software, Inc. All other product or company names are used for iden-

tification purposes only and may be trademarks of their respective owners.

This manual may be used with licensed copies of TPL Tables and demonstration versions of TPL
Tables.

QQQ Software, Inc.
302 N. Irving Street
Arlington, VA 22201 USA
Tel: 703-528-1288
Fax: 703-528-1289
email: support@qqqsoftware.com
web: http://www.qqqsoftware.com

July, 2014

	 Preface 3

Preface

TPL TABLES is a powerful cross tabulation system that lets you summa-
rize data and present the results in publication quality tables. It is based on
the TPL mainframe system developed by the U.S. Bureau of Labor Statis-
tics (BLS). Since 1987, TPL TABLES has been put to the test by profes-
sionals in both government and private industry in the U.S. and abroad.

TPL Tables Version 8.0 is available for PCs running Windows XP, VISTA,
WINDOWS 7, WINDOWS 8 and various versions of UNIX and LINUX.
Unless specifically noted, the information in this manual applies to both
Windows and UNIX versions of TPL Tables. If you are using the Win-
dows version, please refer to the online Help for information about how
to use the interactive features.

If you are viewing this document with Adobe's Acrobat Reader or a in-
ternet browser, you can click on entries in the Table of Contents or Index
to be transferred to the pages in the text. Words in blue are hyperlinks to
other parts of the manual. If you are using Acrobat Reader you can use
ctrl+back arrow to get back to where you were. If you are using a brows-
er, be sure to record the page you jump from if you wish to return. The
browser does not provide a command to go back.

All of the table examples in this user manual were produced using TPL
TABLES. The tables were then inserted into the text using a desktop pub-
lishing system.

With the release of Version 8.0, QQQ Software continues to improve upon
the flexibility and functionality that has made TPL TABLES a success. We
hope that you will enjoy using TPL TABLES and will write or call if you
have questions, comments or suggestions. Your comments are important to
us and will guide our selection of features to include in future versions of
TPL TABLES.

	 Preface 4

Historical	Notes	and	Acknowledgments

In the early 1970's, BLS began development of the mainframe Table Pro-
ducing Language (TPL) system. The goals of the system were:

1. It should produce most, if not all, of the Bureau's statistical tables.

2. It should be driven by a language that did not require the user to be a
programmer or computer scientist.

3. It should be flexible and adaptable to changing needs for new tables and
formats.

4. It should lead the way to composition of tables for publication.

By the end of 1984, when BLS development ended, TPL had gone through
six major releases. It had been distributed to nearly 300 mainframe sites
around the world and was one of the most frequently used computer sys-
tems at many of these sites, including large national statistical agencies.

The development of the BLS system was made possible by the contribu-
tions of many people. Rudolph Mendelssohn, Assistant Commissioner,
provided initial encouragement and guidance. Richard Heddinger and
Pamela Weeks headed the initial language design and the implementation
work under the direction of Peter Stevens, Chief, Division of General Sys-
tems. Stephen Weiss later replaced Richard Heddinger as chief program-
mer. Other major participants in the development of TPL were: Victor G.
Stotland, Nancy Byrd, Eugene C. McKay, John D. Sinks, Roxana Kamen,
David H. Miller, Jane Powers, and Kenneth Buckley. Early inspiration was
also provided by Hugh Brophy during his time at the Australian Bureau of
Statistics.

Because of the similarities between the user language of TPL TABLES and
that of the BLS system, some parts of the TPL TABLES User Manual are
derived from the BLS Version 6 TPL Language Guide. The BLS language
guide was prepared by Stephen Levenson. Materials contained in the BLS
Version 6 TPL Language Guide are in the public domain.

TPL TABLES is the product of QQQ Software and is primarily the work
of Stephen Weiss and Pamela Weeks.

	 Contents 5

Summary Contents

Introduction ... 30

Overview .. 37

Entering Statements ... 42

Tables ... 52

Data .. 79

Codebook ... 90

Use .. 134

Select .. 136

Define ... 147

Compute ... 165

Post Compute .. 180

Percent ... 196

Percent Change .. 219

Statistics .. 225

Ranking .. 246

Weighting ... 262

Char .. 269

	 Contents 6

Hierarchies ... 271

Repeating Groups ... 292

Labels ... 321

Masks ... 357

Footnotes ... 370

Automatic Formatting ... 394

Color and Grey .. 400

Printing and Export ... 416

Data Drill (Windows Only) ...431

Statistical Tests (Windows Only) ...432

TPL-SQL ... 447

Format .. 481

Installation (Windows) .. 740

Run Instructions (Windows) .. 744

Scripts (Windows) ... 755

Installation (UNIX/Linux) ... 771

Run Instructions (UNIX/Linux) ... 777

TPL Conditions (UNIX/Linux) .. 802

International ... 810

Keywords ... 813

	 Contents 7

Limits .. 815

Utilities ... 818

Character Sets ... 823

Index ... 838

	 Contents 8

Contents

Introduction ...30

What Does TPL TABLES Do? ..30
How Does TPL TABLES Work? ...31

The Data File ..31
The Codebook ...31
The Table Request...32
The Format Request ..32

An Example ...33

Overview ..37

An Overview of TPL TABLES Features ...37
Defining the Structure and Content of a Table..37
Data Files ..37
Describing the Data ..38
Selecting Subsets of the Data ...38
Reclassifying Data ..38
Computing New Values and Weighting ..38
Computing New Values from Final Tabulations ...38
Percentages ...39
Statistics ..39
Ranking ...39
Labels ..39
Masks ..39
Footnotes ...40
Table Formatting ...40

Installing and Running TPL TABLES ...40

Entering Statements42

Rules and Notations for Codebooks and Requests ..42
Statement Rules ...42

Identifiers ..42
Values ..43
Keywords ..43
Print Labels ...43
Backslash ..43
Entering Characters that Are Not on the Keyboard ..43

	 Contents 9

Dashes in TPL TABLES ...44
Mathematical Operators ..45
Comment Entries ..45

Notation Used in Presenting Statement Formats ...45
The "INCLUDE" Feature ..45
Substitutions for Names, Labels and Numbers ...47

Putting REPLACE Statements in %INCLUDE Files ..49
Using Substitutions with Formulas in %INCLUDE Files50

Tables ...52

Defining the Structure and Content of a Table: The TABLE Statement52
Specifying Column, Row, and Wafer Dimensions ..53
The Nesting Operator: BY ...56
The Concatenate Operator: THEN ...57
Combining the Nesting and Concatenate Operators ...58
CONTROL and OBSERVATION Variables ..64

Adding Observation Variables to TABLE Statements ..65
Using Record Names and COUNT ...68
Weight Variables ...71
The TOTAL Control Variable ...71

Interaction of TOTAL and DEFINE ...75
What is a Cross Tabulation? ..77
Table Formatting ...78

Data ...79

Organization of Input Data Files ..79
Types of Files and Data ...79

Data Records ...79
Flat File Structure ...80
Hierarchical File Structure ..80
Data Types ..81

Treatment of Data Errors ...81
CONTROL Variables ..81
OBSERVATION Variables ..82

Character (ASCII) Observations ..82
Binary and Floating Point Observations ..82

Using File Lists to Process Multiple Data Files and Merge Outputs82
Processing Data from Multiple Files ..83

Treatment of Data Errors ..85
Merging Output from Multiple Runs to Create a Single Output85

Combining Cellfiles from Jobs Run on Different Types of Computers87
Piping Data to TPL TABLES (UNIX only) ..89

	 Contents 10

Codebook ...90

Describing an Input Data File ..90
Introduction ...90
General Format of the Codebook ..91

An Example Using Start Position ...92
Codebook Entries ...94

The BEGIN Entry ..94
Incomplete Hierarchy Entries ..95
The RECORD Entry ..96

For Files with a Single Record Type ...96
For Files with More than One Record Type ...97

Variable Entries ...98
CONTROL Variable Entries ...99

Default Assumptions about Values ...102
Fill Specifications for Values ..104
Display Order for Condition Values ...104
Listing Condition Values ..107
The CONDITION LABEL Clause for Automatic Generation of Formatted

Labels ...110
Control Variable Labels ..111
Control Variable Notes ...112

OBSERVATION Variable Entries ...113
Types of Observation Values ..114
The Mask Clause ..115
The SHIFT DECIMAL Clause ..116
Errors in Character (ASCII) Observation Values ...118
Errors in Binary and Floating Point Observations120

CHAR Variable Entries ...120
Using START Position in Variable Entries ..120

FILLER Entries ...121
GROUP Entries ...121

Simple Groups ..121
Repeating Groups ...122

REDEFINES Entries ...123
Redefining Space with START Position ...125

The END Entry ..125
A Codebook Example Describing Multiple Record Types126

Codebooks for CSV and other Types of Delimited Data Files ..128
The BEGIN Entry ..128
Variable Entries ...130

Key Points to Note about the Codebook ..131
Delimited Fields that Have Blank or No Value ..132

	 Contents 11

Use ..134

Accessing the Codebook ..134

Select ..136

Selecting Subsets of the Data ...136
Selection Based on Data Values ..136

Types of Conditions ..138
Relationships ..138
Sets of Values ...141

Compound Conditions ..142
Selecting Data for a Specific Table ...143
Deleting Empty Columns ...143

Selection Using the NUMBER and PERCENT Options ..144
Interaction Between Multiple SELECT Statements ..146

Define ...147

Reclassifying Data by Deleting, Regrouping, and Reordering Variable Values147
Define on a Single Variable ..148

Description of the DEFINE Statement ..150
Old Variable Entries ..151
New Variable Entries ..152
Note on Value Order in Relations and Ranges ..153
Referencing Values Not Listed in the Codebook ..153

Grouping Values with DEFINE ...154
Reordering Values with DEFINE ..154
Excluding Values with DEFINE ..155
The COPY Option for Using Labels from the Codebook ...155
Tip on Using Value Lists from the Codebook ...156
Applications ..157
A Technique for Working with Alphanumeric Codes ...160
Tip on Using NOT in DEFINE ..160

Define on Multiple Variables ...161

Compute ...165

Computing New Variables ...165
Introduction ...165
Compute Entries ..166

Absolute Value ...167
Square Root ..167

	 Contents 12

Integer Division ..168
Masks for Output Formatting ...168

Weighting ..169
The Conditional Compute Statement ...170

Introduction ...170
Select Style Conditional Compute ..171

Condition Term ...171
Compute Term ..172

Define Style Conditional Compute ...174
Entries on the Right ..175
Computations on the Left ...175

 Assigning NULL Values ...176
NULL or Zero for OTHER..178
A Technique for Computing Ratios ...178

Post Compute ..180

Computing New Variables on Final Tabulated Values ...180
Post Compute Entries ..181

MAX ...181
MIN ...182
Masks for Output Formatting ...182

Sample Applications ..182
Standard Deviation ...185

Using Post Computed Variables in Post Computes ...185
The DISPLAY Function ..186

The Conditional Post Compute Statement ...187
Introduction ...187
Conditional Masks and Footnotes ...189

Status Variables ...192
Testing Aggregate Properties with Status Variables193

Restrictions ...194

Percent ...196

Calculating Percents from Tabulated Values ..196
Introduction ...196

Percent Variables ...197
Tables without Percent Markers..198
Percents in Parts of Tables ..202
Base Markers ..203
Use of Base Markers ...205
Nesting Percent Markers ...209
Tables of Original Values and Percents ...210
Using Percents with Different Observation Variables ..212

	 Contents 13

Multiple Percent Variables within a Table ..216
Treatment of Masks in Percents ..217
Summary of Rules for Producing Percents ...218
Checking for Percent Errors in Post Translator ..218

Percent Change ..219

Creating Table Requests with Percent Change or Numeric Change219
How Percent Change is Calculated ..219
Examples ...220

Statistics ..225

Statistical Functions and Statements ..225
MAX ..226
MIN ...226
MEDIAN and FMEDIAN ...227

Weighted Medians ..228
QUANTILE and FQUANTILE Statements ..229

Referencing the Quantile Variable ..230
The FOR EACH Option..231
Choosing the ISD ..232
Processing Time and the ISD ..234
Quantile Algorithm ..235
Sample Quantile Tables ..236

MEAN ...240
VAR - Variance of a Sample ..241
VARP - Variance of Whole Population ...242
STDEV - Standard Deviation of a Sample ..242
STDEVP - Standard Deviation of Whole Population ...243
STDERR - Standard Error of the Mean ..244
Example Showing Multiple Statistics ...245

Ranking ..246

Ordering Rows Based on the Values in a Table Column ...246
The RANK Statement ...246

NULL value-entries ..248
OTHER value-entries ...248
ALL value-entries ..248

Nested RANK Variables ...251
COPY as a Shortcut for Ranking on Codebook Variables252
Keeping the Top or Bottom Ranked Rows ...253

Treatment of Ties..255

	 Contents 14

Using OTHER to Get Residuals ...256
Using ALL and OTHER ...257

Displaying the Rank Number with RANK DISPLAY ..258
Treatment of Ties in the RANK DISPLAY Column259
Troubleshooting the RANK DISPLAY Column ..260

The NORANK Footnote ...260
Referencing Ranked Rows in Format Statements ...261

Weighting ...262

Creating Multipliers with the Weighting Statement ..262
Effect of WEIGHTING on Variables Created with other Statements266
Masks for Output Formatting ..268

Char ..269

Creating a new Character Variable ...269
Char Split: Divide a Character Variable ..270

Hierarchies ...271

Processing Hierarchical Files ...271
Introduction ...271

Codebook Entries ..274
Using Incomplete Hierarchies ...276

Default Treatment ...276
Forcing Tabulation of Incomplete Hierarchies ...277
Message Suppression ..279

How Hierarchies Interact with TPL TABLES Statements ..279
TABLE Statement ...280
SELECT Statement ...288
COMPUTE Statement ..288
Conditional Compute Statement ...289
POST COMPUTE Statement ...289
DEFINE Statement ...291
MEDIAN and QUANTILE Statement ..291

Repeating Groups ...292

Tabulating Variables That Repeat Within Records...292
Introduction ...292

Effect in Hierarchical Files ...293
A Time Series Example ..293

	 Contents 15

A Survey Questionnaire Example ...295
The CONTINUE Option ...297

Describing Repeating Groups in the Codebook ..298
The Special Repeating Group Observation Variable ..299

How Repeating Groups Affect Tabulations ...300
Limits on the Use of Repeating Groups in Tables ..306
Repeating Group Variables in Computations ..307
Limiting Tabulations to Certain Occurrences with DEFINE Statements307

Using Dummy Repeating Groups to Associate Repetitions308
Additional Sample Tables Using Repeating Groups ...310

Labels ...321

Creating and Formatting Print Labels ..321
Automatic Print Labels ..322

Observation Variables ...322
Control Variables and Their Values ...322
Table Titles ..322

Creating Your Own Print Labels ...323
Characters Allowed in Label Strings ..324
Quotes and Back slashes in Labels ...325
Label Length ...325
The Null Label ..326
Labels with Multiple Segments ..326

Creating Extra Labels ..327
The LABEL Statement ...327
Dummy Variables for Extra Labels ...329

Control of Label Breaks ..330
Slashes ..330
Conditional Hyphens ..332
Hierarchy of Label Break Points ..332

Label Alignment ..333
LEFT, RIGHT and CENTER ..333

Alignment in Page Markers ..335
RIGHT with Spanning Stub Labels in Banked Tables336
Effect of CENTER when Stub is on the Right ...336

RIGHT IN SPACE for Right-Alignment to a Selected Point in a Label337
Using RIGHT IN SPACE to Align Footnote Symbols339

Footnote References in Labels ..339
Continuation Labels for Table Titles ...340
SPANNER Labels ...341

Spanning the Table with Wafer Labels ...341
Spanning the Table with Stub Labels..341

Alignment of Spanning Stub Labels in Banked Tables343
Inserting Spanners at the Lowest Level of Nest ...343
Spanners for Nested Variables ..344

	 Contents 16

Indentation and Spacing in Labels ..346
Changing Label Alignment with INDENT ...346

Interaction of Indent with Automatic Indentation ..348
Indent Restrictions ...348
Indent with Proportional Fonts ...348

Spacing within Labels Using SPACE and SPACE TO349
Using SPACE TO and INDENT Together ...350

Links and Anchors in HTML Export ..351
Font Control in Labels ...352

Font Defaults ...354
Vertical Spacing ..355

Superscripts and Subscripts ...355

Masks ...357

Formatting the Data Cells with Masks...357
Adding Decimal Points, Commas, $ and % ...358
Rounding Rule ..359
Creating Decimal Places ...359

Leading Zeros ...360
Character Strings in Masks ...360
Moving the Decimal Point before Display ...361
Replacing Rounded Digits with Zeros ..361
Alignment of Values ...361

Tip on Aligning Different Masks within Columns362
Footnote References and Cell Markers in Masks ...363
Treatment of Large Cell Values ..364
Links and Anchors in HTML Export ..364

TEXT Masks ...365
Font Control in Masks ...366
Sample Tables Using Masks ..367

Footnotes ...370

Footnotes and Notes for Tables ..370
Introduction ...370
Entering and Referencing Footnotes ...371

The SET FOOTNOTE Statement ...371
Entering Footnote References ...372
Choosing Footnote Symbols ...373

User-Assigned Symbols ...373
Default Footnote Symbols ..373

Display of Footnote Symbols in Tables ...374
Display of Footnote Symbols in Labels and Text Masks374
Display of Footnote Symbols in Masks ..374

	 Contents 17

Display of Footnotes at End of Table ..377
Order ...377
Indentation ..377
Adjusting Alignment of Footnote Text ...378

Footnote Symbol Level ...378
Built-in Footnotes ..378

Font for Built-in Footnote Symbols ..380
Forcing Automatic Numbering for Built-in Footnotes381
Conflicts with Other Footnotes in Table Cells ..381

Deleting Footnotes ..381
Using Null Strings ..381
Using FORMAT Statements ...382

Forcing Printing of Unused Footnotes with KEEP ...382
Example of Table with Footnotes ..383
The SET NOTE Statement ..386
Font Controls in Footnotes ..387

Matching the Footnote Symbol Font to the Adjacent Font388
Quick Reference Summary of Font Treatment for Symbols388

Using Footnotes in TEXT Masks ..389
Using SYM in Footnote Text for More Control of Symbol Format390

Using SYM with RIGHT IN SPACE to Align Footnote Symbols and Notes391

Automatic Formatting394

Default Format for Tables ..394
Page Format ...394
Table Title Format ...395
Heading and Column Format ..395

Coalescing of Labels ...395
Stub and Row Format ..396
Wafer Label Format ...397
Data Cell Format ...399

Color and Grey ..400

Using Color, Color Shading and Grey Shading in Tables..400
General Information on Color and Grey ...400

Effect on Monochrome Printers ..400
r g b colors ..401
Color Chart ...401
Color Definitions in color.tpl ..403
Printing Color Separations for Tables ...406

The Special Color GREY ..406
Color Specifications for Individual Labels and Masks ...407

Labels ..407

	 Contents 18

Masks ..407
TEXT Masks ..408
Example of Color Mask in Conditional Post Compute408

Color Specifications for Footnotes and Notes ..409
Text ...409
Symbols ..409

Setting COLOR Defaults for Characters and Rules ..411
Replacing Mask Color ...412
Background Shading with COLOR or GREY ..413

Printing and Export416

Printing Tables and Converting them to Different Formats ...416
Introduction ...416
Printing ..416
How to Export ...417

Windows ...417
UNIX ..417

Autosize ...417
EPS Export ..417
PDF Export ..418
HTML Export ..418

Footnote Display at the End of a Table ..419
Navigation Bar ...419
Links and Anchors ..420

Autosized and Single File HTML ...420
Page Markers ..420
HTML Links and Anchors ..421

Links ...422
Using Links with Anchors ..423

HTML Links to External or Absolute URLs ..424
How to Request HTML Tables ...425

Windows ...425
UNIX ..425

CSV (delimited) Export ..425
CSV Files ..426

ODS and XLS Export ..426
Text Table Export ..426
Data Table Export ..428
PC-Axis Export (Windows only) ..429

PC-Axis Files ..429

Data Drill (Windows Only) ...431

	 Contents 19

Looking at the Contributors to Your Table Cells ...431

Statistical Tests (Windows Only)432

Statistical Testing And Display ..432
How Statistics Test Results are Displayed ..433
Templates ..433
Template Example ..434
Other Output ...434
Notes and Restrictions on Statistics Tests ...434
Undo ..435
Restricting Variables and Conditions in Statistics Testing ..435

Restricting Conditions ...436
Student's T-Test ...437
Z Test ...438
Anova F-Test ...439
F-Test of Standard Deviations ...441
Chi Squared Test ...442
Tukey HSD Test ..444

TPL-SQL ...447

Introduction to the Database Interface ...447
Terminology - Yes, you want to read this...448
TPL-SQL Codebook ..448

A Simple TPL-SQL Codebook Example ..449
Defines Clause ..450

A Better Solution - Using Information from the Database450
Conversions from Database to TPL Data Types ..453

ODBC Data Type Conversions ...454
Oracle Data Type Conversions..455
Sybase Data Type Conversions ...456

New Data Types...456
Label-Code Tables ...458
Alternate Names - The DEFINES Clause ...459
Creating Subfields with Substr ..461
Multiple SQL Tables and Association Statements ..462

An Example ..462
More on Association Statements ..465

Use of %INCLUDE in Codebooks ...466
Codebook Abstract ..466

	 Contents 20

Table and Report Requests for SQL Databases ...468
Qualified Names ..468
Association Statements in Table or Report Requests ..469
The Processing Plan ..469

What is a Chain? ...470
How Can A SQL Table Be Chained to Itself? ..470
What is a "Single Hierarchical Path"? ..471
Why Does TPL Need a Single Hierarchical Path? ...472
Plan Selection ...473
How to Specify a Plan ..474
Plans and the COUNT Variable ..475

Optimizing Performance ...476
Indexing for Multi-Table Processing ..476
SQL Select ..476

Importance of Indexing and an Efficient SQL Select Statement477
Description of SQL Select ...477
Difference in Results between Regular Select and SQL Select 478

SQL Fetch ...479
Summary ..480

Format ..481

The Format Language ..481
Introduction ...481
Where to Put FORMAT Statements ..482
Composition of FORMAT Statements ..482

Action Levels ..483
Action Conflicts ..484
Action Size Specifications ..484
What can be in the FOR Clause? ..484

The Format Actions ...486
Use of FORMAT Statements in Profile ...492
Profile-only Statements ...492

Format Language Reference ..494
Introduction ...494

ALIGN COLUMN HEAD ...495
ALIGN HEADING LABELS ..496
ALIGN HEADNOTE ..497
ALIGN STUB HEAD ..498
ALIGN STUB LABELS ..499

	 Contents 21

ALIGN TABLE ..501
ALIGN TITLE ...502
ALIGN WAFER LABELS ..503
AUTOMATIC STUB AND COLUMN WIDTHS ...504
BANK AFTER COLUMN ..507
BANK AFTER ROW ...508
BANK DIVIDER ...510
BANKS PER PAGE ...511
BOLD RULE ...514
BOTTOM RULE SPAN ...515
CELL MEMORY (PROFILE only) ..516
CODEPAGE (PROFILE only) ..517

Alphabet for Names ...518
The Character Set for Printing ...518
The Sort Sequence ..518

If You Need to Select a CODEPAGE ..518
COLOR Defaults ...519
COLOR = NO ..522
COLUMN WIDTH ..524
COMPRESS HEADING ...525
COUNTRY (PROFILE only)..529

Separators in Masks and Decimal Constants ...530
Effect on Currency Formats ...531
Special Treatment for Currency Symbols in Output532
Date and Time Formats ..533

CSV DIVIDER ..534
CSV OUTPUT (UNIX only) ..535
DATA SPAN ..535
DATA TABLES ..536

ZERO FILL ...537
DATA TABLE OUTPUT (UNIX only) ..539
DELETE ..539
DISPLAY NAME (UNIX/Linux Profile only) ..541
DO NOT RANK ON VALUES ...541
DO NOT REPORT ROWS ..541
DOWN LINE ...542
DOWN RULE ..542
EDITOR (UNIX Profile only) ...546

Editor Name ...546
Editor File ...546

EJECT ..547
EJECT AFTER ROW ..548
EPS OUTPUT (UNIX only) ...549
EXTRA LEADING ...550
FONT ...552

Table Elements ...552
Font Names ..553
Font Sizes ...554

	 Contents 22

Adding Underline to Fonts ...555
Using the Symbol and Zapf Dingbats Fonts ...556

For Footnote Symbols ..556
For Labels ...556

Matching the Footnote Symbol Font to the Adjacent Font557
Spaces in Proportional Fonts ..557

FOOTNOTE COLUMNS ..558
FOOTNOTES ON EACH PAGE / WAFER...561
FOOTNOTE SEQUENCE ...562
GAP IN HEADER ...563
HEADING SPACE ..566
HTML ACCESS ..568
HTML OUTPUT (UNIX only) ...571
KEEP ...573
KEEP DATA FOOTNOTE...573
KEEP FOOTNOTE ..574
LINE ..575
MARGINS (LEFT, RIGHT, TOP, BOTTOM)...576
MAXIMUM FOOTNOTE SYMBOL WIDTH ...578

Aligning Footnote Symbols of Varying Widths ..578
Aligning Footnotes to the Left ..581

ODS OUTPUT (UNIX only) ..582
PAGE LENGTH...583
PAGE LENGTH AUTOMATIC ..585
PAGE MARKER ...587

Page Numbering ...588
ODD and EVEN ...588

Page Count ..589
Marker Location ...589
Multiple Page Markers ..590
Alignments and Spacing within Page Markers ...590
Other Options ..590

Windows Note ...591
UNIX Note ..592

4-Digit Year ...592
PAGE WIDTH ...593
PAGE WIDTH AUTOMATIC ...594
PAPER ...595
PDF OUTPUT (UNIX only) ...596
POSTSCRIPT ..596

Page and Margin Sizes ...598
Treatment of Footnote Symbols in PostScript ..598

Built-in Footnotes ...598
All Other Footnotes ..599

PRINT (UNIX only) ...600
PRINT COMMAND (UNIX profile only) ...600
RAISE FOOTNOTE SYMBOL ..601
RANK ON VALUES ...602

	 Contents 23

REPLACE COLOR ...604
REPLACE DIVIDE CHARACTER ..605
REPLACE FILLER CHARACTER ..607
REPLACE FOOTNOTE / NOTE ..608
REPLACE HEADNOTE ...609
REPLACE LABEL ..610

Replacing a Variable Label ...610
Replacing a Condition Value Label ...612

REPLACE MASK ...616
Keeping Data Footnotes ..616
Replacing Mask by Location ..617
Replacing Mask by Variable ...618
Treatment of Conflicting Masks ...619
Moving the Decimal Point before Display ...619

Replacing Masks with Text ...620
Interaction with REPLACE VALUE ..621

REPLACE MASK COLOR ...622
REPLACE MASK FONT ..623
REPLACE MASK FOONOTE ..624
REPLACE MASK MARKER ...625
REPLACE STUB CONTINUATION ..626
REPLACE STUB HEAD ..628
REPLACE TITLE ..629
REPLACE TITLE CONTINUATION ...630
REPLACE VALUE ..631

Interaction with VALUE in TEXT Mask ..632
REPLACE WAFER LABEL ..633
REPORT ROWS ..634
RETAIN ALL RULES ..634
RETAIN BANK DIVIDER..636
RETAIN BOTTTOM RULE ..638
RETAIN CELLFILE ..639
RETAIN COLUMNS ...640
RETAIN DOWN RULES ..641
RETAIN EMPTY COLUMNS ..643
RETAIN EMPTY LINES ..644
RETAIN END RULE ...645
RETAIN FOOTNOTE ...646
RETAIN HEADER BOTTOM RULE ...646
RETAIN HEADER CROSS RULE ...647
RETAIN HEADING ..648
RETAIN HEADNOTE ...649
RETAIN LAST RULES ...650
RETAIN LEADING ZEROS ...652
RETAIN ROWS ...653
RETAIN RULE AFTER ROW ..654
RETAIN RULE AFTER STUB ...657
RETAIN SPANNER RULES ...658

	 Contents 24

RETAIN STUB ..660
RETAIN TABLES FILE ..661
RETAIN TABLES ...662
RETAIN TITLE ...662
RETAIN TOP RULE ...663
RETAIN WAFER ...663
RETAIN WAFER LABEL ...664
ROTATE ...665
ROUND ...666
ROW BANKS PER PAGE ...667

Balancing Banks of Unequal Length ..669
Lining Up Rows with SKIP AFTER ROW...670
Wafer Labels in Banked Wafers ..670
Balancing Banks with Joined Wafers ...671

ROW SPAN ..673
Row Span ..673
Data Span ..674

RULE ...675
RULE AFTER ROW ..676
RULE MARGIN ..679
RULE PROPERTIES ...681
SCALE ...684
SET FOOTNOTE ...687
SET NOTE ...690
SHADE ..692

Placing Tables in Other Documents ..694
Unshaded ..695
Shaded ..695

How Shading Conflicts are Resolved ...695
Using WHITE with Shading Conflicts ...696

SHADE Options ..697
Shade Cell ...697
Shade Column ...699
Shade Data ...700
Shade Footnotes ..701
Shade Heading ...701
Shade Headnote ...702
Shade Label ...703
Shade Row ...704
Shade Stub ...705
Shade Stub Head ...706
Shade Table ...707
Shade Title ...707
Shade Top ..708
Shade Wafer Label ..709

SKIP AFTER BANKS ...710
SKIP AFTER ROW ...712
SKIP AFTER TABLE ..714

	 Contents 25

SKIP AFTER WAFER ...718
SPANNER HEADING ..720
STUB CONTINUATION ..726
STUB INCREMENT ...727
STUB LEFT ...728
STUB RIGHT ..728
STUB START ..730
STUB STOP...731
STUB WIDTH ...732
TABLE SPACE ..733
TEXT TABLE OUTPUT (UNIX only) ..735
UNDERLINE ROW...735
WAFER LABEL SPANNER ...737
XLS OUTPUT (UNIX only) ..739

Installation (Windows)740

Installing from the CD ...740
Installing from Download ...740
If You Have an Earlier Version of TPL TABLES ..741

.tpl Files ..741
Replacing a Previous Version of TPL TABLES ...741
Using More than One Version of TPL TABLES...741
tpl.ini ...741
Network Installation ...742
Compatibility ..742

"Source" Files ...742
Codebooks and TPL Subdirectories ...742

Default Settings in Profile.tpl ..743
Networks ...743

Licensing Note ..743

Run Instructions (Windows)744

Instructions For Running TPL TABLES Under Windows ...744
Introduction ...744
TED and Other Editors ..744
Description of Jobs and Files ..745

Getting Started ..745
Selecting the Job Directory ...745
Creating and Processing Codebooks ..745

Codebook Abstract ...746
Codebook Object ..747

Database Codebook Source ..747
Producing Tables ...747

	 Contents 26

The TPL Subdirectory ..748
Subdirectory Maintenance ...749

Rerunning the Format Step to Make Modifications ..749
Interactive Edit and Export of Tables ...750
Customizing with PROFILE.TPL ...750
Encapsulated PostScript (EPS) ...751

ENCAPS ..751
Other Export Formats ...752

Common Error and Warning Messages ...752
Specifying Extra Memory ...754
Networks ...754

Licensing Note ..754

Scripts (Windows) ...755

Running Batch Jobs with TPL Scripts ...755
Job Script Example ..757
Wild Cards (* and ?) in TED, COPY, and DELETE Commands757
Running a Script in Foreground or Background ...758

Script Log ...758
Substitutions in Scripts ..759
Commands and Arguments ...760

WTPL Arguments for Starting Scripts ..760
Script Commands and Arguments ..761

Notes on Exporting ..764
Notes on HTML Export ...765
Autosized and Single File HTML ..765
Notes on Data Table Export ...765
Notes on PDF Properties ..766
Notes on Export to PC-Axis ...766

Setting the TED Export Directory in Scripts ..766
Export Core Name in Scripts ..767
TPLDIR Script Command ..768
Arguments for ODBC ...769

Installation (UNIX/Linux)771

How To Install TPL TABLES Under UNIX ..771
How to Stop ..771
Before You Start ..771

Installation Steps ...771
Detailed Description of Setup Prompts ...772

Where Do You Want the System Installed? ..773
Table Viewer ...773
Paper Size ...774

	 Contents 27

Editor ..775
If You Change Your Mind ...775
Completion of Installation ..776

If You Have Multiple Printers Connected to Your Computer776

Run Instructions (UNIX/Linux)777

Instructions For Running TPL TABLES Under UNIX ..777
General Information ..777

Editor ..777
Where to Run Jobs: Paths and Files...777
How to Stop ..778
Note on Running in Background ..778

Codebook Processing ..778
How to Run codebook ...778
Codebook Command Line Arguments ...779
Error Handling ..779
Codebook Abstract ..780
Codebook Object ..780

Producing a Codebook Source with the conditions Procedure780
How to Run a conditions Request ..780
Command Line arguments for conditions ..781
Error Handling ..781

Producing Tables with the tables Procedure ..782
How to Run a Table Request...782
Tables Command Line Arguments..784
Table Request Processing ...785
Controlling the Amount of Screen Display in Foreground786
The TPL Subdirectory ..786
Printing and Exporting ..787

Preventing Prompts for Printing and Exporting ...789
Final Disposition of Generated Files ..789
Path for INCLUDE files ...790
Encapsulated PostScript (eps) ...790
CSV ...791
HTML ...791
HTML Table Arguments ...792

Note on Autosized and Single File HTML ..792
ODS and XLS ...793
PDF ...793
TXT ...793
DAT ...793
DAT Table Arguments ...793

Removing Subdirectories with the rmtpl Command ...794
How to Run rmtpl ..794

Modifying Tables with the rerun Procedure ...794

	 Contents 28

How to Run rerun ..795
Rerun Command Line Arguments ..796
If you wish, you can bypass the prompts by entering your rerun command with

the following parameters: ...796
Rerun Processing ..796

Creating Your Own Environment with the profile.tpl File ..797
Specifying Extra Memory ...797
Piping Data to TPL TABLES ..798

Standard Piping ...798
Named Pipes ...798
Silent Use of Pipes ..799

Common Error and Warning Messages ...800

TPL Conditions (UNIX/Linux) 802

What is tpl conditions? ..802
Control Variable Conditions ..802
Fixed Format Sequential File Example ...803
Delimited (CSV) Sequential File Example ...805
SQL Database Example ..807
Comments ..809

International ...810

Formats, Symbols and Languages ...810
Alphabets and Sort Order: The CODEPAGE Statement ..810
The COUNTRY Statement ..812
Specifying Right-hand Stubs with the FORMAT Statement STUB RIGHT812
Replacing Default English Text ...812

Keywords ...813

TPL TABLES Keywords ..813

Limits ..815

Summary Of Features And System Constraints ..815
Platforms and Operating Systems ...815
Minimum Hardware Configuration ..815
Optional Hardware ..815
Features/Constraints ...816

	 Contents 29

Utilities ...818

Stand-Alone Utility Programs ...818
FOR_WORD ...818
HEXLIST ..819
PSP -- PostScript Print Program ..821
TO_SHOW (Windows only) ..822

Character Sets ...823

Characters and Codepages ...823
EURO Symbol ..823

Index ...838

	 Introduction 30

C h a p t e r 1

Introduction

What Does TPL TABLES Do?

TPL TABLES is a specialized cross tabulation system that lets you sum-
marize data and present the results in tabular form. It can work with data
files of many different formats, including hierarchical files. It can process
an unlimited amount of data and produce tables that range in size from a
few lines to hundreds of pages. Subsets of the data can be selected and
new variables can be computed from existing data. Other computational
features include percent distributions, maximums, minimums, medians and
other quantiles.

Cross tabulation lets you look at your data in new ways by counting or
summarizing things into categories. With TPL TABLES, you can request
tabulations in an endless variety of ways, and you have complete control
over the structure and content of your table output.

TPL TABLES automatically formats your output into quality tabular
reports. Optional format commands are available if you want precise con-
trol of format details. Tables can be altered by deleting rows and columns,
changing labels and titles, and changing the format of numbers. Special
format features include footnotes for print labels and data cells. One for-
mat command strips the table of everything but the data, thus producing an
ASCII data file output that can be used as input to other software packages.

TPL TABLES brings desk-top publishing to data. TPL TABLES makes
it easy to create sophisticated, publication-quality tables with choices of
type style and size, including proportional fonts. The tables can be printed
directly or incorporated in documents that have been created with desk-top
publishing software.

TPL TABLES has a wide variety of applications. Typical users are profes-
sionals in the fields of finance, economics, statistics, marketing, sales and
human resources who are employed by government agencies, corporations,

	 Introduction 31

and universities. However, anyone who needs to get summary information
from a data file or prepare tables for publication is a potential user of TPL
TABLES.

How Does TPL TABLES Work?

The ingredients needed to create tables are: a data file, a codebook that
describes the data file, and a table request that describes the tables. An
optional ingredient is a format request that makes changes to the automatic
table formats.

The Data File

TPL TABLES can work with data files from a variety of sources. For
example, the data can be exported from a database or spreadsheet, down-
loaded from a mainframe, or prepared using an editor or data entry system.
If you have the TPL-SQL database interface, TPL TABLES can also read
data directly from a database. TPL TABLES does not prepare the data,
import it into a format of its own, or change the data in any way. It simply
reads it and extracts the information needed to produce the tables you want.

The Codebook

The first step in creating tables from a particular data file is to prepare a
codebook that describes your data. It contains information such as the
names of data fields, where they are located within a record and how many
character positions (bytes) each occupies within a record. Since TPL
TABLES does not require that your data be in a particular format, it needs
this information in order to find the data values that you wish to use in
your tables.

The codebook is a text file that can be prepared with an editor. In the
Windows version of TPL TABLES, you also have the option of prepar-
ing the codebook interactively. For the UNIX version, the tpl conditions
program can assist you in preparing the codebook.

After you have prepared the codebook, TPL TABLES will process it and
convert it to a form that it can use to work with the data. When this
process is complete, you can use the codebook over and over to create any
number of tables from the data file.

	 Introduction 32

The Table Request

The second step in creating tables is to prepare a table request. The table
request contains TPL statements that describe the tables you want. You can
reference any of the variables in your codebook by name. In addition, you
can select subsets of the data file, compute new variables and define new
categories for existing variables.

The most important statement in a table request is the one that describes
the structure and content of a table. You can request one or many tables in
the same table request.

The table request is a text file that can be prepared with an editor. In the
Windows version of TPL TABLES, you also have the option of preparing
the table request interactively.

Once you have prepared the codebook and the table request, TPL TABLES
can read and tabulate your data to produce the tables you have requested.
It will automatically format the rows and columns of the tables as directed
by the table statements, using names and labels from the codebook and
table request.

The Format Request

An optional third step is the preparation of a format request. It contains
FORMAT statements that you use to make changes to the table format.
The format request can be used with the table request when a table is first
produced. It can also be used alone to reformat a table that was prepared
earlier.

Like the table request, the format request is a text file that you can prepare
with an editor. In the Windows version of TPL TABLES, you also have
the option of editing your tables interactively to create a format request.

The automatic formats provided by TPL TABLES are usually acceptable
for analysis and for some types of publications. However, if your organi-
zation publishes tables, you may need to make format adjustments to meet
the publication standards of your organization. In other cases, you may
find that the defaults for such things as column widths or page size are
not appropriate for all of your tables. These table characteristics can be
quickly and easily changed with FORMAT statements.

	 Introduction 33

An Example

Following is an example that illustrates how a data file, a codebook and a
table request work together in TPL TABLES.

Data

First is a small sample of ten records from a data file that contains infor-
mation about 58,699 households. Each record in the data file represents
one household.

Income

901011211340600002410306300198472
901011211550300002410308310194924
901031211370600001410292000192359
902031213330200002620415000187899
902021211310300001410300480203284
901011213380200002610520000189669
902021211510300002410429240198444
902021211360400002410333720191876
901031211550400002210290000197126
901031211220200002410283000191876

Region
Residence

Sex
HH_type
Education

Codebook

Next is the codebook that describes the data items that we plan to use with
TPL TABLES. Each data item is described in the order of its occurrence
on the data record. FILLER entries account for the parts of the record that
we do not plan to use.

	 Introduction 34

BEGIN		HH		CODEBOOK

HOUSEHOLDS		'Households'		MASK		99,999		RECORD

FILLER	2

RESIDENCE		'Type	of	Residence'		CONTROL		1
			(
			 'Inside	metropolitan	areas'	 =	1
		 'Outside	metropolitan	areas'	 =	2
)
FILLER		1
REGION		CONTROL		1
		(
	 'Northeast'	=	1
	 'West'	=	2
	 'South'	=	3
)
FILLER	2

SEX	'Sex	of	Householder'	CONTROL	1
			(
	 'Male'	=	1
	 'Female'	=	2
)
HH_TYPE		'Type	of	Household'		CONTROL		1
			(
	 'Married	couple'		 =	1
	 'Other	family'	 	 =	2
	 'Nonfamily	household'	 =	3
)
FILLER		9

EDUCATION			 'Education	of	Householder'		CONTROL		1	
			(
	 '8	years	or	less'		 	 =	1
	 'Some	High	School'	 =	2
	 'High	School	Graduate'		=	3
	 'Some	College'	 	 =	4
	 'College	Graduate'		 =	5
	 'Post	Graduate'		 =	6
)
FILLER		1

INCOME			 'Income'		OBS			6

FILLER		7

END		HH		CODEBOOK

	 Introduction 35

Table Request

The following table request begins with a USE statement that references
the name of the codebook to be used with the data. There is one TABLE
statement. In this statement, the data items, HOUSEHOLDS, REGION
and EDUCATION, are used directly from the data file. The other vari-
ables used in the table are defined or computed by other statements. New
income categories are defined, and average household income is computed
from tabulated values.

USE		HH		CODEBOOK;

DEFINE		INCOME_GROUPS		ON	INCOME;
	 'Household	Income	Under	$30,000'		 IF	<	30000;
	 'Household	Income	$30,000	and	Over'		IF	>=	30000;

POST	COMPUTE	AVERAGE		'Average	Income'		
	 MASK	$99,999	=		INCOME	/	HOUSEHOLDS;

TABLE	ONE	
	 'Table	Q1.		Number	of	Households	and	Average	'
	 'Household	Income	by	Geographical	Region	'
	 '	and	Education	of	Householder.':
	 HEADING		
	 	 (TOTAL	THEN	INCOME_GROUPS)	BY		 	 	
	 	 	 (HOUSEHOLDS	THEN	AVERAGE);
	 STUB	
	 	 	(TOTAL	THEN	REGION)	BY	EDUCATION;

The Table Output

TPL TABLES reads the table request, the data file and the codebook. It
uses the codebook to find the required items in the data file. It selects
these items from each record, assigns them to the requested categories, then
sorts and summarizes them to obtain the tabulated values requested for the
table. Finally, it formats the tabulated values into the rows and columns,
using labels from the codebook and table request.

	 Introduction 36

Table Q1. Number of Households and Average Household Income by Geographical
Region and Education of Householder.

Total Household Income Under
$30,000

Household Income
$30,000 and Over

Households Average
Income Households Average

Income Households Average
Income

Total
Education of Householder
8 years or less 7,846 $16,613 6,685 $11,630 1,161 $45,305
Some High School 7,153 21,234 5,433 13,110 1,720 46,896
High School Graduate 21,200 28,959 12,644 15,796 8,556 48,411
Some College 10,013 34,357 4,979 16,658 5,034 51,862
College Graduate 6,859 45,539 2,345 18,403 4,514 59,636
Post Graduate 5,628 56,120 1,408 18,532 4,220 68,661

Northeast
Education of Householder
8 years or less 1,765 17,698 1,473 11,562 292 48,653
Some High School 1,694 22,102 1,264 13,194 430 48,288
High School Graduate 5,138 31,727 2,818 16,049 2,320 50,771
Some College 1,940 37,098 852 16,809 1,088 52,986
College Graduate 1,801 46,717 575 18,850 1,226 59,787
Post Graduate 1,489 61,189 317 17,758 1,172 72,937

West
Education of Householder
8 years or less 3,014 17,510 2,533 12,404 481 44,400
Some High School 2,968 21,585 2,219 13,192 749 46,452
High School Graduate 10,028 28,456 6,028 15,795 4,000 47,538
Some College 5,123 33,819 2,620 16,430 2,503 52,020
College Graduate 3,011 44,698 1,037 18,344 1,974 58,543
Post Graduate 2,569 55,272 667 18,744 1,902 68,082

South
Education of Householder
8 years or less 3,067 15,107 2,679 10,936 388 43,908
Some High School 2,491 20,225 1,950 12,961 541 46,406
High School Graduate 6,034 27,438 3,798 15,611 2,236 47,526
Some College 2,950 33,489 1,507 16,971 1,443 50,739
College Graduate 2,047 45,738 733 18,137 1,314 61,136
Post Graduate 1,570 52,698 424 18,776 1,146 65,248

	 Overview 37

C h a p t e r 2

Overview

An Overview Of TPL TABLeS feATureS

This chapter provides a brief introduction to the basic TPL TABLES fea-
tures. The features are described in the approximate order of the chapters
and appendixes of the User Manual.

Defining the Structure and Content of a Table

The TABLE statement allows you to define both the structure and content
of a table by specifying the columns (HEADING), the rows (STUB) and
the optional repetitions (WAFERS) of the basic column and row structure.
Within each of these three components of the TABLE statement, variables
can appear next to each other as independent tabulations, or be combined
to represent tabulations satisfying the conditions of multiple variables.

This simple, yet powerful, statement is the key to TPL TABLES' flexibility
in designing and producing tables. Any discussion of the TABLE state-
ment is truly a case of "a picture is worth a thousand words". The TABLE
statement chapter contains many examples and illustrations that show how
you can design tables in endless variety.

Data Files

TPL TABLES reads data from sequential data files. File structures can be
either "flat", containing only one type of record, or hierarchical. Hierarchi-
cal files contain a variable number of related records of increasing detail.
Data can be stored as ASCII characters or as binary or floating point num-
bers. Only one data file format, described by a single codebook, can be
processed at one time by TPL TABLES. Multiple data files with the same
file format can be processed in one job. TPL TABLES can also read CSV
and other types of delimited data files. With the TPL-SQL option, TPL
TABLES can read data from a variety of databases.

	 Overview 38

Describing the Data

The input data file is described to TPL TABLES by means of a codebook.
The codebook describes the file structure, naming each record that makes
up a processing unit. Each data item of the record is assigned a name
and an indication of whether the variable represents a classifying variable
or contains values to be aggregated. Each entry for a classifying variable
includes a list of all of its possible values.

The codebook is created as a separate step before tables can be produced.
Once the codebook is created, it can be referenced any number of times.

Selecting Subsets of the Data

A SELECT statement can be used to tabulate only a subset of the data file.
Data can be selected based on data values, or certain sections or percent-
ages of the data can be selected. The SELECT statement can contain com-
binations of logical and arithmetic tests. Multiple tests on several variables
can be strung together with AND's and OR's.

Reclassifying Data

TPL TABLES provides a very powerful DEFINE statement for regroup-
ing, reordering and deleting values for a variable. For example, income
amounts can be classified by ranges, with certain incomes eliminated from
the tabulation.

Computing New Values and Weighting

COMPUTE statements can be used to create new variables by combin-
ing variables from the data file with arithmetic operations. Weighting is
a common application whereby each record contains a weighting factor
which is applied to one or more other variables in that record. The weight-
ed values from each record can then be tabulated. Alternate computations
can also be requested, depending on whether specified conditions are met.
Arithmetic operations allowed in computations include addition, subtrac-
tion, multiplication, division, and exponentiation, plus the absolute value
and square root functions.

Computing New Values from Final Tabulations

Arithmetic operations can be performed on summarized table values to pro-
duce averages, percentages, standard deviations and other calculations. The
statement for computations involving summarized values is called POST

	 Overview 39

COMPUTE. As with COMPUTE, alternate computations can be specified,
depending of whether specified conditions are met.

Percentages

The PERCENT feature allows great flexibility in calculating and display-
ing percents. You can specify whether only percents or both original cell
values and percents are to be displayed. More than one type of percent
distribution can be calculated within the same table.

Statistics

Maximum and minimum values, medians, and quantiles such as deciles and
percentiles can be calculated and displayed in a table with complete flex-
ibility. Other statistics include means, variances, standard deviations, and
standard errors.

Ranking

Table rows can be ranked (sorted) in descending or ascending order based
on the values in a selected data column. Optionally, a rank column can be
added to the table to display the rank number for each row. Another op-
tion lets you keep only the top (or bottom) n rows for a particular ranking.
With this option, you can request a row to display the residual.

Labels

Descriptive print labels can be assigned as table titles, variable and value
labels, and footnote texts. Labels can include spaces, upper and lower case
letters, and special characters. Break points can be chosen for multiline
labels, and alignment can be specified. Labels can also contain references
to footnotes. You can vary the type styles within labels.

Masks

Masks can be used to control the format of values printed in table cells.
With a mask, you can format data to show decimal places, include special
characters such as dollar signs and percent symbols, and specify the align-
ment of data within a column. Masks can also reference footnotes. You
can also choose the type style for table cells.

	 Overview 40

Footnotes

Footnotes can be referenced in labels and masks for automatic inclu-
sion in printed tables. The footnotes can be described and referenced in
codebooks, table requests, format requests and in the TPL TABLES pro-
file. Printing of footnotes can also be conditional. In other words, you
can specify that a table cell value should be footnoted, or replaced by a
footnote, in certain circumstances, including situations in which the data
is confidential. A separate chapter describes footnote features in general;
techniques for conditional footnoting are described in the Post Compute
chapter.

Table Formatting

Tables can be formatted automatically, but, in addition, many details of
table format can be adjusted with FORMAT statements. Column widths
can be altered, footnotes can be added, tables can be split into sections
on the same page, separate tables can be combined onto the same page,
and extensive relabeling can be done. Tables can be prepared for publica-
tion allowing type size, style, and boldness to be specified. You can also
request that a table be turned into a data file, or you can export the table
in web page format (HTML), delimited(CSV) format, spreadsheet format
(XLS or ODS) or text table format.

After a table has been produced initially, extensive reformatting can be
done without reprocessing the data file.

inSTALLing And running TPL TABLeS
Complete instructions for installing and running TPL TABLES are con-
tained in appendixes to this User Manual. The following is a quick sum-
mary of the steps to produce tables.

1. Write the codebook statements necessary to describe the data file. Run
the codebook processor to create a codebook "object". If you want to
make changes to your codebook after it has been processed, you can
make the changes and rerun the codebook processor. Otherwise, you
only need to do it once. Any number of TPL TABLES jobs can be run
using the same codebook object.

2. Write TPL statements to describe the tables you want. Run the pro-
cedure to produce the tables. This procedure uses your codebook

	 Overview 41

object and your TPL TABLES statements to read the required data and
produce the tables you have described. You can request that the system
print the tables immediately, or you can print them later. The tables
will always be saved until you decide to remove them.

3. If the automatic table format is not acceptable for a table, you can
reformat it using FORMAT statements in a format request. Write the
FORMAT statements to make the desired changes and rerun the table
formatting procedure.

	 Entering Statements 42

C h a p t e r 3

Entering Statements

ruLeS And nOTATiOnS fOr COdeBOOkS
And requeSTS

Statement Rules

Codebook, TPL and FORMAT statements are free format; that is, there are
no requirements to begin entries at fixed column positions.

When you enter words using lower case letters, TPL TABLES treats them
the same as upper case letters unless you enclose them in single or double
quote marks (' or ").

For ease of reading, it is best to structure statements so that entries of the
same type are neatly aligned.

Identifiers

Identifiers are names that you create to refer to items such as tables and
variables. They can be up to 30 characters long and can contain letters,
numbers, and the special characters # and underscore (_). An identifier
cannot begin with a number and cannot contain embedded blanks. An
identifier is terminated by any character from the TPL TABLES character
set other than a number, a letter, # or _. Letters can be upper or lower
case. When TPL TABLES reads a lower case letter in an identifier, it con-
verts it to upper case.

	 Entering Statements 43

Values

Numeric values used as constants can contain embedded decimal points.
Optional zeros can be added to the left of the values. For example, 053 is
the same as 53. Alphabetic values must be enclosed in quote marks. To
enter alphabetic values that contain quotes or the backslash character (\),
see the instructions below under Print Labels.

Keywords

TPL TABLES uses many words which identify certain functions and must
not be used as names. These keywords are shown in an appendix. Key-
words can be entered in upper or lower case.

Print Labels

Data names can be given extensive labels which appear automatically on
printed output. These labels are bounded with quote marks and are not
limited in length. All characters can be used in labels, although the charac-
ters ' " and \ require special treatment. Tabs and carriage returns (typed
with the <Enter> key) should not be used in labels. Tabs are replaced
with blanks, and carriage returns are removed when labels are printed.

If you are using single quotes to enclose a label string and need to include
a single quote within the string, use two single quotes where you want the
single quote to print. An example is 'Inside MSA''s', which would print
as Inside MSA's if used in a table. Similar instructions apply to the use
of double quotes.

Backslash

To include the backslash (\) character in a string, enter a double backslash
(\\) at the point where you want the backslash to print. This special treat-
ment is necessary because the backslash is used to enter characters that are
not on the keyboard.

There are many other label options, all of which are described in a separate
chapter called Creating and Formatting Print Labels.

Entering Characters that Are Not on the Keyboard

You may have some characters available on your printer that cannot be
entered directly from your keyboard. This is especially true if you want to
use special characters as footnote symbols or if you need to enter non-Eng-
lish language characters with an editor that doesn't support these characters.

	 Entering Statements 44

TPL TABLES provides two ways to enter characters not on your keyboard.
One way is to use character names and the other is to use character codes.

You can enter the character as a code by typing \nnn (that is backslash
followed by 3 decimal digits) to represent the character.

Three digits are always required. If the character can be represented by
fewer than 3 digits, add leading zeros. For example, for a character repre-
sented by the code 65, enter \065.

The value nnn must be the DECIMAL code for the character. The char-
acter code tables in some software and printer manuals show the octal or
hexidecimal codes for the characters. If you are referring to such a table,
you must convert the code to its decimal equivalent. There are tables in
the Character Sets appendix that show the decimal codes used by TPL for
characters.

The other way to enter characters not on your keyboard is to use the char-
acter name preceded by & and followed by ;. É is the character
name for the letter E with an acute accent. Character names are case-sen-
sitive. é is e with an acute accent. See the Appendix Interational
for more on entering characters and the Character Sets appendix for a list
of supported names.

Dashes in TPL TABLES

There are three sizes of "dash" characters available in TPL TABLES. A
short dash is used for hyphenation. This dash is the hyphen character on
your keyboard. A medium dash (endash) is used as the footnote symbol
for the EMPTY built-in footnote ("Data not available."), and a long dash
(emdash) is used in title continuations. The choice of dash can be changed
for the title continuation with the FORMAT statement REPLACE TITLE
CONTINUATION; and the footnote symbol for EMPTY can be changed
with a SET FOOTNOTE statement.

The medium and long dashes are special characters that are not on your
keyboard but can be entered with &endash; and &emdash;.

Suppose we wish to change the symbol for the EMPTY footnote. The de-
fault symbol for the EMPTY footnote is the medium dash . This statement
will replace it with the long dash character.

Example	 SET	FOOTNOTE	EMPTY	SYMBOL	'&emdash;';

	 Entering Statements 45

Mathematical Operators

Statements which involve computations use the mathematical symbols of
+(addition), -(subtraction), *(multiplication), /(division), **(exponentia-
tion) and =(equals). Mathematical symbols need not be separated from
other elements by spaces.

Comment Entries

You may add your own comments anywhere in a codebook, table request
or format request. Comments allow you to include documentation with
your statements.

A comment must begin with /* and end with */. For example,

/*	This	is	a	comment.	*/

All characters can be used in comments. The only exception is the pair of
characters */, since this pair of characters ends a comment.

Notation Used in Presenting Statement Formats

In this manual, the syntax for TPL TABLES statements is described using
a symbolic notation.

• Entries surrounded by [] are optional.
• Vertically stacked entries indicate that one

entry must be chosen.
• Keywords are presented in UPPER CASE.
• Entries presented in lower case are to be re-

placed with the proper elements.
• The special delimiters = () ; > < ^ are pre-

sented as they should appear in the statement
specification.

The "INCLUDE" Feature

If you have a set of statements or other information that you would like to
store in a separate file and then use in multiple codebooks, table requests
or format requests, you can use the following notation to get this file in-
cluded in your codebook or request:

	 Entering Statements 46

%INCLUDE	filename

TPL TABLES will include the contents of the named file during processing
of the codebook or request. You can also use %INCLUDE in a profile.

Some common uses of %INCLUDE are:

1. inclusion of a long list of condition values
and labels that apply to more than one control
variable, either within the same codebook or
in multiple codebooks;

2. inclusion of a long DEFINE statement in sev-
eral table requests;

3. inclusion of a set of FORMAT statements
in format requests that apply to a particular
group of tables.

The include notation must be on a line by itself and must begin in the left-
most position on the line, i.e. there should be no blanks or other characters
preceding the % sign. NOTE that the include notation must not be fol-
lowed by a semicolon.

A codebook, request or profile can have multiple "includes".

"Nesting" is allowed. This means that an included file can include other
files. Ten levels of nesting are allowed.

If you have an error in an included file and choose to review your output
to find the error message, the review will display the included file as if
it is part of the main codebook, request or profile file. Comments will
show where the included file begins and ends. If you then wish to edit,
you must keep track of which file has the error, because the main file will
be transferred to your editor. Do not edit this file, but, instead, bring the
appropriate included file into your editor and correct the errors in that file
before returning to codebook or request processing.

	 Entering Statements 47

Example Assume that we have three variables in the same codebook that all use the
same long list of country values and labels. The list can be stored in a file
called COUNTRY.LST as follows:

(
	 'Australia'	 	 	 =		01																
	 /	 'Northern	Europe'	/																																			
	 'United	Kingdom	and	Ireland'	 =		02																
	 '	Austria'	 	 	 =		03																
	 '	Belgium'	 	 	 =		04																
	 '	France'	 	 	 =		05																
	 	 .
	 	 .
	 	 .
	 'New	Zealand'	 	 	 =		38																
	 'Other	Oceania'		 	 =		39																
	 /	 'N/S'	 	 	 	 =		40
)

Then in the codebook, we can reference the list for each country variable:

BPF	'Birthplace	of	father'				CON	2
%INCLUDE	COUNTRY.LST

BPM	'Birthplace	of	mother'				CON	2
%INCLUDE	COUNTRY.LST

CIT	'Country	of	citizenship'		CON	2
%INCLUDE	COUNTRY.LST

Substitutions for Names, Labels and Numbers

You can make substitutions for identifiers (names), strings and numbers in
a codebook, table request, format request or profile. To do this, you assign
a name to the item you wish to replace and precede the name with the
character % (no blanks between). You fill in the specific name, string or
number with a REPLACE statement.

For example, you might have a set of tables that you produce from time to
time and the only thing that you need to change in your table request is the
date appearing in the table titles. Rather than looking through your table
request to find and change all of the dates to the current date, you would
like to make the change in date just once.

	 Entering Statements 48

To do this type of substitution, you can give the date a name and use this
name in all of the table titles with the character % in front of the date
name. Assuming the date is called MO_YR, you can write a table title
such as:

'Latest	 information	as	of	 '	%MO_YR	'.'

Somewhere preceding the first use of MO_YR, you must provide the infor-
mation to replace MO_YR. For example:

REPLACE	MO_YR	WITH	'January,	1996';

For this replacement, the table title will be:

Latest information as of January, 1996.

You will probably want to put your REPLACE statements at the beginning
of the request, codebook or profile in which they are used so that they will
be easy to find. The only rule with respect to placement is that the RE-
PLACE statement for %name must always precede the use of %name.
For example, you cannot use %name in a table request and replace it in a
format request.

REPLACE statements can be entered at the very beginning or between
other statements in requests and in the profile. In a codebook, they can be
at the beginning or between entries such as variables or fillers.

To replace a string, you must use quotes in the REPLACE statement. To
replace a name or number, just provide the replacement name or number
without quotes.

	 Entering Statements 49

Examples of number replacement

REPLACE	MASK_TYPE	WITH	99,999.99;

COMPUTE	INCOME	MASK	$%MASK_TYPE	=
	 WEEKLY_INCOME	*	52;

or

REPLACE	THIS_MONTH	WITH	3;
REPLACE	LAST_MONTH	WITH	2;

DEFINE	SELECTED_MONTHS	ON	MONTH_CODE;
'This	month'	 IF	%THIS_MONTH;
'Last	month'	 IF	%LAST_MONTH;

Example of name and label replacement

REPLACE	SALES_ITEM	WITH	AUTOS;
REPLACE	SALES_LABEL	WITH	'Automobiles';

TABLE	R1	'Monthly	sales	figures	for	 '	%SALES_LABEL	:
STUB		DEALERSHIPS;
HEADING		MONTH	BY	%SALES_ITEM;

Putting REPLACE Statements in %INCLUDE Files

If you wish, you can put your REPLACE statements in one or more %IN-
CLUDE files. This means, for example, that you can change entries for a
table request without changing the request itself. The %INCLUDE must
be entered in the request at a point that precedes the first use of any of the
substitutions in the %INCLUDE file.

Example We can redo the preceding example as follows. In a %INCLUDE file
called ITEM, we can enter the REPLACE statements:

REPLACE	SALES_ITEM	WITH	AUTOS;
REPLACE	SALES_LABEL	WITH	'Automobiles';

In the table request, we can have a %INCLUDE entry:

%INCLUDE		ITEM

TABLE	R1	'Monthly	sales	figures	for	 '	%SALES_LABEL	:
STUB		DEALERSHIPS;

	 Entering Statements 50

HEADING		MONTH	BY	%SALES_ITEM;

With this approach, we can generate tables for different sales items by
changing only the file called ITEM to substitute the desired item into the
table heading and substitute its description into the table title.

Using Substitutions with Formulas in %INCLUDE Files

If you have a long, complex series of statements, such as formulas speci-
fied with Computes and Post Computes, and you need to apply these to
many variables, you may wish to enter these statements in a %INCLUDE
file with %name in each place where a specific variable is to be used and
%label to assign appropriate labels.

In the following example, cell values for all tabulated observation variables
are to be displayed in different ways or suppressed, depending on a variety
of conditions. If there were only one variable that needed to be tested, we
would enter the statements directly in the table request. However, if there
are many variables that need to be tested in the same way, the table request
will become quite long, and with many repetitions of the same statements,
there is increased chance of making an error.

To simplify the process, we can put the following statements in a %IN-
CLUDE file and save the file with the name FORMULA.

compute	%CNT		=	
1	 if				abs	(%VBL)	>	0;
null	 if	 	 		other;

compute	%WT	=	
WT_1	 if				abs	(%VBL)	>	0;
null	 if	 	 		other;

post	compute	%VAL	%LBL	=
%VBL	 	 	 	 if	 %VBL	=	0;
mask	text	right	 ’-0'	 	 if	 abs	(%VBL)	<	700	and
	 	 	 	 	 max	(%WT)	<	2.5;	
mask	text	right	‘*-0’	 	 if	 	 abs	(%VBL)	<	700	and
	 	 	 	 	 %CNT	<	12	and
	 	 	 	 	 max	(%WT)	>=	2.5;
%VBL	mask	right	‘*’999,999	 if	 abs	(%VBL)	>=	700	and
	 	 	 	 	 %CNT	<	12	and
	 	 	 	 	 max	(%WT)	>=	2.5;
%VBL	 	 	 	 if	 other;

	 Entering Statements 51

In the table request, we can replace the % entries with a series of simple
REPLACE statements and include the formula for each variable we need to
test. Only the first two are shown below, but we could repeat this pattern
for as many variables as needed.

replace	VBL	with	SALES;
replace	CNT	with	SALES_CNT;
replace	WT	with	SALES_WT;
replace	VAL	with	SALES_VAL;
replace	LBL	with	'Sales';
%include	FORMULA

replace	VBL	with	EXPENSE;
replace	CNT	with	EXPENSE_CNT;
replace	WT	with	EXPENSE_WT;
replace	VAL	with	EXPENSE_VAL;
replace	LBL	with	'Expenses';
%include	FORMULA

Now we can use the new variables in a Table statement. For example:

TABLE	R1:	 HEADING		INDUSTRY,
		 STUB		SALES_VAL	THEN	EXPENSE_VAL;

	 Tables 52

C h a p t e r 4

Tables

defining The STruCTure And COnTenT
Of A TABLe: The TABLe STATemenT

Before requesting tables, you must describe your data file in a codebook so
that TPL TABLES will know the names and locations for the data values
that you want to use in tables. The two chapters following this one provide
details on the types of data files that can be used and how to describe them
in a codebook.

TABLE statements are prepared using an editor and saved in a file called a
TPL table request. The smallest table request contains just a USE state-
ment, telling TPL TABLES which codebook to use, and a TABLE state-
ment, but you can request as many tables as you want by including addi-
tional TABLE statements.

The TABLE statement allows you to define both the structure and the con-
tent of a desired output table. This one comprehensive statement specifies
the types of tabulations to be performed and the arrangement of the tabu-
lated data for output. TPL TABLES takes care of all formatting details, us-
ing names and labels from the codebook or from other types of statements
included in the table request.

Please note that if you are working with a hierarchical (multi-level) data
file, you can tabulate information from different levels of the file. Multi-
level tabulations are described in the chapter on processing hierarchical
files.

	 Tables 53

Specifying Column, Row, and Wafer Dimensions

Format The general format of the TABLE statement is:

		 		TABLE	name	['table	title']	:		 [Ew,]		Es,		Eh;

where name identifies the table being specified. The name can be followed
by an optional table title. If you do not include a title in the TABLE
statement, the table name will be used as the title. Table titles can include
any of the options allowed in other labels. These are described in detail in
the chapter on labels.

The expressions Ew, Es, and Eh represent the three components of the
table. An expression can be a variable name or a combination of variable
names. The expression Eh is called the heading expression and defines the
column structure of the table. The expression Es is called the stub expres-
sion and defines the row structure of the table. The two expressions Eh
(heading) and Es (stub) define a two-dimensional array called the wafer.
The optional expression, Ew, then defines repetitions of that wafer.

WAFER 1

WAFER 2

WAFER 3

S
T
U
B

HEADING

Format An alternate format for the TABLE statement is:

TABLE	name	['table	title']	:
HEADING	expression,
STUB				expression,
[WAFER			expression;]

	 Tables 54

This format allows expressions to be specified in any order if each expres-
sion is identified by the word HEADING, STUB, or WAFER.

The TABLE statement must end with a semicolon. A semicolon or comma
is required between expressions. Each TABLE statement must have at least
a stub and a heading expression.

To visualize the description of the TABLE statement, consider the fol-
lowing table which counts individuals according to their age and income
category:

TABLE	A1:			STUB	AGE,	HEADING	INCOME;
TABLE A1: STUB AGE, HEADING INCOME;

Income

1 2 3

Age 1 *X X X
Age 2 X X X
Age 3 X X X

* X shows placement of tabulated data.

Assume that AGE is coded by age group as:

AGE	=	1	for	ages	16-29
AGE	=	2	for	ages	30-49
AGE	=	3	for	ages	50+

and INCOME is coded by income group as:

INCOME	=	1	for	incomes		0-$9,999
INCOME	=	2	for	incomes		$10,000-$19,999
INCOME	=	3	for	incomes		$20,000	and	over

The table structure is defined by the AGE code (stub expression) and
INCOME code (heading expression) to give a count of occurrences for all
combinations of AGE and INCOME code. In this case, the stub expres-
sion and heading expression produce nine combinations of values. Each of
these combinations defines a table cell that contains one item of informa-
tion. The table in this example consists of only one wafer.

Now we will add a wafer expression to the TABLE statement:

TABLE	A2:		REGION,	AGE,	INCOME;

	 Tables 55

where REGION is coded as:

REGION	=	1	for	NE
REGION	=	2	for	NW
REGION	=	3	for	SE
REGION	=	4	for	SW

The addition of this expression will cause the AGE, INCOME wafer shown
as TABLE A1 to be generated for each of the four REGION codes. Wafers
for each REGION will begin on a new page as shown below:

Region 4

Income

1 2 3

Age 1 X X X
Age 2 X X X
Age 3 X X X

Region 3

Income

1 2 3

Age 1 X X X
Age 2 X X X
Age 3 X X X

Region 2

Income

1 2 3

Age 1 X X X
Age 2 X X X
Age 3 X X X

Region 1

Income

1 2 3

Age 1 X X X
Age 2 X X X
Age 3 X X X

In this example, each combination of AGE code and INCOME code is also
combined with each REGION code.

If a particular wafer contains no data, then that wafer will not be printed.

In the examples of table A1 and table A2, each expression in the TABLE
statement consisted of only one variable name. However, many tabulations
will require a more complex type of expression. To satisfy this need, two
operators are provided: a nesting operator called BY and a concatenate

	 Tables 56

operator called THEN. These operators can be used singly or in combina-
tion with any number of variables to create an expression of the TABLE
statement.

Note The expression "nested with" is used frequently in this manual. When we
say that one variable or a collection of variables is nested with another,
we mean that they are "crossed" for tabulation purposes. All variables in
a table heading are nested with all variables in the table stub. If there is
a wafer expression in the TABLE statement, all variables in the wafer are
nested with all variables in the stub and heading. In addition, variables can
be nested within a heading, stub or wafer using the BY operator as de-
scribed in the next section.

The Nesting Operator: BY

Placement of the nesting operator between two variables causes their values
to be paired in all possible combinations. Using the AGE and INCOME
variables of the previous examples to create a "nested" heading expression,
we would get AGE BY INCOME. In table form, the result of the nesting
would be:

Age 1 Age 2 Age 3

Income
1

Income
2

Income
3

Income
1

Income
2

Income
3

Income
1

Income
2

Income
3

X X X X X X X X X

Each value for AGE is paired with each INCOME value. This nesting op-
eration causes the same action as the comma which separates expressions
in the TABLE statement. The nesting operator, however, is used to define
a structure within an expression of the table definition. Each variable used
with the nesting operator will define a level of nesting. Thus the number
of cells defined can be calculated by multiplying the number of values for
each variable.

There is no limit to the number of levels allowed within one expression.
For example, another level could be added to the AGE and INCOME ex-
pression for a total of three levels in the following TABLE statement which
shows only a heading expression:

	 Tables 57

TABLE	HEADER:		SEX	BY	AGE	BY	INCOME;

where SEX has possible values of 1 and 2. This expression would define
the heading structure:

Sex 1 Sex 2

Age 1 Age 2 Age 3 Age 1 Age 2 Age 3

Income Income Income Income Income Income

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

X X X X X X X X X X X X X X X X X X

This heading expression defines the same information as would the TABLE
statement:

TABLE	SAME:		SEX,	AGE,	INCOME;

The basic difference is in the structure of the output. The first TABLE
statement defines 18 items of information arrayed in one line whereas the
second TABLE statement defines the same 18 items of information arrayed
as two wafers, each with three rows and three columns.

The Concatenate Operator: THEN

Placement of the concatenate operator between two variables causes the
values for the two variables to be displayed in sequence. In other words,
all values of the first variable are followed by all values of the second. For
illustration, consider the heading expression:

	 Tables 58

AGE	THEN	SEX

where AGE and SEX have the values used in previous examples. The
expression defines a heading structured as follows:

Age Sex

1 2 3 1 2

X X X X X

In this case, the occurrence of an AGE-SEX pair of values in an input
record does not result in the tabulation of occurrences of the combination
of values as in the nesting expression, AGE BY SEX. Instead it results in
a separate tabulation for each variable.

You may find it useful to think of the concatenate operator as defining an
additional tabulation while the nesting operator defines an additional level
of the same tabulation. When two variables are joined by the concatenate
operator, each value of each variable defines a cell. Thus the number of
cells defined can be calculated by adding the number of values for each
variable.

Combining the Nesting and Concatenate Operators

In the initial description of the nest and concatenate operators, we said that
these operators could be used in combination with any number of variables
in any expression of the TABLE statement. It is mainly this combination
of operations that allows the specification of the basic structure of a table
in one concise and clear statement.

When the two operators are used in combination within an expression,
nesting takes precedence over the concatenate operation. If a different
order of action is desired, parentheses can be used to specify a differ-
ent precedence. To illustrate this ordering of operations, some examples
will be shown of various combinations of the same variables in a heading
expression.

	 Tables 59

1.	 AGE	THEN	INCOME	BY	SEX

Age 1 Age 2 Age 3

Income 1 Income 2 Income 3

Sex Sex Sex

1 2 1 2 1 2

X X X X X X X X X

In example (1), since nesting takes precedence, SEX is nested with
INCOME, and the result of that nesting operation is then concatenated with
AGE.

Now suppose that we wish to have SEX nested under both AGE and
INCOME. We can use the same variables in the same order, but we need
parentheses to cause the concatenate operator to be applied first.

2.	 (AGE	THEN	INCOME)	BY	SEX

Age 1 Age 2 Age 3 Income 1 Income 2 Income 3

Sex
1

Sex
2

Sex
1

Sex
2

Sex
1

Sex
2

Sex
1

Sex
2

Sex
1

Sex
2

Sex
1

Sex
2

X X X X X X X X X X X X

We can define two more headings using the same three variables but re-
versing the placement of the operators. These examples do not add to the
concepts already discussed, but they do provide an idea of the variety of
table structures that can be defined using only three variables with the com-
bination of operators.

Compare the next heading with example 1.

	 Tables 60

3.	 AGE	BY	INCOME	THEN	SEX

Age 1 Age 2 Age 3 Sex

Income Income Income
1 2

1 2 3 1 2 3 1 2 3

X X X X X X X X X X X

Compare the following heading with example 2.

4.	 AGE	BY	(INCOME	THEN	SEX)

Age 1 Age 2 Age 3

Income Sex Income Sex Income Sex

1 2 3 1 2 1 2 3 1 2 1 2 3 1 2

X X X X X X X X X X X X X X X

Before going on to new concepts, we look at some examples which show
the interaction of ideas discussed up to this point. The following TABLE
statement shows how BY and THEN can be used in both the stub and the
heading.

TABLE	B:		REGION	BY	YEAR,	AGE	BY	(SEX	THEN	INCOME);

Age 1 Age 2 Age 3

Sex Income Sex Income Sex Income

1 2 1 2 3 1 2 1 2 3 1 2 1 2 3

Region 1
Year 1 X X X X X X X X X X X X X X X
Year 2 X X X X X X X X X X X X X X X

Region 2
Year 1 X X X X X X X X X X X X X X X
Year 2 X X X X X X X X X X X X X X X

Region 3
Year 1 X X X X X X X X X X X X X X X
Year 2 X X X X X X X X X X X X X X X

Region 4
Year 1 X X X X X X X X X X X X X X X
Year 2 X X X X X X X X X X X X X X X

	 Tables 61

The next examples illustrate the use of BY and THEN in the wafer expres-
sion.

1.	 TABLE	WAFER1:		AGE	THEN	SEX,	REGION,	INCOME;

Sex 2

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Sex 1

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Age 3

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Age 2

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Age 1

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

We can see from this table that the use of THEN in the wafer expression
causes the wafer to be repeated for each value of the first variable and then
for each value of the second variable.

	 Tables 62

2.	 TABLE	WAFER2:		AGE	BY	SEX,	REGION,	INCOME;

Age 3, Sex 2

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Age 3, Sex 1

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Age 2, Sex 2

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Age 2, Sex 1

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Age 1, Sex 2

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Age 1, Sex 1

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

The nesting of AGE BY SEX in the wafer expression causes repetitions of
the wafer for each combination of the values of AGE and SEX.

	 Tables 63

3.	 TABLE	WAFER3:
	 	 QTR	BY	(AGE	THEN	SEX),	REGION,	INCOME;

where QTR refers to the quarter of the year for which the data is collected.

Qtr 4, Sex 2

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Qtr 2, Age 1

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Qtr 1, Sex 2

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Qtr 1, Sex 1

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Qtr 1, Age 3

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Qtr 1, Age 2

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

Qtr 1, Age 1

Income

1 2 3

Region 1 X X X
Region 2 X X X
Region 3 X X X
Region 4 X X X

We can see from this example that it is possible to define many repetitions
of the same wafer. By simply nesting the variable QTR in front of the
wafer expression shown in TABLE WAFER1, we have caused four times as
many wafers to be generated and have further qualified the content of the
output to provide quarterly tabulations.

	 Tables 64

CONTROL and OBSERVATION Variables

So far we have concentrated on the structure of tables. The cells of the
examples would have contained only simple counts. The TABLE statement
allows aggregation of other values within the cells. To describe this feature
of TPL TABLES, we must distinguish between variables which control the
table structure and those which specify the cell content.

When a variable is described in a codebook, it can be assigned either a
CONTROL or an OBSERVATION attribute. This attribute determines the
treatment of the variable in a TABLE statement.

CONTROL variables are classifying variables such as REGION, AGE
or SEX. The values of a control variable are treated like codes, where
each code value represents a classification for which we want to produce
summaries in a table. The values can contain letters, numbers and other
characters.

Control variables control a tabulation by providing the classifications for
each table cell. If only control variables are used in a TABLE statement,
a value of 1 will be added to the cell for each record that matches the cell
classification. To tabulate values other than 1, we can add OBSERVATION
variables.

OBSERVATION variables contain numeric values that can be added to
table cells. Typical examples of observation variables are income, salary
and number of persons in a family.

Most variables can logically be used in only one of the two ways, either
OBSERVATION or CONTROL, but some variables in a data file can be
reasonably used in either way. For example, a variable giving the number
of persons for each family could be used as a control variable when each
family is to be categorized by the number of persons in the family. In
other cases, we might wish to actually tabulate the number of persons.

You can assign a dual usage to this type of variable by giving it two names
when you describe it in the codebook. For example, you could have an
observation variable called PERSONS_IN_FAMILY and redefine it as
a control variable called PERSONS. The treatment of the variable in a
TABLE statement would depend on which name you used.

Alternatively, the variable can be described as observation in the codebook
and then reclassified as a control variable with a DEFINE statement. This
approach is especially useful for variables that have a large number of

	 Tables 65

numeric values out of which only a few are to be selected or a few large
groupings are to be made; for example, industry or commodity codes.

Adding Observation Variables to TABLE Statements

If no observation variables are used in a TABLE statement, the table cells
will contain only simple counts. If an observation variable is nested into
the table, values for that variable will be added into the table cells in place
of counts.

Suppose that we have a file of information on retail stores, where each
record contains information about one store: the region where the store is
located (REGION), the number of employees (EMPLOYEES), the amount
of sales in dollars (SALES) and a code that identifies the store as a cloth-
ing store or a food store (TYPE).

We can count each type of store by region with a TABLE statement that
contains no observation variables:

TABLE	STORE_COUNT:		HEADING	TYPE,		STUB	REGION;

Clothing Food

Region
1 6 10
2 8 12
3 5 9
4 9 14

If, instead, we want to tabulate sales for each store type and region, we can
do so by simply nesting SALES into the table with the word BY.

	 Tables 66

TABLE	SALES_SUMMARY:	 HEADING		SALES	BY	TYPE,
	 	 	 	 STUB		REGION;

Sales

Clothing Food

Region
1 653,978 246,865
2 727,234 365,898
3 432,154 497,953
4 842,656 522,444

If we were to nest SALES into the table stub instead of the heading, we
would not change either the structure or content of the table. The table
would be exactly the same except that the label for SALES would be
printed in the stub rather than the heading.

We can use more than one observation variable in the same table. For
example, to get a tabulation of both sales and employees in the same table,
we could specify:

TABLE	SALES_AND_EMPLOYEES:
	 	 STUB		REGION,
	 HEADING		TYPE	BY	(SALES	THEN	EMPLOYEES);

Clothing Food

Sales Employees Sales Employees

Region
1 653,978 104 246,865 98
2 727,234 86 365,898 83
3 432,154 93 497,953 45
4 842,656 77 522,444 123

We could get alternate rows of sales and employees by requesting them in
the table stub instead of the heading. Likewise, we could ask for alternate
wafers of sales and employees:

	 Tables 67

TABLE	ALTERNATE_WAFERS:		
	 WAFER		SALES	THEN	EMPLOYEES,
	 STUB		REGION,
	 HEADING		TYPE;

Counts can be combined with tabulations of other observation variables in
the same table. For example:

TABLE	COUNT_AND_SALES:	
	 HEADING		TYPE	THEN	SALES	BY	TYPE,
	 STUB		REGION;

Clothing Food
Sales

Clothing Food

Region
1 6 10 653,978 246,865
2 8 12 727,234 365,898
3 5 9 432,154 497,953
4 9 14 842,656 522,444

The first two columns represent counts of each type of store in each region.
The second two columns represent tabulations of sales amounts for each
type of store in each region. See also the section on record names and
COUNT for other examples showing the combination of counts with other
observations.

The only restriction on the use of observation variables in the TABLE
statement is that if they are nested with each other, they cannot produce
meaningful results. If some part of a table contains nested observations, no
tabulations will be done for that part of the table. The cells will be empty
and a dash will be printed in each cell.

If an entire table statement is specified with nested observation variables,
no table can be produced for the statement. No table would be produced
for the following statement:

TABLE	INVALID:		
	 HEADING		SALES	BY	REGION,
	 STUB		EMPLOYEES	BY	TYPE;

	 Tables 68

The stub specifies SALES for all cells of the table and the heading speci-
fies TYPE for all cells, but a table cell can contain only one value.

The following rules can be used as guidelines for TABLE statements in
which at least one observation variable is explicitly named.

1. Observation variables are normally used in only one expression of the
same TABLE statement: wafer, stub or heading. If they are used in
more than one expression, there is a conflict of cell content and no data
will be printed for the cells where the observations intersect.

The remaining rules apply to the use of observation variables in one ex-
pression.

2. Observation variables can be nested with control variables using the
word BY, but they should not be nested with other observation vari-
ables.

3. Observation variables can be joined with any number of control vari-
ables or other observation variables using the word THEN.

Using Record Names and COUNT

The record name is used in the codebook to describe a collection of control
and observation variables which make up a record in the data file. The
record name is an implied observation variable with a value of 1. It can be
used just the same as any other observation variable.

TPL TABLES also has a special built-in observation variable called
COUNT that can be used like any other observation variable. In a flat
(non-hierarchical) data file, COUNT is equivalent to the record name. For
hierarchical files, the meaning of COUNT depends on whether or not the
codebook contains repeating group variables. See the chapters on hierar-
chies and repeating groups for details.

The examples in this section assume a non-hierarchical data file. They
show the record name RETAIL_STORES being used in the TABLE state-
ment. In all cases, if we substituted the word COUNT for RETAIL_
STORES, the tables would be the same except for the label.

	 Tables 69

Suppose that we would like to see a table with alternate columns of counts
and tabulations of the observation EMPLOYEES, where each record of the
input file represents one retail store. If the data record is named RETAIL_
STORES in the codebook, we can specify:

TABLE	RETAIL:		
	 STUB		REGION,
HEADING		TYPE	BY	(EMPLOYEES	THEN	RETAIL_STORES);

Clothing Food

Employees Retail
Stores Employees Retail

Stores

Region
1 1() 2() Y X
2 Y X Y X
3 Y X Y X
4 Y X Y X

where TYPE is a control variable with a code for each type of store. The
cell numbered (1) represents the sum of the number of employees for each
clothing store in REGION 1. The cell numbered (2) represents a count
of the records with that combination of characteristics, in other words, the
number of stores, since the data file contains one record for each store.

Now suppose that the same information content is desired, but that we
would like to see one wafer for EMPLOYEES and another for RETAIL_
STORE count rather than alternating the two in the heading. We could
then specify:

TABLE	RETAIL2:		
	 WAFER		EMPLOYEES	THEN	RETAIL_STORES,
	 HEADING		TYPE,
	 STUB		REGION;

	 Tables 70

Retail Stores

Clothing Food

Region
1 Y Y
2 Y Y
3 Y Y
4 Y Y

Employees

Clothing Food

Region
1 Y Y
2 Y Y
3 Y Y
4 Y Y

One further example illustrates the explicit use of both EMPLOYEES and
RETAIL_STORES in the stub expression:

TABLE	RETAIL3:		
	 HEADING		TYPE,	
STUB		REGION	BY	(EMPLOYEES	THEN	RETAIL_STORES);

Clothing Food

Region 1
Employees Y Y
Retail Stores X X

Region 2
Employees Y Y
Retail Stores X X

	 Tables 71

Weight Variables

A common need in statistical processing is to weight various observed val-
ues in a data record which represent a sampling. Typically, each process-
ing unit contains a weight to be applied during tabulation, so that the final
table values represent a larger universe.

The simplest example of weighting gives weighted frequency counts. The
weight is simply an observation variable like any other. It can be nested in
the TABLE statement so that the weight is tabulated instead of the default
observation variable which has a value of one. In the following example,
the weight variable WGT is nested with all cells of the table and tabulated
for each cell.

TABLE	W1	'Weighted	tabulation	of	population'	:
	 HEADING		WGT	BY	REGION;
	 STUB		MARITAL_STATUS	BY	EDUCATION;	

To obtain a weighted tabulation other than a weighted frequency count, a
COMPUTE statement can be used. See the "Compute" chapter for details.
See also the WEIGHTING statement to create a variable that contains
multipliers for use in a TABLE statement. It is especially useful in tables
where there are many observation variables that need to be multiplied by
one or more weights or other variables within the same table.

The TOTAL Control Variable

Many tables require that row, column, or wafer totals be displayed. For
example, following the count of persons in each AGE classification we
may wish to see the total count of persons. The built-in variable TOTAL
provides a convenient way to get these totals.

Note that a variable created with the LABEL statement will give exactly
the same result as the built-in variable TOTAL but with a label of your
choice. If you understand the concepts described here for TOTAL, you can
apply them with LABEL variables as described in the "Labels" chapter.

TOTAL can be thought of as a single-valued control variable that is added
to each data record by TPL TABLES. Since TOTAL is a single-valued
control variable, all records are included in the TOTAL classification.
TOTAL can be used in the wafer, stub and heading expressions, and in any
position within these expressions. The print label for TOTAL is "Total".

	 Tables 72

Consider these examples:

TABLE		T1:	TOTAL,	TOTAL;

Total

Total 500

Since TOTAL has the same value for each record, all records fit in the
TOTAL category. The single table cell produced is the count of records
read, in this case 500.

TABLE		T2:	TOTAL,	TOTAL	THEN	SEX;

Total
Sex

Male Female

Total 500 343 157

SEX is a control variable with two classifications concatenated with
TOTAL. Each record will contribute a count of 1 into both the TOTAL
category and one of the SEX categories, so that the first column will equal
the sum of columns two and three.

TABLE		T3:	TOTAL,	INCOME	THEN	TOTAL;

Income Total

Total 1,813,380 500

Since INCOME is an observation variable concatenated with the control
variable TOTAL, the first column is a tabulation of INCOME values for all
records, while the second column is the count of records.

	 Tables 73

If TOTAL is simply nested with one other variable within an expression of
the TABLE statement, it has no effect on either the structure or content of
the table (except to cause an additional label to be printed). In the follow-
ing heading expression, TOTAL is redundant since the categories of AGE
are not further qualified by TOTAL.

TOTAL	BY	AGE	THEN	SEX	

Total Sex

Age1 Age 2 Age 3 Male Female

However, when used in conjunction with the concatenate operator or
with the nest and concatenate operators together, it can be very useful.
Consider another heading expression where we use the observation variable
EARNINGS and the control variables AGE and SEX:

EARNINGS	BY	AGE	BY	(TOTAL	THEN	SEX)

EARNINGS

Age1 Age 2 Age 3

Total
Sex

Total
Sex

Total
Sex

Male Female Male Female Male Female

Each TOTAL column will contain the total EARNINGS for each AGE
group. Each record will contribute an EARNINGS amount to a TOTAL
column depending on the AGE code. Since TOTAL is concatenated with
SEX, EARNINGS from each record will also be added to one of the SEX
classifications. As a result, for each classification of AGE, the TOTAL col-
umn will equal the sum of earnings for that AGE, distributed among both
sexes.

If TOTAL is nested under one or more variables, it provides totals for the
categories above it. If it is only used alone or concatenated with other
variables, it counts records. TOTAL is independent of any variable it is
concatenated with. Thus TOTAL will not always equal the sum of vari-
ables it is concatenated with.

	 Tables 74

Some additional examples of TOTAL in TABLE statements follow. RENT
and INCOME are observation variables in the examples. In the first two
examples, the totals are the sums of the other rows and columns. In the
second two examples, they are not.

TABLE	A:		TOTAL	THEN	AGE,	TOTAL	THEN	REGION;

Total Region 1 Region 2

Total 500 127 373
Age 1 113 37 76
Age 2 194 42 152
Age 3 193 48 145

TABLE	B:		RENT	BY	(TOTAL	THEN	AGE),	TOTAL	THEN	REGION;

Total Region 1 Region 2

Rent
Total 666,625 106,888 559,737
Age 1 147,144 35,902 111,242
Age 2 258,159 31,503 226,656
Age 3 261,322 39,483 221,839

In tables A and B above, TOTAL happens to equal the sum of the variable
entries concatenated with it, both vertically and horizontally. In Table A,
this is because each record will be counted into the upper left cell (TOTAL,
TOTAL) as well as into one of the Region categories and into one of the
Age categories.

In Table B, each RENT value will be aggregated into four cells: two cells
in the TOTAL row and two cells in one of the AGE rows.

	 Tables 75

TABLE	C:		AGE,	RENT	THEN	INCOME	THEN	TOTAL;

Rent Income Total

Age 1 147,144 407,783 113
Age 2 258,159 841,557 194
Age 3 261,322 564,040 193

TABLE	D:		REGION	THEN	TOTAL,	RENT	THEN	AGE	THEN	TOTAL;

Rent Age 1 Age 2 Age 3 Total

Region
1 45,948 19 19 21 59
2 59,125 18 21 24 63
3 219,884 41 73 64 178
4 341,668 35 81 84 200
Total 666,625 113 194 193 500

In table C, the TOTAL column does not contain sums of the values in the
other columns. It counts persons in each AGE category.

In table D, the TOTAL row is the sum of the rows above it. However, the
TOTAL column contains the sum of only the AGE columns, because the
tabulations of RENT, AGE and TOTAL are done independently.

Interaction of TOTAL and DEFINE
Some other aspects of TOTAL are worth noting here, although they may
not be meaningful until you have read about the DEFINE statement:

First, if you define new categories for a control variable such as REGION,
so that the categories either do not include all of the original REGION val-
ues or use some values in more than one category, TOTAL will not equal
the sum of the new categories.

Second, you can group values into totals and subtotals using a DEFINE
statement. For example, REGION values could be tabulated for individual
regions, for groups of two regions and for the total of all regions with the
DEFINE statement:

	 Tables 76

DEFINE	REGION_GROUPS	ON	REGION;
	 'Northeast'	 IF		1;
	 'Northwest'	 IF		2;
	 'North	Total'	 IF		1:2;
	 'Southeast'	 IF		3;
	 'Southwest'	 IF		4;
	 'South	Total'	 IF		3:4;
	 'All	Regions'	 IF		ALL;

Third, you can define other variables that behave in the same way as
TOTAL when used in TABLE statements. This technique is sometimes
used to get a total variable with a label other than "Total". To use this
technique, you define a new variable on some other variable that already
exists and include all values. The following DEFINE statement creates a
total variable with the label "All Regions".

DEFINE	ANOTHER_TOTAL	ON	REGION;
	 'All	Regions'		IF		ALL;

You can also use this technique to suppress the TOTAL label in the table
stub, when you want the TOTAL label to be replaced by the label for the
variable at the next higher level of nesting. Suppose the stub expression is
CITY BY (TOTAL THEN SEX), where CITY and SEX are both control
variables. The normal format for the beginning of the stub is as follows:

BOSTON
	 TOTAL......(total	values)
	 MALE........(sex	values)
	 FEMALE....(sex	values)

A DEFINE statement can be used to create a total variable with no label (a
null label):

DEFINE	NEW_TOTAL	ON	SEX;
	 ''	 	 IF		ALL;

If we then describe the stub as CITY BY (NEW_TOTAL THEN SEX), the
line for NEW_TOTAL will not have a label and the city label will "col-
lapse" down to the total line, giving:

BOSTON.........(total	values)
	 MALE.........(sex	values)
	 FEMALE....	(sex	values)

	 Tables 77

What is a Cross Tabulation?

A Single Cross Tabulation is all of the cells of a table determined by the
same (instances of) control and observation variables.

One Cross Tabulation

Race

White Black

Age

Young Old Young Old

Average Income 21,572 33,496 14,149 22,525

In this table there is one cross tabulation because all of the cells are deter-
mined by the control variables RACE and AGE and the observartion vari-
able AVERAGE INCOME.

Two Cross Tabulations

Race

White Black White Black

Age Sex of Householder

Young Old Young Old Male Female Male Female

Average Income 21,572 33,496 14,149 22,525 37,146 21,488 27,420 16,144

This table has two cross tabulations. The shaded cells are determined by
RACE, AGE, and AVERAGE INCOME while the non-shaded cells are
determined by RACE, SEX, and AVERAGE INCOME.

Two Cross Tabulations Interleaved

Race

White Black

Age Sex of Householder Age Sex of Householder

Young Old Male Female Young Old Male Female

Average Income 21,572 33,496 37,146 21,488 14,149 22,525 27,420 16,144

	 Tables 78

This table also has two cross tabulations but they are interleaved.

Most statistical packages, tabling systems and management information
systems work with a single data cube or cross tabulation. With the use of
THEN, TPL TABLES can produce a table with multiple cross tabulations.

Some TPL TABLES functions such as certain statistical tests are only
meaningful for single cross tablulations. In these cases, TPL TABLES
allows you to perform the function on a single cross tabulation within the
table.

Table Formatting

TPL TABLES automatically formats your tables using default settings
for sizes such as column and stub width. Print labels are taken from the
codebook or from other TPL statements that create new variables in a table
request. The following chapters contain details on all aspects of table
format.

Automatic Formatting. This chapter describes default settings for the
overall table format.

Format. Many aspects of table format can be changed using FORMAT
statements. This chapter tells how to use FORMAT statements and de-
scribes each one in detail. Note that a special FORMAT statement called
DATA TABLES can be used to produce a data file rather than a table
formatted for printing.

Labels. The simplest print label is a string of text characters enclosed
in quotes. The text can include spaces, upper and lower case letters, and
special characters. The many other formatting options for print labels are
described in the Labels chapter.

Masks. This chapter describes the options available for controlling the
format of the numbers printed in table cells.

Footnotes. Footnotes can be printed automatically at the end of a table.
The footnote chapter tells how to create and reference footnotes.

Color and Grey. This chapter tells you how to use color for labels, masks
and lines. In addition, you can request color or grey shading for an en-
tire table or for selected parts of a table. You need a color printer to print
color, but you can use grey shading effectively on a monochrome printer.

	 Data 79

C h a p t e r 5

Data

OrgAnizATiOn Of inPuT dATA fiLeS

TPL TABLES can process many different kinds of data files. The data can
be exported from a data base or spread sheet, downloaded from a main-
frame, entered using a data entry system or editor, or prepared using a
custom program. TPL TABLES does not "import" your data or change it
in any way. Before you can use your data with TPL TABLES, you need to
prepare a data description, called a codebook, that TPL TABLES can use to
find the data items that you want to use in your tables.

Codebooks are discussed in the next chapter. This chapter describes the
types of data that TPL TABLES can read, the treatment of data errors and
the way in which multiple data files can be used together.

If you have the TPL-SQL database interface, TPL TABLES can also read
data directly from a database. For more information, see the TPL-SQL
chapter or TPL Help for the Windows version of TPL TABLES.

Types of Files and Data

Data Records

Data files can be either fixed width or delimited.

In fixed width files, the records must all be of the same length, except in
the case where more than one type of record describes a unit of processing.
In this case, the records of different types can be of different lengths, but
all records of a particular type must be of the same length. The data fields
must be in columns of fixed width.

	 Data 80

Delimited files can have records of different widths. The records have
values separated by commas or some other delimiter character such as
tab or semicolon. This means that fields are identified by their order in a
row of data and that data values for a particular field may have different
widths. The first row of the file can optionally have names for each field.
Delimited files that have comma as the delimiter are sometimes called CSV
(comma separated values) files.

Each record can be thousands of bytes in length. See the Appendix called
"Limits" for current information on the maximum record size.

Flat File Structure

Fixed width data files can be organized in two ways. They can be single
level (flat) or multi-level (hierarchical) files. The single level file is the
simplest form of file organization. It consists of a fixed number of records
which represent a processing unit. In the most common case, there is just
one type of record, and each record represents a processing unit. Delimited
files are always single level (flat) files.

Hierarchical File Structure

Several data records in succession may be required to describe a process-
ing unit. These records may be related in such a way that for records of a
given type, a variable number of a more detailed type follow. Consider a
file of family survey information. Each family record may contain gen-
eral information such as city, employment status, income, and number of
children. Following each family record there could be a record for each
member of the family. The family member records could each contain
information on occupation, salary, sex, and age for the family member. An
indefinite number of member records may follow each family record, but
there must be at least one.

In TPL TABLES, one record from each level of detail is read, starting with
the most general, and together they form a processing unit. This type of
relationship between records is known as a hierarchical structure. Records
at any level of detail may be followed by subordinate records of greater
detail. Records at any level need not repeat information already present at
higher levels.

Processing hierarchical files with TPL TABLES is described in detail in a
later chapter.

	 Data 81

Data Types

Control and Char variable values must be stored as characters (ASCII).
Observation variables can be character (ASCII), binary, or machine-gen-
erated floating point. Binary fields can be 1, 2, or 4 bytes wide. Floating
point fields can be 4 or 8 bytes wide (single or double precision). TPL
TABLES will process floating point data according to the standard floating
point representation for your computer. Since floating point data represen-
tations vary on different types of computers, floating point data to be used
with TPL TABLES should be generated on the type of computer you are
using to do your TPL TABLES work. In delimited files, all values must be
ASCII text characters. Optionally, the values can be enclosed in single or
double quotes.

Treatment of Data Errors

TPL TABLES has been designed to work with files that do not have data
errors. When an error is detected in a data record, the default treatment is
to report the error and discard the entire data record containing the error.
An error message will display the record number, the variable name and
the invalid value. If the data file is hierarchical, then any records below the
record containing the error are also discarded.

In recognition of the fact that real data files often do have errors, several
options are available to help you control the treatment of errors. These
options depend on whether the data field containing the error is a control
variable or an observation variable.

CONTROL Variables

If TPL TABLES finds a control variable value that has not been listed in
the codebook, an error is reported and the record is discarded as described
above.

Note In the Windows version of TPL TABLES, you can prepare the codebook
interactively. For the UNIX version, the tpl conditions program can as-
sist you in preparing the codebook. Both of these tools read the data and
create or update the lists of condition values so that you will not get data
errors for control variables.

If you do not want TPL TABLES to discard automatically data records
with control variable errors, you should add the error values to the code-
book list of values for the variable. You can then use SELECT, DEFINE

	 Data 82

or Conditional Compute statements in your table requests to control how
the error values should be treated. Please refer to the chapters on SELECT,
DEFINE and COMPUTE statements for details.

In particular, note the COPY option of the DEFINE statement. Using
a DEFINE statement with COPY, you can select the valid values for a
control variable, copy their labels from the codebook, and eliminate in-
valid values or group them into a separate category without discarding data
records.

OBSERVATION Variables

Character (ASCII) Observations
For a character (ASCII) observation variable, TPL TABLES will detect and
report as errors values that are completely blank and values that contain
other non-numeric characters. Records containing data errors are discard-
ed.

You can specify different treatment for errors when you describe variables
in the codebook. Error values can be set to NULL, so that no records will
be discarded because of errors. NULL values are not used in tabulations.
Optionally, the error reporting can also be turned off.

An alternate option can be used for blank values. If you choose this op-
tion, blank values will be replaced with the value 0, and no errors will be
reported for blanks.

These options are described in the codebook chapter.

Binary and Floating Point Observations
TPL TABLES cannot detect errors in binary or floating point observation
variables, since any values are possibly valid. In some cases, a "floating
point overflow" error may occur, but usually the only evidence of errors is
unexpected numbers in the table output.

Using File Lists to Process Multiple Data Files and
Merge Outputs

In some cases, the data you wish to process to form a set of tables may be
contained in several data files. These data files may exist in one or more
directories on your hard disk, on multiple CDs or diskettes, or perhaps
even on different types of computers. In other cases the data files may

	 Data 83

be so large that you do not wish to process all of the data at one time but
you would like to have the option of combining the outputs from several
smaller jobs to get tables that include all of the data.

TPL TABLES can handle all of these cases with its multifile and merge ca-
pabilities. The basic way these facilities are activated is to create a file list
that contains the names of the data files to be combined, then to substitute
the file list name for the data file name when running your TPL TABLES
job.

We will discuss the file list first in the context of multifile inputs. Second,
we will extend the idea of the file list to show how outputs from multiple
jobs can be combined.

Processing Data from Multiple Files

If your data is located in several files, you can create a file list containing
the names of the data files to be processed. Then, instead of giving TPL
TABLES the name of a single data file, you can give it the name of the file
list.

Windows. If you are running a Table Request from the Windows Run
menu, enter the name of the file list in the Data File blank and check the
box next to File List?

If you are running from a command in Start then Run, from the command
line, from a .bat file, or from a TPL script, use the -l (lower case letter L)
argument to provide the name of the file list. See Scripts in TPL Help for
more information.

Examples To run a table request using a command, if your file list is called
DATALIST, TPL TABLES is installed in c:\qqq\table, the table request is
c:\myjobs\my.req, and you want the output to go in TPL123, enter:

c:\qqq\table\wtpl.exe	table	-r	c:\myjobs\my.req	-l	DATALIST	-O	123

To run the same job from a script executed from a .bat file, if the script file
is c:\myjobs\runtable.lst, the .bat file would contain:

c:\qqq\table\wtpl.exe	-A	c:\myjobs\runtable.lst

The script file would contain:

table	-r	c:\myjobs\my.req	-l	DATALIST	-O	123

	 Data 84

UNIX. When entering the data file name, a % symbol should be placed
directly in front of the file list name to tell TPL TABLES that the file con-
tains a list of names of data files rather than the data itself.

File names are "case sensitive". For example, the name SURVEY.DAT is
different from the name survey.dat. PAUSE entries can be used before the
names of files that you need to mount. Forward slashes (/) should be used
in path names.

If the file list has a name that begins with a % symbol (we do not rec-
ommend this), you must precede the name with an additional % symbol.
Otherwise, the file list will be used as the data file.

Windows and UNIX. Optional PAUSE entries can be included in the
list to allow you to insert CDs or diskettes. A PAUSE entry applies to the
file name that follows it.

TPL TABLES will process each of the specified files during its CELLGEN
step and combine the data to produce a set of tables identical to the those
that would be produced if all of the data were in a single file.

If there is a problem such as a missing file or a mistyped file name in the
list, TPL TABLES will not abruptly end your job but, instead, will prompt
you for assistance or corrections.

The data files can be read from any available device. For example, for one
job, you could have sections of your data on hard disk, CD, or diskette.
There are two important restrictions. First, all of the data files must be in
exactly the same format. Second, each file must end with a complete data
record. In the case of hierarchical files, a hierarchical unit cannot span
across data files.

Example Assume that we are running on a Windows PC with survey data for last
year saved on hard disk in the subdirectory C:\LASTYEAR, the first three
months of the same survey in the current working directory on the hard
disk, and additional smaller files with the last two months of data on CD.
We can process all four files with the following data

C:\LASTYEAR\SURVEY.DAT
QUARTER1.DAT
D:\APRIL.DAT
D:\MAY.DAT

	 Data 85

There is no required format for the file list, except that the entries must be
separated by at least one blank, and extra characters, such as semicolons,
are not allowed.

Notice that in the above example, two of the files are on CD drive D. If
these files are on different CDs, it will be necessary to stop TPL TABLES
processing to allow you to change CDs. You can accomplish this by insert-
ing PAUSE before the file name.

C:\LASTYEAR\SURVEY.DAT
QUARTER1.DAT
PAUSE
D:\APRIL.DAT
PAUSE
D:\MAY.DAT

When the PAUSE is encountered, TPL TABLES will stop and prompt you
to perform whatever action is necessary to make the next file available.
PAUSE can be inserted in front of as many file names as desired.

Treatment of Data Errors
Counts of data errors are restarted for each file, and the first 50 errors are
shown for each file. Thus, if some files are correct and others have data
errors, you will be able to tell which files have errors. A cumulative total
is also reported for the entire job.

Merging Output from Multiple Runs to Create a Single Output

A file list can also be used if you want to process parts of your data at dif-
ferent times or on different computers and then merge the processed data
into one set of tables. There are no restrictions on the tables that can be
produced in this way. The contents of a single cell of the output table may
contain contributions from all of the input files. However, all of the data
should be processed using the same codebook and table request. If you
attempt to combine outputs produced with different codebooks and table
requests, we cannot predict the results.

The files that are actually merged are not the finished table files but rather
the cellfile outputs created by the CELLGEN step of a TPL TABLES run.
Normally, to avoid wasting disk space, this file is automatically deleted
before the end of a TPL TABLES run since it is not needed for printing of
output tables or RERUN jobs. However, if you wish to merge a table run
with a future run, you must tell TPL TABLES to preserve the cellfile.

	 Data 86

To preserve a cellfile, add the statement

RETAIN		CELLFILE;

to your profile (profile.tpl) or FORMAT request. If you frequently merge
tables, we recommend that you put the RETAIN CELLFILE; statement
in your profile so that you won't forget to insert it when you need it. The
cellfile is about the size of a tables file. Since it is saved in the TPL subdi-
rectory for the job, it will be deleted along with the other files if you delete
its TPL subdirectory.

Suppose in our previous example for multifile processing, the data file C:\
LASTYEAR\SURVEY.DAT was tabulated some time ago and RETAIN
CELLFILE; was specified. If its TPL subdirectory was TPL92 in the
current directory, then there exists a file called TPL92\cellfile. You can
now substitute MERGE TPL92\cellfile or MERGE TPL92 or even
just MERGE 92 for C:\LASTYEAR\SURVEY.DAT in your file list.
The new DATALIST file will contain:

MERGE		TPL92
QUARTER1.DAT
PAUSE
D:\APRIL.DAT
PAUSE
D:\MAY.DAT

Now, instead of reprocessing the entire C:\LASTYEAR\SURVEY.DAT
file, the new job will quickly merge in the already processed data.

Note that both PAUSE and MERGE can precede a file name. Their order
doesn’t matter.

Suppose we have three large data files, SURVEY1, SURVEY2 and
SURVEY3. If we wish to process these separately and combine their
outputs, there are several sequences we could use. One is to process each
of them separately and then combine them in a fourth job using a file
list. IF SURVEY1's cellfile is in TPL1, SURVEY2's cellfile in TPL2,
and SURVEY3's cellfile in TPL3, we can then run a job using the same
codebook and table request that produced these cellfiles, but use a file list
instead of a complete data file. The file list would be:

MERGE		TPL1
MERGE		TPL2
MERGE		TPL3

	 Data 87

Another approach would be to accumulate the data as you proceed. First
process the SURVEY1 data file. Assume that the output of this job is
retained in the subdirectory TPL1.

Next process SURVEY2 and merge in SURVEY1 results using the file list:

MERGE		TPL1
SURVEY2

Assuming the the merged output has been retained in the subdirectory
TPL2, we can next process SURVEY3 and merge in the combined results
of the previous two jobs using the file list

MERGE		TPL2
SURVEY3

Note that we should not include MERGE TPL1 in this file list since the
SURVEY1 data has already been merged into the cellfile stored in TPL2.

Cellfiles need not be left in their TPL subdirectories. They can be cop-
ied out and given unique names and then subdirectories can be deleted.
Suppose our three cellfiles were created in separate jobs and then copied
out of their subdirectories into files called CELLS1, CELLS2 and
CELLS3. These files could be combined in a final TPL TABLES job us-
ing the file list:

MERGE		CELLS1
MERGE		CELLS2
MERGE		CELLS3

Combining Cellfiles from Jobs Run on Different Types of
Computers
The instructions for using the following vary slightly between Windows
and UNIX systems. See the notes at the end of this section for information
on the differences.

Cellfiles are not character files. Consequently, if you are saving cellfiles
from jobs run on different types of computers, you may need to con-
vert them to character files before you can move them from one type of
computer to another. For example, a cellfile produced on a PC running
Windows cannot be directly merged into a table job running under UNIX
on a different computer. Likewise, cellfiles produced on two different
types of UNIX computers may not be directly compatible. Two programs,
CEL2CHAR and CHAR2CEL have been provided to allow cellfiles to be

	 Data 88

merged on a computer that differs from the computer where the cellfiles
were produced.

After the cellfile is produced on the first computer, run CEL2CHAR to
convert the cellfile to a character file. Then copy the character file to the
target computer using your standard character file transfer procedure. Run
CHAR2CEL on the target computer to convert the file back into the ap-
propriate cellfile format for that computer.

CEL2CHAR takes two arguments. The first is the name of the existing
cellfile you wish to move. The second argument is the name of the charac-
ter file you wish to create. This second file will be transferred to the target
computer.

CHAR2CEL takes two arguments. The first is the name of the character
version of the cellfile after it has been transferred to the target computer.
The second argument is the new name for the cellfile. This second argu-
ment is the name that will appear in your file list when you merge the data.

Example Assume that we have run a job on the first computer and that the output,
including the retained cellfile, is in the subdirectory TPL3135. To convert
the cellfile from the job and store it in a file called CHARFIL1, type the
following on the command line:

CEL2CHAR		TPL3135\CELLFILE		CHARFIL1				<enter>

CHARFIL1 can be transferred to a second computer and converted back
to TPL TABLES format using the program CHAR2CEL. For this conver-
sion, type:

CHAR2CEL		CHARFIL1		CELLFIL1				<enter>

Now the cellfile called CELLFIL1 can be entered in a file list to be
merged with other jobs on the second computer.

Note If the directory where TPL TABLES is installed is not in your path, you
must provide the path information in the command. For example:

C:\QQQ\TABLE\CEL2CHAR		TPL3135\CELLFILE		CHARFIL1		<enter>

UNIX Note Both the cellfile and the program names should be entered with lower case
letters. You can choose either upper or lower case letters for the other file
names. Use forward slashes (/) in path names. Assuming we have chosen

	 Data 89

lower case letters for file names, the above example when executed on a
UNIX system would be as follows:

cel2char		TPL3135/cellfile		charfil1				<enter>

char2cel		charfil1		cellfil1				<enter>

Piping Data to TPL TABLES (UNIX only)

TPL TABLES running under UNIX supports standard piping of data into a
request and also supports the more flexible named pipes. For complete in-
structions, see "Piping Data to TPL TABLES" in the appendix called "Run
Instructions (UNIX)".

 Codebook 90

C h a p t e r 6

Codebook

deSCriBing An inPuT dATA fiLe

Introduction

A codebook describes a data file to be used with TPL TABLES. Informa-
tion provided in a codebook includes names of data items, where they are
located within a record, how many character positions each occupies within
a record, and valid entries for control variables. Since TPL TABLES does
not require that your data be in a particular format, it needs this informa-
tion in order to find the data items that you wish to use in your tables.

The codebook is prepared and processed as a separate step before tables
can be produced. This makes the description of data independent of the
procedure which produces tables.

A codebook can be prepared with an editor and then submitted to TPL
TABLES for processing. In the Windows version of TPL TABLES, you
also have the option of preparing the codebook interactively. See Help in
the Codebook Builder for instructions. For the UNIX version, the tpl con-
ditions program can assist you in preparing the codebook. This program is
described in an Appendix.

If you have the TPL-SQL database interface, TPL TABLES can also read
data directly from a database. For more information about database code-
books, see the TPL-SQL chapter or TPL Help for the Windows version of
TPL TABLES.

When a codebook is processed, it is checked for errors and a new file is
created that contains the codebook information stored in a form that can
be used by TPL TABLES to read your data. For your convenience, TPL
TABLES prepares a codebook abstract when processing a codebook. The

 Codebook 91

abstract lists the data items in alphabetical order, along with characteristics
such as type, size and location. Once a codebook has been processed, it
can be used over and over to produce tables.

The version of the codebook that you prepare is called the codebook
source. The version created by TPL TABLES during codebook processing
is called the codebook object. The source is not changed during codebook
processing. At any time, you can edit the source to make changes, then
reprocess it to replace the previous codebook object. The TPL TABLES
"Run Instructions" explain this procedure in greater detail.

General Format of the Codebook

The first entry within a codebook names the codebook. It is followed
by entries defining all data items within each type of record. When you
specify "USE codebookname;" as the first statement in a TPL table request,
all data items within the codebook become available for use in following
TPL statements.

Following is an example of a small codebook which describes a simple
file with only one record type. Each record contains information about
one family. The data items are described in the order that they appear in
the record, and the parts of the record that are not to be used are described
with FILLER entries.

BEGIN	FAMILIES	CODEBOOK
			FAMILY	RECORD
	 FILLER	7
	 REGION		CONTROL	1
	 			(
	 	 NORTHEAST	 	 =	 1
	 	 NORTH_CENTRAL	 =	 2	
	 	 SOUTH		 	 =	 3	
	 	 WEST	 	 	 =	 4
)
	 LIVING_QRT		CONTROL	1
	 			(
	 	 OWNED	 	 =	 1
	 	 CONDOMINIUM	 =	 2
	 	 RENTED	 	 =	 3
	 	 UNKNOWN	 	 =	 '		 '
)

 Codebook 92

	 MORTGAGE		CONTROL	1
	 		(
	 	 MORTGAGED	 	 =	 'A'
	 	 NOT_MORTGAGED	 =	 'B'
	 	 NOT_AVAILABLE	 =	 'C'
)
	 HEADS_NAME		CHAR	30
	 FILLER	20
	 HEADS_CLASS_OF_WORK		CON	1
	 				(
	 	 WHITE_COLLAR	 =	 1
	 	 BLUE_COLLAR		 =	 2
	 	 FARM_WORKERS	 =	 3
	 	 SERVICE_WORKERS	 =	 4
	 	 ARMED_SERVICES	 =	 5
	 	 NOT_REPORTED	 =	 6
)
	 PERSONS_IN_FAMILY		OBS	2
	 NO_EARNERS		OBS	2
	 FILLER	1
	 GROSS_INCOME_OF_HEAD		OBS	7
	 GROSS_INCOME_OF_SPOUSE		OBS	7
END	FAMILIES	CODEBOOK

An Example Using Start Position

You can also describe data items by giving the START position and length.
This technique would most often be used (1) in place of a FILLER entry
for skipping over parts of a record or (2) in a REDEFINES entry where
part of a record is to be used two different ways. Both of these are de-
scribed in more detail in later sections of this chapter.

Following is a second version of the FAMILIES codebook in which all
data items are described using START position. Note that you can use a
mix of the two styles. For example, you might want to use START posi-
tion only to skip over unused sections of the record. Comments show
where this takes place in the version below.

 Codebook 93

BEGIN	FAMILIES	CODEBOOK
			FAMILY	RECORD
/*	first	7	positions	are	skipped;	start	at	8	*/
	 REGION		START	8	CONTROL	1
	 			(
	 	 NORTHEAST	 	 =	 1
	 	 NORTH_CENTRAL	 =	 2	
	 	 SOUTH		 	 =	 3	
	 	 WEST	 	 	 =	 4
)
	 LIVING_QRT		START	9	CONTROL	1
	 			(
	 	 OWNED	 	 =	 1
	 	 CONDOMINIUM	 =	 2
	 	 RENTED	 	 =	 3
	 	 UNKNOWN	 	 =	 '		 '
)
	 MORTGAGE		START	10	CONTROL	1
	 		(
	 	 MORTGAGED	 	 =	 'A'
	 	 NOT_MORTGAGED	 =	 'B'
	 	 NOT_AVAILABLE	 =	 'C'
)
	 HEADS_NAME		START	11	CHAR	30
/*	next	20	positions	are	skipped;	start	at	61	*/
	 HEADS_CLASS_OF_WORK		START	61	CON	1
	 				(
	 	 WHITE_COLLAR	 =	 1
	 	 BLUE_COLLAR		 =	 2
	 	 FARM_WORKERS	 =	 3
	 	 SERVICE_WORKERS	 =	 4
	 	 ARMED_SERVICES	 =	 5
	 	 NOT_REPORTED	 =	 6
)
	 PERSONS_IN_FAMILY		START	62	OBS	2
	 NO_EARNERS		START	64	OBS	2
/*	next	position	is	skipped;	start	at	67	*/
	 GROSS_INCOME_OF_HEAD		START	67	OBS	7
	 GROSS_INCOME_OF_SPOUSE		START	74	OBS	7
END	FAMILIES	CODEBOOK

Note In all cases, the codebook must account for the entire length of the record.
If you are not describing a data item that reaches the end of the record,
you can describe the last portion of the record with a FILLER entry. See
the section on FILLER for more information.

 Codebook 94

COdeBOOk enTrieS

The BEGIN Entry

The first entry in a codebook gives the codebook a name. This name is
referenced at the beginning of any TPL table request that uses the data be-
ing described. The format for the entry is:

Format	 BEGIN	codebookname	[CODEBOOK]	 [ASCII]
	 	 	 	 	 BINARY

where codebookname is a reference name you choose. The word CODE-
BOOK and the ASCII or BINARY specification are optional.

Example	 BEGIN	SURVEY	CODEBOOK

Windows Note A codebook name can contain blanks. If it does, the name must be en-
closed in double quotes.

Example	 BEGIN	"FIRE	DISPATCHES"	CODEBOOK

UNIX Note Codebook names cannot contain blanks.

ASCII is the default data format. If you do not include either ASCII or
BINARY at the end of the BEGIN clause, TPL TABLES assumes that you
are working with a standard ASCII data file. This is the usual format for
data files created by PC software.

In an ASCII data file, all data is stored as ASCII characters. In addition,
depending on the operating system you are using, each record contains
either one or two special characters at the end of each record and a special
end-of-file marker at the end of the entire file. On a Windows PC, each
record ends with a carriage return/line feed combination; in UNIX, each re-
cord ends with a line feed character. TPL TABLES will automatically take
these special characters into account so that you do not have to include
them in your codebook record descriptions.

If all of the data in your file is stored as ASCII characters, but the records
do not have the extra characters at the end, you must include the word
BINARY at the end of the BEGIN clause. Files of this type are unusual
but are sometimes created by custom programs. For example, a custom
program written to transform a particular file from mainframe format to PC

 Codebook 95

format might not add the end-of-record characters when creating the file in
PC format.

If you have any data in your file that is stored in binary or floating point
format rather than ASCII characters, you must include the word BINARY
at the end of the BEGIN clause. For example,

Example	 BEGIN	SURVEY	CODEBOOK		BINARY

When a file is described as BINARY, the entire record, including any end-
of-record characters, must be included in the codebook description of the
data records.

Incomplete Hierarchy Entries

This optional specification follows the BEGIN CODEBOOK entry. It
is relevant only in codebooks that describe hierarchical data files that may
have missing lower level records. For complete details on the rules for
processing incomplete hierarchies, please refer to the chapter on Hierarchi-
cal Files.

The two possible codebook entries are:

TABULATE	INCOMPLETE	HIERARCHIES	=	YES;		(NO	is	the	default)

and

REPORT	INCOMPLETE	HIERARCHIES	=	NO;		(YES	is	the	default)

These entries can be used to control the treatment of incomplete hierar-
chies. By choosing

TABULATE	INCOMPLETE	HIERARCHIES	=	YES;

you can tabulate data from higher level records even though records are
missing at the lowest levels, as long as information from the missing re-
cords is not required to do the tabulation.

By default, incomplete hierarchies will be reported even if they are tabu-
lated. To suppress incomplete hierarchy messages, use the statement

REPORT	INCOMPLETE	HIERARCHIES	=	NO;

 Codebook 96

The INCOMPLETE HIERARCHIES entries can also be included in a table
request following the USE statement. An entry in the table request will
override any conflicting entry in the codebook.

The RECORD Entry

One or more record descriptions follows the BEGIN CODEBOOK entry
to describe each type of record in detail. In the most common type of data
file, there is only one type of data record, so only a single record descrip-
tion is needed. A record description begins with a RECORD entry that
assigns a name to the record. Descriptions of individual data fields follow
the RECORD entry.

For Files with a Single Record Type

If all of the records in your data file are of the same type, use the follow-
ing format for the RECORD entry.

Format	 recordname		['print	 label']			 [USING	MASK	mask]		RECORD
	 USING
	 MASK

The recordname names the record whose component data items will be
described following this entry. The record name is a default observation
variable with a value of 1. In other words, the record name can be used in
a TABLE statement to count records.

The optional print label following the record name is displayed in the
table if the record name is used in the TABLE statement. If no label is
provided, the record name is used as the label.

The optional MASK clause can be used to specify a special print format
for record counts when the record name is used in a TABLE statement.
Masks are described briefly later in this chapter and in detail in a separate
chapter.

The keyword RECORD is always required in the RECORD entry.

Example An example of a RECORD entry for a file in which each record contains
information about a person is:

PERSONS		'Number	of	Persons'	RECORD

 Codebook 97

For Files with More than One Record Type

If you are working with a data file that has more than one type of record,
you need to describe the format for each type of record. Multiple record
types are allowed within any hierarchical level, but the first record type
at any level must be identified uniquely. A maximum of 30 record types
(including repeating groups) can be described in one codebook.

In files with multiple record types, each type may differ from the other in
length, but each record of the same type must be of the same length.

The RECORD entry for each type of record is the same as described
above, except that two additional clauses provide information about the
level and record identifier.

Format	 recordname		['print	 label']			 [USING	MASK	mask]		RECORD
	 USING
	 MASK

	 [LEVEL	n		MARKER	rec-id	=	'value']

If a MARKER is present, a LEVEL number is required. The LEVEL
number and MARKER can be in any order, but they must be at the end of
the RECORD entry.

Following the word MARKER is the name of the data field that contains
the record identifier for the type of record being described. The record
identifier must be a value that uniquely identifies the type of record. The
identifier should be in the same position for each type of record that
requires a marker. The data field that contains the identifier must be a
control variable that is described somewhere else within the record descrip-
tion. The identifier value follows the equal sign in the MARKER clause
and must be within quote marks.

LEVEL n indicates the level of each type of record. For a hierarchical file,
choose a low level number (e.g. LEVEL 0) for the master level. Each
subordinate record level must increase in level number by one; that is,
LEVEL 1, LEVEL 2,...LEVEL n. For a file that has multiple record types
but only one level, any level number can be used.

The most common type of file with more that one record format is a hier-
archical file in which records of different formats represent different levels
of the hierarchy. For example, a household record could be followed by
a record for each person in the household. The following example shows
how LEVEL and MARKER are used in the description of the hierar-

 Codebook 98

chy. Each FAMILIES record contains the letter 'A' in the data field called
CODE. Each MEMBERS record contains a 'B' in the data field called
KIND. The MARKER fields are located at the beginning of each type of
record.

Example	 FAMILIES	RECORD		LEVEL	0		MARKER	CODE	=	'A'
	 CODE	CON	1	(='A')
	 (other	record	description	entries)
	 	 .								 .								 .
	 	 .								 .								 .
MEMBERS	RECORD		LEVEL	1		MARKER	KIND	=	'B'
	 KIND	CON	1	(='B')
	 (other	record	description	entries)

If the first record type at any level of the hierarchy is present in the file,
all the remaining record types at that level must be present. In the follow-
ing example, two record types make up a processing unit in a single-level
file. For each family, both the FAMILIES and HOUSING records must be
present. The FAMILIES record needs the LEVEL and MARKER clauses,
because it is the first record of the pair. Assuming each FAMILIES record
can be identified by the letter A in the first position, the record descriptions
could begin as follows:

Example	 FAMILIES	RECORD		LEVEL	0		MARKER	CODE	=	'A'	
	 CODE	CON	1	(='A')
	 (record	description	entries)
	 	 .								 .								 .
	 	 .								 .								 .
HOUSING	RECORD
	 (record	description	entries)
	 	 .								 .								 .
	 	 .								 .								 .

Variable Entries

Each data field that you want to use in TPL TABLES must be described in
a variable entry. The essential items in a variable entry are the name that
you wish to use to reference the variable, the type of variable (OBSERVA-
TION, CONTROL or CHAR) and the size. Optionally, you may include
the START position of the variable. Depending on the variable type, ad-
ditional information may be required. The variable entries must be entered
in the order that they occur in the data record, and the codebook must
account for the entire length of the data record.

Note that neither record names nor field names may be duplicated any-
where within one codebook.

 Codebook 99

If there are sections of a data record that you do not want to use, you do
not need to describe them. You can skip over these spaces in the codebook
with FILLER entries that tell TPL TABLES the size of the space you want
to skip. Alternately, you can give the START position for the next variable
you describe.

Another type of codebook entry can be used to describe a GROUP. A
GROUP variable can be sudivided by one or more OBSERVATION,
CONTROL or CHAR variables and FILLER entries. A repeating GROUP
can be used to describe a group of variables that repeats a fixed number of
times within a data record. Groups are described only briefly in this chap-
ter. A separate chapter called Repeating Groups provides detailed informa-
tion on their uses.

The attributes CONTROL, OBSERVATION and CHAR are assigned by
you. The choice for a particular variable depends on how you want to use
it and the types of values it can have. Details on CONTROL, OBSERVA-
TION, CHAR, FILLER and GROUP entries follow.

CONTROL Variable Entries

Control variables are classifying or qualitative variables such as CITY or
JOB_TYPE. When you describe a variable as CONTROL, you are telling
TPL TABLES that you want the values for the variable to be treated like
codes, where each code can represent a classification for producing sum-
maries in tables.

Control variables can have both numeric and non-numeric values which
must be stored in the data file as ASCII characters. Each control variable
entry in the codebook must include a list of all possible values for the vari-
able. These values are called condition values. When you list the values
in the codebook, you can assign labels to the values. These labels will
automatically be used in tables, if you use the variable in a TABLE state-
ment.

See also the section on CHAR variables. A CHAR variable can contain
any combination of numbers and characters, and you do not need to list
the values in the codebook. CHAR variables are similar to CONTROL
variables, but they cannot be used directly in TABLES statements. Instead,
you must use DEFINE statements to select the values you wish to use in
tables.

 Codebook 100

Format for CONTROL Variable Entries

name	['print	 label']		CONTROL		[fill	specification]		n
	 CON

[CONDITION	LABEL	clause]			[DISPLAY	AS		LISTED]
	 SORTED
	 NUMERIC
			(
	 condition	value	list
)

where, n represents the length of the field in bytes.

The condition value list is enclosed in parentheses. Values can be listed
using any combination of the following formats:

1. [condition name] ['condition label'] = n
 'string'
2. = 'string'
3. m n
4. m:n

The word IF can be substituted for the = sign in value lists.

The optional fill specification can be any one of the following:

• LEFT BLANK FILL
• RIGHT BLANK FILL
• LEFT ZERO FILL
• RIGHT ZERO FILL

Examples of CONTROL Variable Entries

STATE_OF_RESIDENCE	CON	2	DISPLAY	AS	SORTED
			(
	 ALASKA					 =	 20
	 NEW	YORK			 =	 10
	 UNKNOWN				 =	 '		 '
)

ROOMS	CONTROL		RIGHT	BLANK	FILL		2
			(
				 '1	ROOM'	 =	 1
				 2:10
)

 Codebook 101

YEAR	CON	4
CONDITION	LABEL	IS	VALUE
(1980:2000)

AGE	CON	3	(65:100)

INDUSTRY	CONTROL	2
			(
	 'Oil	&	Gas'		 	 =	 'A1'
	 'Steel'		 	 	 =		 'B4'
	 'Automobile'		 	 =		 'C3'
	 'Wood	Products'		 =	 'D1'
)

Condition names for control variable values may not be duplicated within
one control variable, but may be duplicated in separate control variables.
Condition labels bounded by quote marks may be duplicated anywhere
within a codebook without restriction.

Tip You can enter a value list with a format that is similar to the DEFINE
statement by using the word IF in place of the = sign and adding ; after
each entry. For example:

INDUSTRY	CONTROL	2
			(
	 'Oil	&	Gas'		 	 IF		 'A1';
	 'Steel'		 	 	 IF	 'B4';
	 'Automobile'		 	 IF	 'C3';
	 'Wood	Products'	 IF	 'D1';
)

If you expect to select subsets of a variable using a DEFINE statement in
table requests, this format can help you, because you can use your editor
to copy the codebook description for the variable into your table request
and then simply delete the entries that you don't want. The format for the
entries you retain will match the format required for the DEFINE entries,
so you will not need to do any additional editing in your table request.

 Codebook 102

Default Assumptions about Values
When the data values are listed in the codebook, TPL TABLES makes cer-
tain assumptions about listed values that are shorter than the field length.
These default assumptions are explained immediately below. If your data
does not fit the default assumptions, you may be able to simplify your
value lists by using the FILL specifications that are described following the
explanation of the default treatment.

Non-numeric. Any value that contains something other than a num-
ber is considered to be non-numeric. This includes values that contain
blanks. When non-numeric values are listed in the codebook, they must
be enclosed in single or double quote marks. If you list a non-numeric
value that is shorter than the size of the field, it is assumed to be filled with
blanks on the right. For example, if a control variable is a two byte field
with values

	 |	a		|

	 |	b		|
	 |	c	c	|

these values can be listed in the codebook as

	 '	a	'

	 '	b'
	 '	c	c	'

If, on the other hand, the short values are stored in the data file with blanks
on the left, the blanks must be included in the listed values as follows.

	 '		a	'
	 '		b	'
	 '	c	c	'

 Codebook 103

Numeric. Values that contain only numbers can be listed without quotes.
If they are listed without quotes, values that are shorter than the size of
the field are assumed to be filled with 0's on the left. If they are listed in
quotes, short values are treated the same way as non-numeric values. This
means that they are assumed to be filled with blanks on the right. For ex-
ample, if you have a two byte control variable with numeric values 1 to 20,
filled with 0's on the left as follows,

|01|
|02|
	.
	.
|09|
|10|
|11|
	.
	.
|20|

you can simply list the values as

1
2
.
.
19
20

or as

1:20

If, instead, the short values are stored with blanks on the right, you need to
enclose the short values in quotes and include the blanks:

'1	'
'2	'
	.
	.
'9	'
10:20

 Codebook 104

Fill Specifications for Values
The following optional fill specifications can be used to simplify listing of
values when control variables do not conform to default assumptions. The
fill specification goes between the word CONTROL (or CON) and the field
size.

COMPANY_TYPE	'Company	Type'	CONTROL	RIGHT	BLANK	FILL	5
		(
	 'Manufacturing'	 =		 'MF'
	 'Aerospace'	 =		 'ASPAC'
	 'Construction'	 =		 'CONS'
)

LEFT BLANK FILL can be used when short values are always right-ad-
justed within their space and filled to the left with blanks. If the non-blank
characters are numeric, the values do not need to be listed within quotes.
Otherwise, the values must be enclosed in quotes, but the blanks on the left
do not need to be included in the quoted strings.

RIGHT BLANK FILL can be used when short values are always left-
adjusted within their space and filled to the right with blanks. If the non-
blank characters are numeric, the values do not need to be listed within
quotes. Otherwise, the values must be enclosed in quotes, but the blanks
on the right do not need to be included in the quoted strings. RIGHT
BLANK FILL is the default for values enclosed in quotes.

LEFT ZERO FILL can be used when short values are always right-
adjusted within their space and filled to the left with zeros. If the non-zero
characters are numeric, the values do not need to be listed within quotes.
Otherwise, the values must be enclosed in quotes, but the zeros on the left
do not need to be included in the quoted strings. LEFT ZERO FILL is the
default for numeric values not enclosed in quotes.

RIGHT ZERO FILL is the opposite of LEFT ZERO FILL. It is tricky
to use and not recommended. We think it unlikely that you will have any
variables that require this option.

Display Order for Condition Values
For a control variable, the order in which its values are used is determined
either by the order of listing in the codebook or by an ordering clause.
When one of these clauses is used, it must immediately precede the paren-
theses at the top of the condition value list. The format is:

 Codebook 105

DISPLAY		[AS]		order-type

where the word AS is optional and the order-type can be LISTED (the
default), SORTED or NUMERIC.

When the variable is referenced in a TABLE statement, the conditions are
displayed in the specified order. The order is also used in other statements
such as SELECT or DEFINE to determine whether one value is "higher"
or "greater than" another.

DISPLAY AS LISTED This clause is the default. If it is entered in the
codebook or if no order is explicitly specified for a control variable, the
values will be used according to the order of their listing in the codebook.

With the DISPLAY AS LISTED clause, the codebook entry,

REGION	CON	1	DISPLAY	AS	LISTED
			(
	 SW	 =	 'D'
	 NW	 =	 'C'
	 NE	 =	 'A'
	 SE	 =	 'B'
)

would cause the REGION conditions to be displayed in the order:

SW
NW
NE
SE

If DISPLAY AS LISTED is chosen, all references to a range of values
expressed in a SELECT, Conditional Compute, or DEFINE statement must
be based on the order of the conditions listed, rather than the sort sequence
of the condition values.

For example, since the DISPLAY AS LISTED clause is used in the pre-
ceding example, the region value of 'A' is considered to be greater than
'D' since 'A' is listed after 'D'. In a SELECT statement, a reference to
REGION > 'C' would select region codes of 'B' and 'A'. A reference to
REGION > 'B' would result in an error message since 'B' is considered to
be the highest (last listed) value of region. Similarly, a DEFINE statement
used to combine "SE" and "NE" into one classification would express the
condition as 'A':'B' or > 'C'.

 Codebook 106

DISPLAY AS SORTED This clause causes the conditions to be ordered
based on the sort sequence of condition values, regardless of how they are
listed in the codebook. In the following example, the control variable has
a DISPLAY AS SORTED clause.

REGION		CON	1	DISPLAY	AS	SORTED
			(
	 SW	 =	 'D'
	 NW	 =	 'C'
	 NE	 =	 'A'
	 SE	 =	 'B'
)

If REGION is used in the stub, the rows for REGION will be displayed in
the order of the values, 'A' 'B' 'C' and 'D', with the labels:

NE
SE
NW
SW

DISPLAY NUMERIC If all of the values for a control variable are nu-
meric, you can specify DISPLAY NUMERIC to order the values numeri-
cally, regardless of leading or trailing blanks. If the variable is used in a
table statement, the values will be displayed in numeric order. If you do
comparisons to the values, for example in a SELECT or DEFINE state-
ment, the comparisons will be evaluated numerically.

With the DISPLAY AS SORTED clause, described above, values are sorted
in character sort order. This ordering may not always be appropriate for
certain sequences of numeric values, especially if the values have leading
or trailing blanks.

Assume that we have a control variable in which all of the values are
numeric codes for different types of food. The variable has a width of 2
and short values are filled on the right with blanks. A sampling of values
might be:

'Meat'	 	 =	 '1		 '
'Lamb'	 	 =	 '11'
'Beef'	 	 =	 '12'
'Chicken'	 =	 '13'
'Vegetables'	 =	 '2		 '
'Carrots'	 =	 '21'
'Beans'	 	 =	 '22'

 Codebook 107

It would be reasonable to used these values in the order shown. This is no
problem. However, we might instead wish to use them in strictly numeric
order as follows:

'Meat'	 	 =	 '1		 '
'Vegetables'	 =	 '2		 '
'Lamb'	 	 =	 '11'
'Beef'	 	 =	 '12'
'Chicken'	 =	 '13'
'Carrots'	 =	 '21'
'Beans'	 	 =	 '22'

We could reorder the values in the codebook, but this would be a big job
if there were many values. If we were to specify DISPLAY AS SORTED,
the values would be ordered in character sort sequence. The values with
the blanks on the right would sort to the end rather than the beginning of
the list.

The solution is to use DISPLAY NUMERIC. Note also that if we use the
clause RIGHT BLANK FILL, described elsewhere in this chapter, we do
not need to put the values in quotes. For example:

FOOD		CONTROL	RIGHT	BLANK	FILL		2
DISPLAY	NUMERIC
			(
	 'Meat'	 	 =	 1
	 'Lamb'	 	 =	 11
	 'Beef'	 	 =	 12
	 'Chicken'	 =	 13
	 'Vegetables'	 =	 2
	 'Carrots'	 =	 21
	 'Beans'	 	 =	 22
)

Note that the maximum value for a DISPLAY NUMERIC variable is about
2 billion on most computers. On certain 64-bit computers the maximum is
much larger.

Listing Condition Values
Each control variable entry must include a list of admissible values for that
field. These values can be listed in a variety of ways. The alternate ways
may be combined in any order within the set of parentheses that encloses
the value list. Each way of describing control variable values follows.
(NOTE: Entries in the value list can end with semicolons (;) but not com-
mas.)

 Codebook 108

• Entering the value with its name or label

Format	 [condition	name]	['condition	label']			=	 n
	 	 	 	 	 'string'

Example	 			(
	 ALABAMA	 	 =	 1
	 ARK	'Arkansas'		 =	 2
	 'Not	Available'	 	 =	 'NA'	
)

where a condition name and/or a condition label is assigned to one value
of the control variable. A condition name identifies a value but does not
appear within quote marks and therefore must not contain spaces or special
characters other than '_' and '#'. In a table request, condition names can be
referenced directly in SELECT, Conditional Compute, and DEFINE state-
ments but not in TABLE statements.

When a condition name is assigned to a value and no condition label fol-
lows the name, the name is used as the print label for the value. When a
condition label is assigned, with or without a condition name, it is used as
the print label for the value. A condition label can contain lower case let-
ters, special characters, or other label options such as footnote references.
Condition label strings must be enclosed in quotes.

To the right of the equal sign is a specific control variable value. The
value, n, represents an integer. If the value of n contains fewer digits than
the character length of the data item, leading zeros will be assumed un-
less a fill specification is used for the variable. A control variable value
that contains any character other than a number, including blanks, must be
bounded with quote marks. If the 'string' value contains fewer characters
than the length of the data item, then the data item will be assumed to have
blanks to the right unless a fill specification is used.

• Entering character values alone

Format	 	 =	 'string'

Example	 		 	 (
	 =			 'A1'
	 =			 'DF'
)

 Codebook 109

where 'string' is listed as a value without being equated to a condition
name or label. Each string value must be preceded by an equal sign.
Since no name or label is assigned, TPL TABLES will create one from
the combination of the value and the variable name. For example, if we
specify,

REGION	CON	2
			(
	 =			 'A1'
	 =			 'DF'
)

using REGION in the stub expression would result in the labels:

A1	REGION....
DF	REGION....

• Entering numeric values alone

Format	 	 m		n

where numeric values m n ... etc. are listed separately. Labels are created
for the values in the format:

m	variable-name			n	variable-name	...	etc.

• Entering ranges of numeric values

Format	 	 m	:	n

Example	 	 (20	:	100)

where m and n represent the lower limit and upper limit, respectively, of
a range of numeric values. Each integer value, inclusively, within these
limits is considered to be a separate value for the control variable being
described. TPL TABLES will create labels for each value in the range in
the format:

m	variable-name....n	variable-name

For example, if we specify,

YEARS_OF_AGE		CON	2	
	 (20:99)

 Codebook 110

using YEARS_OF_AGE in the stub would result in the labels:

20	YEARS	OF	AGE....
21	YEARS	OF	AGE....
.								 .
.								 .
99	YEARS	OF	AGE....

The range provides a convenient way of listing values where many, but not
necessarily all, of the values within the range are present in the data file.
For example, in a file containing the field described as YEARS_OF_AGE,
there need not be a person of every age.

The CONDITION LABEL Clause for Automatic Generation of
Formatted Labels
The condition value list can be preceded by a CONDITION LABEL clause
to specify the type of label that you want for values that do not have indi-
vidual labels assigned. This clause must follow the variable size specifica-
tion and precede the value list that is enclosed in parentheses. The labels
can consist of only the condition values themselves, or a combination of
label strings and the values. The keyword VALUE in this clause indicates
the relative position of each value to the label strings. The value can pre-
cede or follow a label string, or be inserted between strings. For example:

YEAR	CON	2
	 CONDITION	LABEL	IS	'19'	VALUE
	 			(50:99)

causes condition labels of '1950', '1951', ...'1999' to be generated for the
values 50 through 99.

AGE	CON	2
	 CONDITION	LABEL	IS	'Age	=	'	VALUE
	 			(1:99)

causes condition labels of 'Age = 1', 'Age = 2','Age = 99' to be gener-
ated for the values 1 through 99.

AGE	CON	2
	 CONDITION	LABEL	IS	'Age	'	VALUE	'	Total'
	 			(1:99)

 Codebook 111

causes condition labels of 'Age 1 Total', 'Age 2 Total','Age 99 Total' to
be generated for the values 1 through 99.

CODE	CON	4
	 CONDITION	LABEL	IS	VALUE
	 			(0:999)

causes condition labels of '0', '1','999' to be generated.

If a condition name or label is assigned to any specific value in the list, no
label will be generated for that value. For example:

AGE	CON	2
	 CONDITION	LABEL	IS	'Age	'	VALUE
	 			(
	 	 0:99
	 	 'Unknown'	 =	 'XX'
)

causes condition labels of 'Age 0', 'Age 1','Age 99' to be generated for
the values 0 through 99, while the assigned label 'Unknown' is used for
the value 'XX'.

The CONDITION LABEL clause can contain any of the options available
for labels, such as footnotes and slashes for line spacing. If the values
contain leading or trailing blanks, the blanks will not be included in the la-
bels, unless the values are listed in quotes with the blanks included. This
is true even when left or right blank fill is specified.

Control Variable Labels
If you enter a print label immediately following the control variable name,
this label will be printed in tables where the variable is used. If used in
the stub or heading, the variable label will be printed above and span-
ning over the condition labels. If you do not assign a variable label, only
condition labels will be printed in the table. Variable labels are important
when the value labels do not provide enough information to stand alone.

Examples	 	 PERSONNEL	RECORD
	 EDUCATION	'Education	Level'	CON	2
	 			(
	 	 'High	School'	 =	 1
	 	 'Some	College'	 =	 2
)

 Codebook 112

	 JOB_CODES	CONTROL		2
	 			(
	 	 'Economist'	 =	 'B1'
	 	 `Statistician'	 =	 'B2'
)
	 MARITAL_STATUS	'Married?'	CON	1
	 			(
	 	 'Yes'	 	 =	 'Y'
	 	 'No'		 	 =	 'N'
	 	 'No	response'	 =	 '	 '
)

The variables EDUCATION and MARITAL_STATUS have labels follow-
ing their names. These variable labels will print above the labels for the
individual condition values. Since the variable JOB_CODES does not have
a label following its name, only the condition labels will print. If each of
the three variables were concantenated in the stub expression, they would
be printed as:

Education	Level
High	School.........
Some	College......
Economist............
Statistician...........
Married?
Yes......................
No........................
No	response........

Control Variable Notes

1. More than one value cannot be combined into a single classification in
a codebook. See the chapter on the DEFINE statement for ways to do
this in a table request.

2. Blanks are not treated the same as zeros in control variable fields. If
numeric fields are blank filled to the left or right, the condition val-
ues having blanks must be enclosed in quotes or the LEFT or RIGHT
BLANK FILL option must be used.

 Codebook 113

3. If a control variable has a large number of potential values, but you
want to use only a few values or ranges of values in a table request,
you may find it much easier to simply describe the variable as OBS or
CHAR in the codebook. A DEFINE statement in the table request can
then be used to create a control variable with only the values you want
to use.

OBSERVATION Variable Entries

Observation variables contain quantitative values that can be used in
computations and added into table cells. Typical examples of observation
variables are INCOME and WEIGHT (weighting factor).

Observation variables can contain only numeric values. TPL TABLES as-
sumes that the numbers are stored as ASCII characters unless you indicate
otherwise. An observation variable description does not include the value
list that is required for a control variable description.

If an observation value does not contain a decimal point in the data file, it
is assumed to be an integer. You can create decimal places with a SHIFT
clause in the codebook or with COMPUTE or POST COMPUTE state-
ments in a table request.

Note Arithmetic operations on two or more observation variables cannot be done
with codebook statements. Deriving new observations from old ones must
be done by computations in the table request.

Format	for	OBS	Variable	Entries

name	['print	 label']		 [USING	MASK	mask]	[blank	or	error	treatment]
	 USING
	 MASK

OBSERVATION	 n				 [SHIFT	DECIMAL	 LEFT			m]
OBS	 BINARY		1		 	 	 RIGHT							
	 BINARY		2
	 BINARY		4
	 UNSIGNED	BINARY		1
	 UNSIGNED	BINARY		2
	 FLOAT		4
	 FLOAT		8
	 FLOAT	DOUBLE

The type and size (e.g. 2 or BINARY 4) indicate how the data is represent-
ed in the data file. The letter 'n' shown in the above format represents the

 Codebook 114

length of the field in bytes if the data values are stored as ASCII charac-
ters.

The variable name is followed by an optional print label that can contain
any of the options available for labels. If you do not provide a label, TPL
TABLES will use the variable name as the label when the variable is used
in a table. The optional mask indicates how the summarized data should
be displayed. Masks are described briefly in this section and in more detail
in a separate chapter.

The clause shown as "blank or error treatment" can be placed anywhere
between the optional label and the word OBSERVATION (or OBS). The
possible treatments are:

BLANK	=	0	(or	ZERO)
DATA	ERROR	=	NULL
REPORT	ERROR	=	NO

These options are described in the section on Errors in Observation Values.

The optional SHIFT DECIMAL clause, at the end of the entry, can change
the location of the decimal point. It is described in the section called The
SHIFT DECIMAL Clause.

Examples of OBS Entries

INCOME	'GROSS	FAMILY	INCOME'	OBS	6
VARIANCE	MASK	999.99	OBSERVATION	FLOAT	4
VAR	OBS	3
WEIGHT_FACTOR	'Family	weighting	factor'	OBS	BINARY	4
GROSS	"Gross	Income"	USING	MASK	$99,999	OBS	FLOAT	8
WEIGHT	OBS	UNSIGNED	BINARY	2
SALARY		DATA	ERROR	=	NULL		OBS	6	SHIFT	DECIMAL	LEFT	2

Types of Observation Values

OBS n
When the data is described with only its length 'n', TPL TABLES assumes
that the data is stored as ASCII characters. The data values can have op-
tional leading blanks or tabs, an optional '+' or '-' character, and a number
with an optional decimal point. Trailing blanks are permitted. The num-
bers can contain commas. For example, 43,586.43 is an acceptable value.

 Codebook 115

Note If a value is entirely blank, it is considered to be a data error. See the sec-
tion on Errors in Observation Values for ways to specify different treatment
for blanks.

Values for ASCII observation variables can also be stored in E notation,
e.g. 53.6e10 or .53E13, but processing will be slower for E notation values.
For values stored in E notation, the E cannot be preceded by a blank. TPL
TABLES will end the value at the blank and will not find the E. Commas
are not allowed in E notation values.

OBS BINARY n
Data is stored as a signed binary number 'n' bytes in length. The value of
'n' can be 1, 2, or 4.

OBS UNSIGNED BINARY n
Data is stored as an unsigned binary number 'n' bytes in length. The value
of 'n' can be 1 or 2.

OBS FLOAT 4

OBS FLOAT 8

OBS FLOAT DOUBLE
Numeric data is stored in the floating point form that is standard for your
computer. Floating point data can have a length of four bytes (FLOAT
4) for single-precision floating point, or eight bytes (FLOAT 8 or FLOAT
DOUBLE) for double precision floating point.

The Mask Clause
The codebook mask clause is used to specify how the final values of an
observation variable are to be displayed in tables. If no mask is provided,
data are right justified within the column and no decimal places or special
symbols other than commas are shown. A mask may be added to force
centering based on the largest expected cell value, to indicate the number
of decimal places to be displayed, to display values with text, or to cause
values to be footnoted.

Each mask clause in the codebook begins with the words MASK, USING,
or USING MASK. Some examples of mask clauses with codebook ob-
servations are shown below. All mask options are described in detail in a
separate chapter on masks.

USING		$99,999

 Codebook 116

Center data based on mask size and add a dollar sign to the first value of
the variable appearing in a column. If the displayed value is smaller than
the mask, the dollar sign will "float" to the right.

MASK		RIGHT	$99,999	'	 '

Offset the data one space from the right column divider, adding a dollar
sign to the first entry in each column.

USING	MASK		99.99	FOOTNOTE	(SOURCE)

Center the data based on mask size and precede it with the symbol for
the footnote called SOURCE. The data will be displayed to two decimal
places. Note that if the data values are integers, only 0's will be printed
to the right of the decimal point. For example a final cell value of 1,237
would be displayed as 1,237.00. The footnote symbol and text can be
specified in a SET FOOTNOTE statement in the codebook, table request,
or format request.

USING	'**'	9999	'**'

Bound all cell values with two asterisks. The cell values and special sym-
bols will be centered based on mask size.

USING	MASK		999.99	'%'	RIGHT

Each cell value will be followed by the character % and will be right-justi-
fied in the cell.

MASK		999,999	FONT	HBI	10

Each cell value will be centered based on the size of the mask. In Post-
Script mode, the values will be printed using the Helvetica-BoldOblique
font, size 10.

The SHIFT DECIMAL Clause
A SHIFT DECIMAL clause can be included at the end of an OBSER-
VATION variable entry to adjust the location of the decimal point. The
adjustment takes place as the data values are read.

Format The format of the SHIFT DECIMAL clause is:

SHIFT		DECIMAL		direction		m

 Codebook 117

where direction can be LEFT or RIGHT and m is the shift amount. The
shift amount must be a positive integer. Negative amounts are not allowed
and 0 has no effect.

Although a SHIFT DECIMAL clause can be used with any observation
variable, it is used most often to get the effect of a decimal point for vari-
ables that do not have explicit decimal points included in the data values.
If you do not specify a SHIFT DECIMAL clause for this type of variable,
TPL TABLES assumes that its values have no decimal places.

Example For example, assume we have a variable called SALARY with values
of 1000, 2000 and 3000 for hourly salary amounts. No explicit decimal
points are included in the data, but there are two decimal places so that the
meaning of the values is actually 10.00, 20.00 and 30.00. If we describe
salary as

SALARY		OBS		4

and then tabulate the salary values, TPL TABLES will assume that there
are no decimal places and give a sum of 6000 for the three values.

If we add a SHIFT DECIMAL as follows,

SALARY		OBS		4		SHIFT	DECIMAL	LEFT		2

the data values will be divided by 100 as they are read, giving a sum of 60.

If we want the two decimal places to be printed in the table, we must add
a mask:

SALARY		MASK	99.99		OBS		4		SHIFT	DECIMAL	LEFT		2		

gives the same sum of 60, but it will print as 60.00 to show the two deci-
mal places indicated in the mask.

The shift can be either LEFT or RIGHT. For example,

SHIFT	DECIMAL	RIGHT	3

causes data values to be multiplied by 1000 as they are read.

SHIFT	DECIMAL	LEFT	3

causes data values to be divided by 1000 as they are read.

 Codebook 118

A SHIFT DECIMAL without direction is interpreted as SHIFT DECIMAL
LEFT. For example,

SHIFT	DECIMAL	3

is the same as

SHIFT	DECIMAL	LEFT	3

Errors in Character (ASCII) Observation Values
For a character (ASCII) observation variable, TPL TABLES will detect and
report as errors values that are completely blank and values that contain
other non-numeric characters. Records containing data errors are discard-
ed.

The following settings can be entered in the codebook to change the treat-
ment of observation variables that have blank or other error values:

DATA	ERROR	=	NULL	[or	ERROR]
REPORT	ERROR	=	NO	[or	YES]
BLANK	=	ZERO	[or	ERROR]

The default settings are shown in brackets.

• Global or individual settings
You can specify these treatments for individual variables, or you can give
global settings in the codebook. If you want to treat all of your variables
the same way, you will want to use the global approach and enter the set-
tings at the beginning of the codebook.

For global settings, place the settings of your choice after the BEGIN ...
CODEBOOK statement before any variables, or put the statements between
variables. The settings will apply to all following variables. If you put in
a different global setting further down in the codebook, it will apply from
that point on. Note that settings cannot be placed between the RECORD
clause and the first variable.

You can override the global setting by entering an individual setting in
a variable description. This techniques is described below, along with a
detailed decription of how each setting works.

 Codebook 119

• Converting error values to NULL
One or both of the following clauses can be used in converting error values
to NULL. They should follow the variable name and optional label and
precede the word OBS (or OBSERVATION). If both are used, either one
can precede the other.

DATA	ERROR	=	NULL
REPORT	ERROR	=	NO

If DATA ERROR = NULL is specified, blanks or other erroneous values
for the variable will be set to NULL and no records will be discarded be-
cause of the error. NULL values are not counted in tabulations.

Note that if your data has other values that you do not want to count in
tabulations, you can convert these values to NULL using Conditional Com-
pute statements in a table request. For more information on creation and
use of NULL values, see the COMPUTE statement chapter.

For data files that have huge numbers of records, the DATA ERROR =
NULL clause may significantly increase the time it takes to read the data.
If you are concerned about performance, use the clause only with data
fields that are known to contain errors.

REPORT ERROR = NO will suppress error messages for the variable.
Be cautious in using REPORT ERROR = NO, since it can allow data er-
rors to pass unnoticed.

Example	 Income	'Family	Income'
DATA	ERROR	=	NULL			REPORT	ERROR	=	NO
MASK	$999,999		OBS	7

• Converting blanks to zeros
By default, blank observation values are considered to be data errors. The
DATA ERROR and REPORT ERROR clauses can be used with blank val-
ues. Sometimes, however, a blank value is used to represent a value of 0.
If you have observation fields of this type, you can use the clause

BLANK	=	0				(or	BLANK	=	ZERO)

in the codebook. If you use this clause, blank values will be replaced with
the value 0, and no error will be reported. The clause should follow the
variable name and optional label and precede the word OBS (or OBSER-
VATION).

Example	 Income	'Family	Income'			BLANK	=	0			MASK	$999,999		OBS	7

 Codebook 120

Errors in Binary and Floating Point Observations
TPL TABLES cannot detect errors in binary or floating point observation
variables, since any values are possibly valid. In some cases, a "floating
point overflow" error may occur, but usually the only evidence of errors is
unexpected numbers in the table output.

CHAR Variable Entries

CHAR variables can contain any combination of numbers and characters.
In this way, they are similar to CONTROL variables, but you not need to
list the values in the codebook. A CHAR variable can be used in any TPL
TABLES statements where a CONTROL variable can be used, except that
it cannot be used directly in TABLES statements. Instead, you must use
DEFINE statements in a table request to select the values you wish to use
in tables.

Format for CHAR Variable Entries

name	['print	 label']		CHAR			n

where, n represents the length of the field in bytes.

Example	 INDUSTRY		CHAR		8

where the variable called INDUSTRY can have any value that is 8 charac-
ters long.

Example	 CITY		CHAR		30

where CITY can have any city name up to 30 characters long.

Using START Position in Variable Entries

START position is optional in variable entries. If used, it should follow the
variable name and label (if present) and precede the variable type. Follow-
ing are some examples:

Examples	 AGE	'Age	of	student'	START	1	CONTROL	2
(1:99)
NUMBER_OF_CHILDREN	START	3	OBS	2
INCOME	'Family	Income'	START	20	MASK	999,999	OBS	6
INCOME	'Family	Income'	MASK	$999,999	START	20	OBS	6

 Codebook 121

FILLER Entries

FILLER is the standard name given to any area of a record that you do not
wish to describe or use.

Format	 FILLER	[START	position]	n

The length of the filler area, n, is simply skipped over and the next data
entry is considered.

A record description in a codebook must account for the entire length of
the record. If you are not describing the last portion of the record, you
will need a FILLER entry for the undescribed portion.

Assume that you have described the first 40 positions for a record that has
a length of 80 and that you do not need to use anything else in the record.
You can fill out the record with:

Example	 FILLER		40

If you are not sure how many positions are left to describe but you know
the record length, you can end your record description with a filler that
covers the entire length of the record by giving a START position of 1 and
a size equal to the record size. For a record with length of 80, the FILLER
would be:

Example	 FILLER	START	1	80

GROUP Entries

A GROUP variable in one that is sudivided by one or more OBSERVA-
TION variables, CONTROL variables, CHAR variables and FILLER
entries. There are two types of GROUP variables: simple groups and
repeating groups. For either type, there is both a BEGIN GROUP entry
and an END GROUP entry.

Simple Groups

A simple group is a optional codebook entry that can be used to organize
the description of a collection of items. This type of group has no other
function. The group variable cannot be referenced in a table request, al-
though any variables contained within it can be referenced. In the code-
book, the group variable can be referenced in a REDEFINE entry.

 Codebook 122

Format	 BEGIN	GROUP		group-variable-name

	 one	or	more	entries	for	variables	or	FILLER

END	GROUP		group-variable-name

Example An example of a simple group is:

BEGIN	GROUP		HOUSING
			LIVING_QUARTERS		CONTROL	1
						(
		 OWNED	 	 =	 1
		 CONDOMINIUM	 =	 2
	 RENTED	 	 =	 3
	 NO_RENT_PAID	 =	 4
	 NOT_AVAILABLE	 =	 5
)
			MORTGAGE		CONTROL	1
						(
	 MORTGAGED	 	 =	 ‘A’
	 NOT_MORTGAGED	 =	 ‘B’
	 NOT_AVAILABLE	 =	 ‘C’
)
END		GROUP		HOUSING

In this example, HOUSING is the name of the group variable. It can be
referenced in a REDEFINE entry in the codebook, but it cannot be used
anywhere else. The variables within the group, LIVING_QUARTERS
and MORTGAGE, are CONTROL variables that can be referenced just
like any other CONTROL variables.

Repeating Groups

In this chapter, we provide only introductory information on repeating
groups. A variety of repeating group structures and their uses are described
in a separate chapter called Repeating Groups.

A repeating group can be used to describe a group of variables that repeats
a fixed number of times within a data record. Both the repeating group
variable and the variables within the group can be referenced in a table
request. The repeating group variable can also be referenced in a REDE-
FINE entry in the codebook.

 Codebook 123

Format The format for the repeating GROUP is:

BEGIN	GROUP		group-variable-name		REPEATS		n
[(optional	names	or	labels	for	the	repetitions)]
			
	 one	or	more	entries	for	variables	or	FILLER

END	GROUP		group-variable-name

where n is the number of times the group repeats in the data record.

Example An example of a repeating group is one in which certain data items repeat
for a number of time periods such as monthly. In the following repeat-
ing group, monthly data on HOURS and EARNINGS is repeated for 12
months of the year. Each pair of HOURS and EARNINGS is separated
by one character of FILLER. A label is provided for each of the 12 rep-
etitions.

BEGIN	GROUP		MONTH		REPEATS		12
(‘Jan’,	‘Feb’,	‘Mar’,	‘Apr’,	‘May’,	‘June’,
‘July’,	‘Aug’,	‘Sept’,	‘Oct’,	‘Nov’,	‘Dec’)
	 HOURS		OBS		2
	 FILLER		1
	 EARNINGS		OBS		8
END	GROUP		MONTH

REDEFINES Entries

The REDEFINES entry provides an alternative description of a record area
previou!sly described. One common use of REDEFINES is to describe a
field as both OBSERVATION and CONTROL. For example, if you have a
field that contains the actual age of persons in the data file, you may wish
to use it as a control variable for tabulating persons by age but also use it
as an observation variable to calculate average age for other categories.

REDEFINES can also be used to describe a code as 1 digit, 2 digit, 3 digit,
.... where the first digit of the code gives the major category and additional
digits provide additional detail. Examples are commodity codes or industry
codes.

Format The format for REDEFINES is:

dataname2	['print	 label']		REDEFINES	dataname1		[variable	attributes]
FILLER

 Codebook 124

where dataname1 is the name of a previous data description entry within
the same record description. Dataname2 is an alternate name for the area
starting with dataname2. Redefinition starts at dataname1 and continues
from that point forward within the data record.

REDEFINES may not be part of a RECORD entry. In other words, one
record may not redefine another at the record level.

Example	 A1		OBS	1
A2		OBS	3
A3		OBS	2
B		REDEFINES	A1		OBS	6

ROOMS		CON	2	(1:10)
#_OF_ROOMS	REDEFINES	ROOMS		MASK	99		OBS	2

In this case, B redefines A1. When B redefines A1, the redefinition
includes A1, A2, and A3. Thus the six byte field can be tabulated as a
whole, or separately for each field A1, A2 and A3. #_OF_ROOMS rede-
fines ROOMS so that the same field can be used as both a control variable
and an observation variable.

It is not necessary that a redefinition have the same length, or immediately
follow the variable redefined. The REDEFINES entry specifies only the
point at which the redefinition begins. For example:

A	OBS	1
B	OBS	4
C	CON	2
			(25
	 37
	 43
)
X	REDEFINES	B	CON	2	DISPLAY	AS	SORTED
			(16
	 12
	 10
	 0:9
)
Y	OBS	6
Z	OBS	3

The entry Y following the REDEFINES entry will begin describing the
record area after the first two bytes of B and will extend two bytes beyond
C. The area from A through Z is 12 bytes.

 Codebook 125

Note that if a record description ends with a redefinition, the redefinition
must cover the entire space already described for the record. Otherwise,
when your codebook is processed, you will get a message requesting that
you add a FILLER of the appropriate length. In the following codebook,
the last redefinition is four characters short of covering the space previous-
ly described by COMMODITY_CODE, so FILLER 4 is needed at the end.

BEGIN	SAMPLE	CODEBOOK
.
.
.
COMMODITY_CODE	OBS	10
COM3	REDEFINES	COMMODITY_CODE	OBS	3
COM6	REDEFINES	COMMODITY_CODE	OBS	6
FILLER	4

END	SAMPLE	CODEBOOK

Redefining Space with START Position

If you know the start positions for the data items in your records, you can
use START position in codebook entries as an alternative to REDEFINES.
For example, the variable AGE could be used as either an observation or
a control variable. You can describe the variable twice using the same
START position for each one.

Example	 BEGIN	PERSONS	CODEBOOK
AGE	START	1	CON	3
(1:120)
AGE_OBS	START	1	OBS	3

The END Entry

The last codebook entry can be used to end the codebook. Its use is op-
tional. The format is:

Format	 END		[codebookname	[CODEBOOK]]

 Codebook 126

A Codebook Example Describing Multiple Record
Types

The most useful application of multiple record types is with hierarchical
files, where each level is of different length and contains different infor-
mation. For example, a family expenditures file may consist of a family
characteristics records of 159 characters at level 0 of the hierarchy, each
followed by one or more family expenditure records of 79 characters at
level 1 of the hierarchy. The complete codebook for such a file might
resemble the following.

BEGIN	FAMILIES	CODEBOOK

				FAMILY	RECORD		LEVEL	0		MARKER	ID	=	'A'
	 FILLER	4
	 ID	CON	1	(=	'A')
	 REGION	CON	1
	 	(
	 	 'Northeast'	 =	 1
	 	 'North	Central'	 =	 2
	 	 'South'	 	 =	 3
	 	 'West'	 	 =	 4
)	
	 MORTGAGE	CON	1	(1	:	3)
	 INCOME_OF_HEAD		OBS	7
	 	 .
	 	 .
	 	 .
	 PERSONS_IN_FAMILY		OBS	2

			EXPENDITURE	RECORD		LEVEL	1		MARKER	CODE	=	'B'
	 FILLER	4
	 CODE	CON	1	(='B')
	 ITEM_CODE	'Item	Code'	CON	4
	 CONDITION	LABEL	IS	VALUE
	 				(
	 	 1357
	 	 1367
	 	 1377
	 	 1387
)
	 EXPENDITURE_CLASS		CON	2	(1:20)
	 	 .
	 	 .
	 	 .
	 COST		OBS	7

 Codebook 127

END	FAMILIES	CODEBOOK

The MARKER field that contains the record identifier must be located
within the shortest record length.

 Codebook 128

COdeBOOkS fOr CSv And OTher TyPeS
Of deLimiTed dATA fiLeS

Codebooks for delimited files are similar to codebooks for other ASCII text
data files. The main differences are:

• Delimited data files do not have the data fields
in columns of fixed size. Instead, the rows
of data have values separated by commas or
some other delimiter character. This means
that fields are identified by their order in a row
of data and that data values for a particular
field may have different widths.

• In delimited files, the first row can optionally
have names for each field.

Windows If you are using the Windows version of TPL, you have the option of using
Codebook Builder to generate the codebook interactively. See Codebook
Builder Help for instructions.

The BEGIN Entry

The first entry in a codebook for a delimited file tells TPL that the file is
delimited, what the delimiter is, whether the first row contains labels, and
whether any items in the file can be surrounded by quotes. The format for
the entry is:

Format	 BEGIN	codebookname		[CODEBOOK]		CSV	[(file-specifications)]	

where codebookname is a name you choose, CSV indicates that the file is
delimited, and the word CODEBOOK is optional. If there are no addi-
tional file-specifications, the following will be assumed:

DELIMITER	=	COMMA
HEAD	=	YES
QUOTES	=	 '"'		(double	quote)

Example	 Begin	BIRTHS	Codebook	CSV

 Codebook 129

One or more additional file-specifications can follow in parentheses for
files that differ from the defaults. They can be entered in any order. The
options are:

Format	 [DELIMITER	=	 string]	 [HEAD	=	 YES]	 [QUOTES	=	string]
	 	 	 COMMA	 	 NO	 	 NONE
	 	 	 TAB
	 	 	 SEMICOLON
	 	 	 BLANK	

Delimiter
The default delimiter is the comma. The delimiter is the character that
separates values in the file. The most commonly used delimiters can be
entered by their names, for example TAB for a tab-delimited file. You can
also enter a delimiter character as a string in quotes. The delimiter can be
only a single character. If multiple characters are entered in a string, only
the first will be taken to be the delimiter.

Examples	 Begin	BIRTHS	Codebook	CSV	(DELIMITER	=	TAB)

Begin	BIRTHS	Codebook	CSV	(DELIMITER	=	'|')

Head
The default is YES. This means that the first row of the file will be as-
sumed to be a header record that contains names for the fields. Items in
this record will not be tabulated or used as data in any way. If the first
row of your file contains data, specify HEAD = NO.

Example	 Begin	BIRTHS	Codebook	CSV	(DELIMITER	=	TAB		HEAD	=	NO)

Quotes
Sometimes single or double quotes are included around some or all of the
values in a csv file. This is especially true if some fields contain blanks or
if blank is used as a separator. If any fields in your file have quotes, enter
the appropriate quote symbol. The default is double quotes. Note that if
you are entering a single quote, enter it inside double quotes "'". If you are
entering a double quote, it must be inside single quotes '"'.

Example	 Begin	BIRTHS	Codebook	CSV
	 	 (DELIMITER	=	BLANK		HEAD	=	NO		QUOTES	=	"'")

 Codebook 130

Variable Entries

Variable entries are generally the same as for other non-database code-
books. The main differences are that you identify fields by field number,
you do not need to account for all fields, and you do not need to list the
fields in order of occurrence in a record.

Enter the field number specification somewhere between the field name and
the field type of Observation, Control or Char.

Example	 AGE	"Age	of	Father"	Field	=	2	OBS	3

Following are a file that has data about births and a sample codebook for
the file. Comma is the delimiter. Note that the first record of the file
has names for each of the fields and that some of the values are inside of
double quotes. Since the default setting for QUOTES is double quotes, we
do not need to specify it in codebook. The HEAD and DELIMITER speci-
fications in the codebook are also the same as the defaults, so we could
omit them if we wished.

Data
RCOUNTY,HOSPITAL,SEX,RACE,FAGE,MAGE,WEIGHT
Adams,1P001,F,2,23,22,128
"Ben	Franklin",1A002,M,3,27,24,98
Adams,4K001,M,1,40,37,142
Washington,1P001,F,1,29,27,123

Codebook
Begin	Births	Codebook	CSV	(Head	=	Yes	Delimiter	=	COMMA)

Births	Record

RCOUNTY	"County	of	Residence"	Field	=	1	Right	Blank	Fill	Control	12
Condition	label	 is	value
		(
			=		"Adams"
			=		"Ben	Franklin"
			=		"Washington"
)
SEX	"Sex"	Field	=	3	Control	1
Condition	label	 is	value
		(
			"Male"		=		"M"
			"Female"		=		"F"
)

 Codebook 131

FAGE	"Father's	Age"	Field		=	5	Obs	2

FAGE_CON	Field	5	Control	2
Condition	Label	=	Value
(10:99)

MAGE	"Mother's	age"	Field		=	6	Obs	2

WEIGHT	"Weight	in	oz."	Field		=	7	Mask	999	Obs	3

Key Points to Note about the Codebook
• FILLER is not used in a delimited codebook. If

you do not want to use all of the fields in your file,
simply omit them from the codebook. In the above
example, we omitted Fields 2 and 4, because we
did not want to use them.

• When a field is to have more than one type, do
not use REDEFINE. Instead, you can create a a
variable entry for each type, each specifying the
same Field number. FAGE and FAGE_CON are
two TPL variables based on Field 5. This gives
the same result as what you would get with REDE-
FINE in codebooks for non-delimited files.

• When entering the size for a field, use a size that is
at least as large as the maximum size of any value
for that field. If any values are enclosed in quotes,
you do not need to include the quotes in the size.
If there are values in a field that are larger than the
size in the codebook, you will get error messages
when using the field.

• Codebooks for delimited files cannot have repeat-
ing groups or hierarchies.

• Important note for Control variables. For fields
in delimited files, TPL always assumes that short
values are filled to the right with blanks. If you
have fields that can have numeric values and the
values can be of different sizes, we recommend
that you assign the RIGHT BLANK FILL attribute
to these fields. Otherwise, you will need to put
quotes around the values, numeric or not, when
you refer to them in statements such as Select or
Define. You can use RIGHT BLANK FILL in

 Codebook 132

describing any Control variable, regardless of the
widths of its values.

Example The control variable RPLACE can have values 1 to 100 or the value 999
if the place of residence is unknown. This means that the values can have
widths of 1, 2 or 3. Without RIGHT BLANK FILL, if you are referencing
the shorter values in statements such as Select or Define, you will need to
put the values in quotes. With the following, you do not need to be con-
cerned about the width of the values you are referencing or put the numeric
values in quotes.

RPLACE	"Place	of	residence"	Field	=	3	RIGHT	BLANK	FILL	Control	3
(1:100
	999
)

Delimited Fields that Have Blank or No Value

If a field has any values that have only a blank or nothing at all between
the delimiters, these values will be treated like blanks. For example, in a
comma-separated file, these values could be:

,, , , ,"", or ," ",

There are different options available for these values depending on the field
type.

Observation
If you use fields that have these values, they will be data errors since they
are not numeric. Any record that has such values will be discarded from
processing. If you do not want this to happen, you can assign the attri-
bute DATA ERROR = NULL to any affected fields. NULL values are not
included in tabulations. Alternately, you can assign the BLANK = ZERO
attribute to any affected fields. These attributes are described in more
detail elsewhere in this chapter under "Errors in Character (ASCII) Obser-
vation Variables".

Example	 FAGE	"Father's	Age"	Field		=	5	DATA	ERROR	=	NULL	Obs	2

Control
If you use fields that have these values and the values are not in the condi-
tion values list in your codebook, they will be data errors. The records
with these values will be discarded from processing. If you want to pre-
vent this, you can include a blank value in the list.

 Codebook 133

Example	 FAGE_CON	"Father's	Age"	Field	5	Control	2
	 Condition	Label	=	Value
	 (
	 	10:99
	 	"Unknown"	=	"	"
)

	 Use 134

C h a p t e r 7

Use

ACCeSSing The COdeBOOk

The USE statement must be the first TPL statement in a table request. It
takes the form:

Format	 USE	codebookname	[CODEBOOK];

where 'codebookname' is the name assigned to the codebook description
of the data file to be accessed by the table request. The keyword CODE-
BOOK is optional following the codebook name.

The USE statement makes available to all following request statements all
names defined in the codebook.

For a codebook named SURVEY, the USE statement would be

Example	 USE	SURVEY	CODEBOOK;

or more simply

USE	SURVEY;

Windows Note A codebook name can contain blanks. If it does, the name must be en-
closed in double quotes.

Example	 USE	"FIRE	DISPATCHES"	CODEBOOK;

UNIX Note Codebook names cannot contain blanks.

Before the codebook is used, it must be processed to create a file
named codebookname.K. For the codebook named SURVEY, the pro-
cessed codebook is SURVEY.K . TPL TABLES assumes that it is in the
directory where you are running your table job.

	 Use 135

If the processed codebook is not in the directory where you are running
your job, you can enter the path information needed to find the processed
codebook. The following USE statements provide some examples of ac-
ceptable codebook references:

Examples	 USE		D:\MY_CBS\SURVEY.K	;
USE	"C:\MY	DATA\EMPLOYEE	RECORDS"	CODEBOOK;

Unix Note Slash characters in paths are forward slashes rather than back slashes.

Unix Example	 USE		../my_cbs/SURVEY.K	;

In any of the above examples, the .K suffix can be omitted.

Note Comments cannot be inserted in the USE statement between the word USE
and the codebook name.

	 Select 136

C h a p t e r 8

Select

SeLeCTing SuBSeTS Of The dATA

The SELECT statement specifies conditions that must be met by each re-
cord of the data file to qualify for further processing by TPL TABLES.

A SELECT statement can apply to all tables within a request or it can be
applied to an individual table. If more than one SELECT statement is used
in the request, the conditions in all SELECT statements must be met for a
record to qualify for further processing.

Note that if your data file is hierarchical, the unit to be selected will be a
hierarchical unit rather than a single record. The chapter on processing
hierarchical files contains additional information on this subject.

See also the chapter on the DEFINE statement for additional ways to select
or filter data for all or part of a table.

Data can be selected based on data values, or certain sections or percent-
ages of the data can be selected.

Selection Based on Data Values

Format 1 This type of selection takes one of the following two forms:

SELECT	 IF	 	condition1				[AND	condition2.....];
	 UNLESS	 	 	 OR

 or

SELECT	 IF	 NOT	(condition1	 [AND	condition2...]);
	 UNLESS																		 	 	 OR

	 Select 137

To specify selection criteria that apply to only a single table, you can ref-
erence that table following the word SELECT. The table can be referenced
by number or by name.

Format 2	 SELECT	FOR TABLE	table-number

 or

SELECT	FOR TABLE	table-name

Examples SELECT		IF		ACCOUNT		NOT	=	24765;

SELECT		IF	ACCOUNT	IS	NOT	EQUAL	TO	24765;

SELECT		UNLESS		(REGION	=	'A1'	AND	INCOME	<=	12000);

SELECT		FOR	TABLE	1		IF		
	 (INCOME	>=	12000	AND	INCOME	<	20000)	OR
	 (STATE	=	MONTANA	AND
	 (OCCUPATION	=	1	OR	OCCUPATION	=	5));

SELECT		FOR	TABLE	A5		IF		
	 OCC_CODE	IN	(2000,	2001,	2002,	2003,	3000)
	 AND	INCOME	>=	30000;

SELECT		IF	OCCUPATION	=	ACCOUNTANT	AND
	 NOT	(REGION	=	'D3'	OR	REGION	=	'E5');

SELECT		UNLESS	(STATE='CA'	AND	
	 (JOB_BANK=10	OR	JOB_BANK=20))
	 OR	(STATE='IL'	AND	(JOB_BANK=13	OR
	 JOB_BANK=15));

When the IF option is used, all records meeting the conditions will be
selected. When the UNLESS or IF NOT option is used, all records which
do not satisfy the conditions will be selected. If no SELECT statement ap-
pears in the request, all records will qualify for further processing by TPL
TABLES, regardless of their characteristics.

A condition expresses a relationship or a set of values. It can include co-
debook variables, computed variables, literal values, and arithmetic expres-
sions. If the select references a computed variable, the compute statement
must precede the select statement.

	 Select 138

Relations can be expressed by either symbols or words. The words IS
and TO are optional. Following is a list of the relation symbols and their
English equivalents:

 Symbol	 English expression

	 <	 [IS]	 LESS	THAN
	 >	 [IS]	 GREATER	THAN
	 =	 [IS]	 EQUAL	[TO]
	 	 	 EQUALS
	 ^<	 [IS]	 NOT	LESS	THAN
	 ^>	 [IS]	 NOT	GREATER	THAN
	 ^=	 [IS]	 NOT	EQUAL	[TO]
	 <=	 [IS]	 LESS	THAN	OR	EQUAL	[TO]
	 >=	 [IS]	 GREATER	THAN	OR	EQUAL	[TO]

Types of Conditions

A condition can test for a relationship, or it can test a variable to see if it
has any of the values specified in a set of values. We first describe how
relationships can be tested, then follow with a section on sets of values.

Relationships
A condition that tests a relationship can take several forms. In each form
which follows, re stands for a relation.

· Comparing a variable to a value

Format	 variable	re	literal-value

In this type of condition, the variable is compared to a literal-value.

Examples SELECT	IF	AMOUNT	<	100.75;
SELECT	IF	REGION	=	'A1';

In the first example, the statement would cause selection of all records with
an AMOUNT less than 100.75. In the second example, selection would be
of all records containing the value 'A1' for the control variable REGION.

The variable in the condition can be any codebook or computed variable,
and literal-value can be a number or a character string.

If the variable is an observation variable, the value can be a number, with
or without a sign. The number can contain a decimal point but no com-
mas.

	 Select 139

If a control variable is compared to a literal value that is not all numeric,
the value must be surrounded by quote marks.

If the variable is a char variable, the value must be surrounded by quote
marks and must include any leading blanks or zeros. The only relations
that should be used with char variables are equal '=' and not equal '^='.
If other relations are used, the results are unpredictable. For example, if
LAST_NAME is a char variable,

Example	 SELECT	IF	LAST_NAME	=	'Smith'	;

will successfully select all records with a value of 'Smith' for LAST_
NAME if the value 'Smith' is left-aligned, i.e. not preceded by blanks in
the data records.

When the same variable is compared with two or more distinct values, the
subject must be repeated each time. For example:

Example	 SELECT	IF	AGE=14	OR	AGE=18	OR	AGE=29;

For a simplified way of expressing this type of condition, see the section
on Sets of values.

If the "DISPLAY AS SORTED" clause is not used with a codebook con-
trol variable, all references to a range of values expressed in a SELECT
must be based on the order of the conditions listed, rather than the sorted
sequence of the condition values. For example, consider the following con-
trol variable entry:

REGION	CON	1
		(
	 SW	=	'D'
	 NW	=	'C'
	 SE	=	'B'
	 NE	=	'A'
)

Since the "DISPLAY AS SORTED" clause is not used, the region value of
'A' is considered to be greater than 'D' since 'A' is listed after 'D'. In a SE-
LECT statement, a reference to REGION > 'C' would select region codes
of 'B' and 'A'. A SELECT statement such as "SELECT IF REGION > 'A'"
would result in an error message since 'A' is considered to be the highest
(last listed) value of region.

	 Select 140

Observation variables can be tested for null values, but if a null-valued
variable is tested for a value other than null, the test will fail. For exam-
ple, the test: x > 0 will fail if the value of x is NULL.

Arithmetic expressions
Conditions can include arithmetic expressions. Any arithmetic expression
allowed in the COMPUTE statement can be used in the SELECT state-
ment. See the chapter called "COMPUTING NEW VARIABLES: The
COMPUTE Statement" for complete details on arithmetic expressions.

Arithmetic operations can contain only observation variables and numbers.
The result of a computation can be compared to an observation variable, a
number, or another arithmetic expression.

Example SELECT	IF	ANNUAL_INCOME	/	12	>	2000;

• Comparing one variable to another

Format	 name1	re	name2

where the names refer to codebook or computed variables. Name1 and
name2 must be the same type of variable: observation, control or char.
For example, a control variable cannot be compared to an observation vari-
able.

If control or char variables are being compared, their values must have the
same justification and padding for the comparisons to work correctly.

Example SELECT	IF	STATE_OF_RESIDENCE	=	STATE_OF_EMPLOYMENT;

• Comparing a control variable to a condition name

Format	 control-name	re	control-condition-name

A control variable name may be used to identify one of its conditions by
referencing it by condition name rather than condition value.

Example (codebook)
STATE	CON	2
			(
	 ALABAMA	=	1
	 . . .
 . . .
	 MARYLAND	=	26
	 . . .
)		

	 Select 141

(request)
SELECT	IF	STATE	=	MARYLAND;

Sets of Values
Another type of condition lets you select records that have any of the val-
ues specified in a set of values. This feature is particularly useful if you
need to select for a long list of values.

The format for entering a set of values in a SELECT statement is:

Format	 SELECT	IF		var		IN	(val1,	val2,	val3,);

where val1, val2, val3, etc. are distinct values. Values must be separated
by commas. Non-numeric values must be surrounded by quote marks. For
observation variables, negative values such as -25 cannot be used in sets.

Comparisons such as less than or greater than cannot be used, but you
can enter ranges of values separated by :, - or the word TO. For example,
ranges such as 3:5, 3-5 or 3 TO 5 are allowed.

Example SELECT	IF	INDUSTRY	IN	(1000,	2000,	3000:3999);

If the variable INDUSTRY has the value 1000, 2000, or any of the values
3000 through 3999, the record will be selected. This example gives the
same result as the statement:

SELECT	 IF	INDUSTRY	=	1000	OR	INDUSTRY	=	2000
	 OR	INDUSTRY	>=	3000	AND	INDUSTRY	<=	3999;

The word IN cannot be preceded by the word NOT. If you want to select
records that do NOT have any of the values in the set, you can specify:

SELECT	IF		NOT		(var	IN	(val1,	val2,	val3,));

Selecting records on the basis of a set of values will give more efficient
processing than the individual comparisons if there are more than a few
(e.g. 3 or 4) values in the set.

The clause var IN (set of values) can be used alone in the SELECT
statement as shown in the preceding example, or it can be combined with
other conditions. An example that combines the set of values with other
conditions is:

SELECT	IF	REGION	=	3	AND	(INDUSTRY	IN	(410,	420,	425)
	 OR	INDUSTRY	>=	450);

	 Select 142

Records will be selected if they have REGION code 3 and INDUSTRY
code greater than or equal to 450 or equal to 410, 420 or 425.

• Sets of CHAR values
If you are listing values for a CHAR variable and the values are all nu-
meric, you do not need to enclose them in quotes. Non-numeric values
must be enclosed in quotes. If they are shorter than the field width, you
must enclose them in quotes and include any leading blanks or zeros.
Otherwise, you will not get a match and nothing will be selected for these
values. Trailing blanks need not be included in the quotes, but a good gen-
eral rule is to make the value within the quotes have the same length and
padding as the value in the data. The length should be the length given for
the variable in the codebook. For example, if you have

INDUSTRY		CHAR		5

in the codebook, where some INDUSTRY values are less then 5 characters
and filled on the left with blanks, an example of a correct SELECT state-
ment for a set of INDUSTRY values is:

SELECT	IF	INDUSTRY	IN	(’				410’,	 ’	 	4420’,	 ’66425’);

Compound Conditions

You can use compound conditions consisting of clauses separated by
AND and OR. There is no limit to the number of compound conditions
per statement. Conditions may be grouped by the use of parentheses to
determine the order of evaluation. When parentheses are used, evaluation
begins with the conditions contained in the inner-most sets of parentheses.

If the order of evaluation is not specified by parentheses, the expression is
evaluated in the following order:

• arithmetic expressions

• relational operators

• AND and its surrounding conditions, starting
at the left of the expression and proceeding to
the right

• OR and its surrounding conditions, also pro-
ceeding from left to right

An expression such as:

	 Select 143

SELECT	IF	A	=	B	AND	D	>	E	OR	F	<=		WEIGHT	*	INCOME;

would be evaluated as:

SELECT	IF	((A	=	B)	AND	(D	>	E))	OR
	 	(F	<=		(WEIGHT	*	INCOME));

Selecting Data for a Specific Table

You can select data for a specific table by referencing that table in a
SELECT statement. Multiple SELECT statements can be used to select
different data for different tables. These statements can be in any order
and can be inserted anywhere in the table request, either before or after the
table statements to which they apply.

Example	 USE	CPS	CODEBOOK;

SELECT	IF	YEAR	=	2003;

TABLE	ONE:
	 HEADING	TOTAL	THEN	RESIDENCE;
	 STUB	TOTAL	THEN	STATE_CODE;
TABLE	TWO:
	 HEADING	TENURE;
	 STUB	HOUSEHOLD_SIZE;

SELECT	FOR	TABLE	TWO	IF	INCOME	>	40000;
SELECT	FOR	TABLE	3		IF	EDUCATION	IN	(1,	4,	6);	

TABLE	THREE_A:
	 HEADING	TOTAL	THEN	SEX;
	 STUB	EDUCATION;

The first SELECT applies to all tables, so only data from the year 2003
will be included. In addition, TABLE TWO will be restricted to records
with INCOME > 40000, and TABLE THREE_A (TABLE number 3) will
be restricted to records with EDUCATION values of 1, 4, or 6.

Deleting Empty Columns

You may sometimes wish to use a variable in a table after selecting only
certain values for that variable. If you use the variable in the table stub
or wafer, the values that were not selected will "disappear" from the table.
On the other hand, if you use the variable in the heading, you will get

	 Select 144

columns for the values that were not selected in addition to those that were
selected.

For example, if you had a data file that contained monthly data, you might
want to tabulate data for only the first quarter of the year, January through
March. Assuming that these months are coded 1 through 3 in the data file,
you could select them with the statement,

SELECT	IF	MONTH	>=	1	AND	MONTH	<=	3;

If you then use MONTH in a table stub, only the rows for January through
March will appear in the table. The other MONTH rows will be "empty"
because no data was selected for those rows, and TPL TABLES does not
print empty rows unless you specifically request them.

TPL TABLES does the reverse with empty columns. It prints empty
columns unless you specifically request that they be deleted. Thus, if
MONTH is used in the table heading, you will get twelve columns, one for
each month, even though you have selected data only for January through
March.

A simple way to delete the empty columns is to use a FORMAT request
with the statement

DELETE	EMPTY	COLUMNS;

With this technique, you can use the same table request for different groups
of months by changing only the SELECT statement to choose the months
you want. The empty columns for the other months will always be deleted
and the table heading format will be adjusted automatically.

Selection Using the NUMBER and PERCENT Options

The SELECT percent and SELECT number options of the SELECT state-
ment can be used to process a subset of your data without regard to the
data values. Instead, they allow you to select a specific section of your
data or a randomly selected percentage of your data. These options are
especially useful when you have a very large data file, because they enable
you to experiment with your table requests without processing all of the
data.

Note The SELECT percent and SELECT number options apply to all tables in a
request. Individual tables cannot be referenced.

	 Select 145

Format SELECT	 number	%	;
	 	 	 	 	 number	PERCENT	;
	 	 	 	 	 number	;
	 	 	 	 	 number	START	number;
	 	 	 	 	 number	record-name	;
	 	 	 	 	 number	record-name	START	number;

Examples SELECT	 10	%;
	 SELECT	 20;
	 SELECT	 20	START	200;
	 SELECT	 20	MEMBERS;

SELECT Percent

The SELECT percent statement gives you a representative sample of your
data. If you select 1% of your data then as each record is read, a function
is applied which gives it a 1% probability of being selected. Note that the
exact records selected and even the exact number of records selected is not
fixed. In some cases, more than 1% of the records will be selected. In
other cases, less than 1% will be selected. If you run the same job mul-
tiple times, you will get different numbers in your tables each time.

If your data file is hierarchical, selection is done at the highest level of the
hierarchy. For example, if you have a hierarchical file of families and fam-
ily members, then either a family and all of its members are selected or the
family and its members are not selected at all.

SELECT Number

The SELECT number option takes the first records from the file. If you
select 10 records, then the first 10 records will be processed.

If your file is a hierarchical file, for example, with family and member
records, then the first 10 families and all of their members will be selected.
If your SELECT statement is SELECT 10 MEMBERS; then exactly 10
members plus their family records will be selected. In this case, if the 10th
member record in the file occurs before the last member record for its fam-
ily, the members of the family that follow the 10th member record will not
be processed.

The SELECT statement SELECT 10 START 5; will result in records 5
through 14 being selected.

	 Select 146

Interaction Between Multiple SELECT Statements

The SELECT number and SELECT number START number statements are
affected by other SELECT statements in the request. If there is a SELECT
statement at a higher hierarchical level or if a SELECT statement at the
same level occurs earlier in the request, then the SELECT number state-
ment applies to records which pass the earlier SELECT.

Examples Suppose that your data file contains information about persons, where there
is one record per person, and that your table request contains the state-
ments:

SELECT	IF	SEX	=	‘m’;
SELECT	10	START	5;

Further suppose that the first 20 records have a sex of female and the next
20 records have a sex of male. TPL TABLES will exclude the first 20 re-
cords because they fail to pass the first SELECT. It will then skip records
21 to 25 because of the START clause. It will include records 26 through
35 and exclude the remainder of the file.

If the SELECT statements are reversed, records 1 through 5 will be ex-
cluded by the START clause. Records 6 through 15 will pass the SELECT
10 clause but will fail the SELECT IF SEX = ‘m’ condition. Records 16
to the end of the file will be excluded by the SELECT 10 clause. Thus no
records will pass the two SELECT statements.

	 Define 147

C h a p t e r 9

Define

reCLASSifying dATA By deLeTing, re-
grOuPing, And reOrdering vAriABLe
vALueS

With the DEFINE statement, you can create a new control variable based
on the values of one or more existing variables and assign labels to the
new categories. The old variables can be described in the codebook or cre-
ated by COMPUTE statements. The new variable definition can regroup,
reorder or delete old variable values. Variables created with DEFINE can
be used in TABLE statements.

Suppose that AGE is a codebook control variable with possible values of
one through 99. If we use AGE directly in a TABLE statement, we will
get totals for each year of age. We can use the DEFINE statement to get
totals for any age groups instead of for single years. For example, we may
wish summaries for the following three age groups.

 from 1 to 15 years
 from 16 to 25 years
 over 25 years

The DEFINE statement could be:

DEFINE	AGE_GROUPS	ON	AGE;
	 '1	to	15	years'	 	 IF		1:15;
	 '16	to	25	years'		 IF		16:25;
	 'Over	25	years'							 	 IF		>	25;

where AGE_GROUPS would be substituted for AGE in the TABLE state-
ment to get the desired new classifications.

	 Define 148

In another example, using the codebook observation variable Income, we
create a control variable which groups income into four categories:

 $0 to $12,000
 $12,001 to $19,000
 $19,001 to $30,000
 over $30,000

The DEFINE statement for this grouping is:

DEFINE	INCOME_GROUPS	ON	INCOME;
	 '$0	to	$12,000'	 	 IF		<	12001;
	 '$12,001	to	$19,000'		 IF		12001:19000;
	 '$19,001	to	$30,000'		 IF		19001:30000;
	 'Over	$30,000'							 	 IF		>	30000;

define On A SingLe vAriABLe

The examples above define new categories based on a single variable. We
begin by describing this type of DEFINE statement. A later section of the
chapter describes DEFINE statements based on multiple variables.

Any DEFINE that can be done based on a single variable can also be
done using the multiple-variable type of DEFINE, but the single-variable
DEFINE is simpler and more efficient when only one variable needs to be
referenced.

Format	 DEFINE	new-variable-name	['var	label']	ON	old-variable-name;
	 	 	 	 :

[condition-name-1]		['print	 label']	IF	[re]	value-entry-1;
	 	 	 	 		:
[condition-name-2]		['print	 label']	IF	[re]	value-entry-2;
		 	 	 	 		:
 . .
 . .
[condition-name-n]		['print	 label']	IF	[re]	value-entry-n;
																																									:

	 Define 149

A value-entry can be any of the following:

• value
• condition name (if old variable is CONTROL)
• value1 : value2
• OTHER
• ALL
• NULL

If a value-entry does not have a name or label assigned to it, it is grouped
into the first category above it that does have a name or label.

The optional re stands for any relation symbol or the equivalent English as
shown below. A relation symbol can precede any value. If no relation is
provided, "equal" is assumed.

 Symbol	 English expression

	 <	 [IS]	 LESS	THAN
	 >	 [IS]	 GREATER	THAN
	 =	 [IS]	 EQUAL	[TO]
	 	 	 EQUALS
	 ^<	 [IS]	 NOT	LESS	THAN
	 ^>	 [IS]	 NOT	GREATER	THAN
	 ^=	 [IS]	 NOT	EQUAL	[TO]
	 <=	 [IS]	 LESS	THAN	OR	EQUAL	[TO]
	 >=	 [IS]	 GREATER	THAN	OR	EQUAL	[TO]

Examples	 DEFINE	INCOME_FILTER	ON	INCOME;
	 'Less	than	$9,000'	 IF		<	9000;

DEFINE	OVERLAP_RANGES	'Income	Categories'	ON	INCOME;
	 'Less	than	$2,000'	 IF		<	2000;
	 'Less	than	$4,000'	 IF		<	4000;
	 'Less	than	$6,000'	 IF		<	6000;

DEFINE	CERTAIN_STATES	ON	STATE;
	 'IDAHO	AND	INDIANA'	 IF		3;
	 	 	 	 IF		15;
	 MARYLAND	 	 IF		21;

DEFINE	INCOME_RANGES	ON	INCOME;
	 'Below	$10,000	and	above	$25,000'	 IF		<	10000;
	 	 	 	 	 	 IF		>	25000;
	 'From	$10,000	to	less	than	$25,000'	 IF		10000	TO	<	25000;

	 Define 150

DEFINE	REORDER_REGION_CODES	ON	REGION;
	 'Southwest'	 IF		SOUTHWEST;
	 'Southeast'		 IF		SOUTHEAST;
	 'Northwest'		 IF		NORTHWEST;
	 'Northeast'		 IF		NORTHEAST;

DEFINE	ALPHA_GROUPS	ON	ALPHA_CODE;
	 'G	and	T	and	E	'	 IF		 'G';
																										 	 	 IF		 'T';
					 	 	 	 	 IF		 'E';
	 'X	through	Z'	 	 IF		 'X'	:	 'Z';
	 'A	through	D'	 	 IF		<	'E';
	 'Other	codes'	 	 IF		OTHER;

DEFINE	SOME_STATES	ON	STATES;
	 ''	 	 IF		NOT	27:42;

DEFINE	DUMMY_SPANNER	ON	REGION;
	 'All	Industries'	 IF		ALL;

Description of the DEFINE Statement

The DEFINE statement can be thought of as a two-column table. The new
variable and its entries are on the left; the old variable and its entries are
on the right.

The first row begins with the word DEFINE, the new variable name and its
optional label. The new variable is always a control variable. Following
the new variable information is the word ON, then the name of the the old
variable. The old variable can be a codebook variable of type control, ob-
servation or char, or it can be a computed variable. It cannot be a variable
created by a DEFINE statement or POST COMPUTE statement.

If you provide a label for the new variable, it will be displayed in tables
where the variable is used and will span above the categories for the new
variable. There are many options associated with print labels such as upper
and lower case letters, special characters and footnotes. A separate chapter
describes print labels in more detail.

There can be multiple DEFINE statements within a table request but each
new variable must be created before it is used in a TABLE statement. If a
computed variable is used as the old variable in a DEFINE statement, the
COMPUTE statement must precede the DEFINE statement.

	 Define 151

The same old variable can be used in any number of DEFINE statements
provided unique new variable names are used.

After the new and old variables are named, there are rows of entries that
assign old variable values into categories for the new variable. The order
of the entries in the statement determines the order of display in a table.
The left and right entries are separated by the word IF or a colon(:). Each
entry on the right is followed by a semicolon.

The following lists the valid entries for the DEFINE statement:

Old Variable Entries

A semicolon is required after each entry in the old variable column. An
entry can be any of the following:

1. An old variable value, for example 1000 or 'F'.

 If the old variable is a control variable, condition values that are not
all numeric must be surrounded by quote marks according to the rules
for listing values in the codebook.

 If the old variable is a char variable, values must be surrounded by
quote marks and must include any leading blanks or zeros.

2. A codebook condition name, for example MALE.

3. A relation followed by a value or name, where relation is any of those
listed earlier in this chapter. An example is < 25.

 Note on char variables: The only relations that should be used with
char variables are equal '=' and not equal '^='. If other relations are
used with char variables, the results are unpredictable.

4. A range of old variable values specified as value1 : value2 where
value1 is less than or equal to value2. For example, if 2:5 is speci-
fied, all values not less than 2.000... and no greater than 5.000... will
be accepted. A range of values can be non-numeric, in which case
each lower and each upper value must be surrounded by quote marks;
an example is 'A':'D'. The keyword TO can be used in place of : to
separate lower and upper range values. An example is 2 TO 5.

 The NOT operator can precede a range of values, e.g. NOT 2:5, means
any value that is either less than 2.000... or greater than 5.000....

	 Define 152

 The relations > and < can also be used in ranges in certain circum-
stances. The valid formats are listed below. The value m must always
be less than the value n. If the old variable is an observation, the
values can contain decimal points.

[NOT]	 	 m	:	n;
	 						>	 m	:	n;
	 	 m	:	<	n	;
	 						>	 m	:	<	n	;

5. ALL, meaning all values of the old variable.

6. The word OTHER, meaning all values for the old variable which are
not specified by any other entry. ALL and OTHER may not be used
together in the same DEFINE statement. Since ALL specifies all val-
ues of the old variable, OTHER used with ALL would specify nothing.

7. If the old variable is an observation variable, the word NULL can be
used to create a category that counts null values. Null values will not
be counted in any other type of defined category, including ALL or
OTHER.

New Variable Entries

1. An optional condition name which you assign to one or more values
of the old variable. Each value or range of values which apply to a
condition name must appear in succeeding entries preceded by either
IF's or colons, and followed by semicolons. Each condition name in
the new variable column is considered unique, even if two or more are
identical. The condition name will be used as a print label if no other
label is provided.

2. An optional print label. Labels can contain upper and lower case
letters, special characters and footnotes. A separate chapter describes
print labels in more detail. Each label in the new variable column is
considered unique, even if two or more are identical.

3. A condition name followed by a print label. In this case the print
label is used in the table in place of the condition name.

4. Some entries as above and some entries blank. A blank entry will be
grouped into the category of the nearest entry that precedes it and has a
name and/or label.

	 Define 153

5. All entries blank. In this case, each entry will define a new category
and a label will be generated for each category. The format of the la-
bel will be "n variable name", where the name is taken from the newly
defined variable. The number n starts with "1" for the first entry, and
increments by one for each successive entry. To use this option, all
entries must be blank. You cannot have some blank entries with gener-
ated labels and some entries with assigned condition names or labels.

If condition names and/or labels are assigned, the first must appear to the
left of the first old variable entry and will apply to all following old vari-
able entries until another condition name or label appears.

Note on Value Order in Relations and Ranges

If the old variable is a control variable and has been described in the code-
book using the default order DISPLAY AS LISTED, then all relations with
values or ranges of values must be based on the order of the conditions
listed, rather than the sort sequence of the condition values. For example,
consider the following control variable entry:

REGION	CON	1
			(
	 SW		 =		 'D'
	 NW		 =		 'C'
	 SE		 =		 'B'
	 NE		 =		 'A'
)

Unless the DISPLAY AS SORTED clause is used, the region value of 'A'
is considered to be greater than 'D' since 'A' is listed after 'D'. A DEFINE
statement used to combine "SE" and "NE" into one classification would
have to express the condition as 'B':'A' or as > 'C'.

Referencing Values Not Listed in the Codebook

If the old variable is control and has display order "as listed", DEFINE
entries for that variable must refer to valid values for that variable. Other-
wise, the DEFINE statement will not be processed. For example, if AGE
with values 16 to 99 is to be recoded with a DEFINE statement, an entry
under AGE which specifies >100 would be invalid. Since AGE never has
a value greater than 100, that entry specifies an empty set of values. An
entry of >90 would, however, be acceptable since some valid values would
be included in that specification.

	 Define 154

If the old variable is control and has display order "as sorted", a reference
to an invalid value in a DEFINE statement will be noted with a message
when the DEFINE statement is processed.

Grouping Values with DEFINE

One purpose of the DEFINE statement is to group old variable values so
that they fall into one or more new categories. For example, in the case of
an observation variable INCOME, we may wish to group INCOME values
in the following way:

DEFINE	NEW_INCOME	ON	INCOME;
'Less	than	$15,000'	 IF		<	15000;
'Exactly	$15,000'	 IF		15000;
'More	than	$15,000'	 IF		>	15000;

The new control variable NEW_INCOME can be used in TABLE state-
ments to tabulate into the three new income groups.

Similarly, codebook control variables or char variables can be grouped.
For example, we may wish to group states according to geographical loca-
tion.

Reordering Values with DEFINE

The default display order for control variables described in the codebook is
the order in which the conditions are listed in the codebook. If the DIS-
PLAY AS SORTED clause is used, the values will be displayed according
to the collating sequence of the variable values; that is, a control variable
with values from 1 through 10 will be displayed in numerical order, regard-
less of the order of listing in the codebook. Likewise, if DISPLAY NU-
MERIC is used, the values are displayed in numeric sort order.

The DEFINE statement can be used to change the order specified in the co-
debook by listing the values under the old variable name in the order they
are to be displayed. Condition names or labels for each of the old variable
values would be assigned under the new variable column.

	 Define 155

Excluding Values with DEFINE

All possible values of the old variable need not be included in a DEFINE
statement. Thus, in addition to regrouping and reordering, the DEFINE
statement can be used to delete old variable values by omitting them from
the old variable column. This type of DEFINE statement can be used to
get the same effect as a SELECT FOR TABLE statement, but it can also
be applied to only a part of a table rather than the whole table.

A simple example would be the case where only male heads of households
are to be tabulated. The codebook sex code could be defined on as fol-
lows, where MALE is a condition name.

DEFINE	MALES	ON	SEX;
'MALE	HEAD	OF	HOUSEHOLD'		IF		MALE;

TABLE	MALES_ONLY:		
	 WAFER		MALES,	
	 stub		expression,	
	 heading		expression;

The new control variable, MALES, has the effect of filtering out female
heads of households from the table. Note that MALES could have been
nested into the stub expression or the heading expression with the same ef-
fect, except for the location of the print label in the table.

Many DEFINE statements combine the functions of regrouping, reordering,
and deleting in one statement.

The COPY Option for Using Labels from the Codebook

The COPY option allows control variable conditions to be copied exactly
as they appear in the codebook to form DEFINE statement conditions. The
keyword COPY appears to the left of the keyword "IF" or "EACH". The
keyword "EACH" is preferred with COPY because it suggests that even
with a range of values a condition will be formed for every item in the
range. The conditions to be copied are expressed the same as for other
DEFINE entries including ranges, single values, relational operators, and
the optional use of condition names. The keywords "ALL" and "OTHER"
may not be used with COPY.

Unless "DISPLAY AS SORTED" is used with a codebook control variable,
the ranges used with "EACH" or "IF" must match the order listed in the
codebook, and each condition will be copied in that order.

	 Define 156

The COPY option can appear before, after, or interspersed among other
DEFINE entries, and more than one COPY can be used within a DEFINE.

Example It is desired to reclassify the codebook control variable STATE so that
summaries are produced for all states, then for each of four Midwestern
states, followed by a combined summary for those four Midwestern states.
Condition labels for each of the Midwestern states are to be copied from
the codebook.

DEFINE	SOME_STATES	ON	STATE;
	 'All	States'		 IF		 ALL;
	 COPY			 IF		 13;
	 COPY	 EACH	 29:31;
	 'Midwestern	Total'	 IF		 13;
	 	 IF		 29:31;

Using SOME_STATES in the stub expression of a TABLE statement would
result in:

All	States.........
Indiana............
Michigan...........
Missouri...........
Ohio...............
Midwestern	Total...

where Indiana=13, Michigan=29, Missouri=30, and Ohio=31.

Tip on Using Value Lists from the Codebook

In a DEFINE statement, there is another way to take advantage of the
codebook information for a CONTROL variable if you list the values in the
codebook in a form that is compatible with the DEFINE statement.

In the codebook, use the word IF in the value list instead of = and add ;
after each entry. For example:

INDUSTRY	CONTROL	2
			(
	 'Oil	&	Gas'		 	 IF		 'A1';
	 'Steel'		 	 	 IF		 'B4';
	 'Automobile'		 	 IF		 'C3';
	 'Wood	Products'	 IF		 'D1';
)

	 Define 157

If you expect to select subsets of a variable using a DEFINE statement, this
format can help you, because you can use your editor to copy the code-
book description for the variable into your table request and then simply
delete the entries that you don't want. The format for the entries you retain
will match the format required for the DEFINE entries, so you will not
need to do any additional editing in your table request.

Applications

For these applications, suppose that we are using an input data file which
has one record per person containing observations about weekly income
and hours worked per week, along with control variables such as age, sex,
state, and region.

Example 1	 We are interested in tabulating hours worked observations for certain cat-
egories of income. In the following DEFINE, each person in the data file
will fall into a category based on the person's income.

DEFINE	INCOME_GROUP	'Income	brackets'	ON	INCOME;
	 '0	to	$4,999'		 	 IF		0:4999;
	 '$5,000	to	$10,000'		 IF		5000:10000;
	 'Over	$10,000'						 	 IF		>	10000;

The colon within old variable entries indicates an inclusive range from the
value on the left through the value on the right. The range represents a
single classification.

The above DEFINE statement is equivalent to the following.

a. If INCOME is within the range 0 through 4999, then
INCOME_GROUP gets the name '0 to $4,999' which
is the category defined by that range.

b. If the INCOME category is from 5000 through 10000,
then INCOME_GROUP gets the name '$5,000 to
$10,000'.

c. If INCOME is greater than 10000, then that clas-
sification of INCOME_GROUP gets the name 'Over
$10,000'.

	 Define 158

A TABLE statement using the defined variable might be:

TABLE	WORKTIME:		
	 STUB		INCOME_GROUP,
	 HEADING		HOURS	BY	SEX;

where the stub would begin with the variable label, 'Income brackets', fol-
lowed by the stub labels of the three condition names. The first line of the
table would contain the total hours worked by sex for all those whose in-
come is between 0 and 4999. The second line would contain hours worked
for income between 5000 and 10000, etc.

Example 2 Suppose that it is desired to group together as one category the states Cali-
fornia, Texas, Illinois, and New York. In effect we want these four states
to be treated as a single classification. Assume that each state has been set
up as a condition name in the codebook.

STATE	CON	2	
		(
	 	 ALABAMA		 =		1
																	 . . .
 . . .
	 	 WYOMING		 =		50
)

We will define a new variable called POPULATION_RANK.

DEFINE	POPULATION_RANK	ON	STATE;
	 LARGE_STATES	 IF		CALIFORNIA;
	 	 	 	 IF		TEXAS;
	 	 	 	 IF		ILLINOIS;
	 	 	 	 IF		NEW_YORK;
	 OTHER_STATES		 IF		OTHER;

Each entry to the right of an 'IF' must be either a single value or a range
of values. In this example, since we have four discrete values, each of the
four must appear to the right of the 'IF'. Since no condition names ap-
pear to the left of the "IF", these states will be associated with LARGE_
STATES, along with California.

OTHER is a reserved word which collects into one category all old vari-
able values not defined elsewhere in the DEFINE statement. All State
codes other than the four will be assigned collectively the name OTHER_
STATES when the variable POPULATION_RANK is used in a TABLE
statement.

	 Define 159

The TABLE statement

TABLE	RANK:
	 STUB		POPULATION_RANK,
	 HEADING		SEX	BY	INCOME;

would have a stub label of LARGE STATES (with, to its right, the income
total for the four large States broken down by sex), followed by the stub
label OTHER STATES (with, to its right, the income total for all other
States, broken down by sex). No spanner label will print above the first
stub label.

Example 3 A geographical region code appears in the codebook with the possible val-
ues of 'A', 'B', 'C', and 'D'. We wish to produce a table in which one entry
reflects a total for all regions (U.S.), followed by a total combining region
codes 'A' and 'B', followed by a total for 'A' and 'D', and finally a total for
'A', 'C', and 'D'.

We now define a new control variable as follows:

DEFINE	REGION_GROUP	'REGION	GROUPINGS'	ON	REGION;
	 'U.S.'	 	 	 	 IF		ALL;
	 EASTERN	 	 	 IF		 'A':'B';
	 NORTHERN	 	 	 IF		NOT	'B':'C';
	 'ALL	BUT	SOUTHEAST'	 IF		 'A';
	 	 	 	 	 IF		 'C':'D';

When old variable values are not numeric they must be bounded by quote
marks; however, the range symbol (:) can still be used between non-numer-
ic values.

NORTHERN is assigned all values for REGION except 'B' and 'C', that
is 'A' and 'D'. Note that the old variable ranges for different entries can
overlap.

ALL is a reserved word which means collectively all values listed in the
codebook for REGION, i.e. 'A', 'B', 'C' and 'D'. The reserved words ALL
or OTHER may appear as entries, but they may not be used together in the
same DEFINE statement.

	 Define 160

The order of the condition names displayed in a table will be the order in
which they are listed in the DEFINE statement, starting with 'U.S.' and
ending with 'ALL BUT SOUTHEAST'. If we would like totals for all
regions to appear last in the table, then the 'U.S.' entry would have to be
specified last in the DEFINE statement.

A Technique for Working with Alphanumeric Codes

Assume that a variable occupies five character positions of which the first
and fifth are alphabetic and the rest numeric.

AnnnA
BnnnB
CnnnN
DnnnB

There are many possible codes, but we want to use only a few. It would
be inconvenient to describe this variable as a control variable in the co-
debook, because we would need to list all possible values. It cannot be
described as an observation variable since it is not all numeric. We can,
however, assign it a type of char in the codebook:

PRODUCT_CODE		CHAR		5	

Then, if we want to use selected values in a table, we can pick them out
with a DEFINE statement. For example:

	DEFINE		SELECTED_CODES	ON	PRODUCT_CODE;
	 'Gloves'		 IF	 'A114B';
	 'Hats,	straw'	 IF	 'B325A';
	 'Shirts,	nylon'	 IF	 'D327N';
	 'Shirts,	cotton'	 IF	 'D425B';

Tip on Using NOT in DEFINE

One use of the DEFINE statement can lead to unexpected results as shown
in the following example where the DEFINE statement is intended to re-
classify all values other than 'A' and 'C' into a single category.

DEFINE	NEW	ON	OLD;
'Not	A	or	C'	 IF	NOT	'A';
	 	 IF	NOT	'C';

	 Define 161

The entries in this statement are really equivalent to a specification of
'ALL'. Each old variable entry is assumed to be joined by 'OR', so an
incoming 'A' fails the first test but passes the second and thus would be in-
cluded. An incoming 'C' would pass the first condition and thus be includ-
ed. However, NOT 'A' : 'C' is acceptable if there is no 'B' value. Also, two
separate DEFINE statements, each containing one NOT condition, could be
nested together to get the same results.

The combination of a Conditional Compute and DEFINE could be used as
follows:

COMPUTE	NEW	ON	OLD;
	 1		IF	'A';
	 1		IF	'C';
	 0		IF	OTHER;

DEFINE	FILTER	ON	NEW;
'Not	A	or	C'		IF		0;

Another option would be to use the type of DEFINE statement described in
the next section of this chapter. The statement would be:

DEFINE	NEW;
'Not	A	or	C'	 IF	OLD	NOT	=	'A'	AND	OLD	NOT	=	'C';

define On muLTiPLe vAriABLeS

DEFINE statements that reference multiple variables provide much more
flexibility than DEFINEs on a single variable. They are similar in syntax
to Select Style Conditional Compute statements but differ in two important
ways. First, they create new control variables with categories instead of
computed observation values. Second, in a conditional compute, the test-
ing ends with the first test that succeeds, whereas in a DEFINE on multiple
variables, all tests are evaluated so that values can go into multiple catego-
ries .

Although this type of DEFINE is called "DEFINE on multiple variables",
any DEFINE that can be done based on a single variable can also be done
using the multiple-variable type of DEFINE.

Format	 DEFINE	new-variable-name	['var	label'];
[condition-name-1]		['print	 label']	IF	test-1;
	 	 	 	 		 :

	 Define 162

[condition-name-2]		['print	 label']	IF	test-2;
	 	 	 	 		 :
	 .	 	 .
	 .	 	 .
[condition-name-n]		['print	 label']	IF	test-n;

A test can be any of the following:

• condition-test
• ALL
• OTHER

where a condition-test is one or more comparisons between variables and
values connected by AND or OR with parentheses as needed. Sets of
values and computations can be included. Except for defined or post com-
puted variables, any type of variable can be referenced in a test. Each test
can reference entirely different variables. Any test which is valid for the
SELECT statement is valid for this type of DEFINE statement.

If OTHER is used, it must be the last entry. If there is a test with no label
or condition to its left, then values passing the test will be grouped with
the category above it.

Note that if there is a computation error such as a divide by zero in a test,
the test results cannot be predicted.

Example	 Define	Insurance_Group;
"Safe"	 if		AGE	>	30;
"Moderately	Safe"	 if		AGE	>	25	and	SEX	=	'M';
	 if	 	AGE	>=	20	and	SEX	=	'F';
"Unsafe"	 if		AGE	<	20	or	(AGE	<	25	and	SEX	=	'M');
"All	Drivers"	 if		ALL;

Example		 In this example, people have been asked to check one or more of several
reasons why they like their neighborhood. We would like to know how
many people checked each reason and also have a total of the number of
respondents in the survey. The following DEFINE statement will provide
a single new variable with all of the categories we want. All people will
be counted in the first (Total) category and also in one or more of the other
categories.

	 Define 163

DEFINE	REASONS;
'Total'	 	 IF	ALL;
'Arts/Culture'	 IF	ARTS	=	1;
'Parks'	 	 IF	PARKS	=	1;
'Shopping'	 IF	SHOPS	=	1;
'Housing'	 IF	HOUSES	=	1;

TABLE	D2	'What	do	you	like	about	your	neighborhood?':
								HEADING	REASONS;
								STUB	TOTAL	THEN	GENDER;

What do you like about your neighborhood?

Total Arts/Culture Parks Shopping Housing

Total 592 220 378 193 200
Female 362 127 231 104 119
Male 230 93 147 89 81

Example		 In the next example, we select data for the last quarter of one year and the
first quarter of the next, creating a category for each month and a total for
each quarter

DEFINE	QUARTERLY	;
/"Oct."	IF	YEAR	=	2008	and	MONTH	=	"Oct";
"Nov."	IF	YEAR	=	2008	and	MONTH	=	"Nov";
"Dec."	IF	YEAR	=	2008	and	MONTH	=	"Dec";
/"4th	Qtr.	2008"	IF	YEAR	=	2008	AND
	 MONTH	IN	("Oct",	"Nov",	"Dec");
/"Jan."	IF	YEAR	=	2009	and	MONTH	=	"Jan";
"Feb."	IF	YEAR	=	2009	and	MONTH	=	"Feb";
"Mar."	IF	YEAR	=	2009	and	MONTH	=	"Mar";
/"1st	Qtr.	2000"	IF	YEAR	=	2009	AND
	 MONTH	IN	("Jan",	"Feb",	"Mar");

Table	ONE	"Bushels	of	grain	exported	for	the	last	two	quarters:
STUB		QUARTERLY;
HEADING	CORN	then	SORGHUM	then	BARLEY	then	OATS;
WAFER	BUSHELS;

	 Define 164

Bushels of grain exported for the last two quarters

Corn Sorghum Barley Oats

Oct. 173,544,585 19,139,313 6,926,280 8,493,134
Nov. 172,416,779 23,241,936 4,189,716 11,489,270
Dec. 167,570,732 26,546,006 7,700,744 6,998,313

4th Qtr. 2008 513,532,096 68,927,256 18,816,741 26,980,717

Jan. 158,402,211 25,348,172 5,426,203 6,812,804
Feb. 145,507,999 24,945,411 3,668,906 9,290,378
Mar. 156,266,042 25,926,515 3,832,875 5,993,486

1st Qtr. 2009 460,176,252 76,220,098 12,927,985 22,096,668

	 Compute 165

C h a p t e r 1 0

Compute

COmPuTing new vAriABLeS

Format	 COMPUTE	new-variable	['print	 label']	[USING	MASK	mask]	 =	computation;	
	 	 	 USING	 :
	 	 	 MASK

where new-variable is an observation variable.

The optional print label following the variable name replaces the variable
name on the printed table. There are many options associated with print
labels such as upper and lower case letters, special characters and foot-
notes. A separate chapter describes print labels in more detail.

The optional mask is used to specify the print format for the computed
data values if the computed variable is used in a TABLE statement.

Examples	 COMPUTE	WEIGHTED_INCOME	USING	MASK	$999,999	=
	 INCOME	*	WEIGHT;

COMPUTE	NO_FAMS	'Number	of	Families'
	 USING	MASK	9999	=	FAMILIES;

COMPUTE	AMOUNT	=	INCOME**2	/	(4.5	+	WEIGHT);

COMPUTE	FACTOR	=	.571;

Introduction

The COMPUTE statement provides a way of creating a new observation
variable which has not been defined in the codebook. The new variable is
calculated from other observation variables (including a record name) and

	 Compute 166

numeric literals using addition (+), subtraction (-), multiplication (*), divi-
sion (/) and exponentiation (**).

The calculations are performed using the normal rules for evaluation order
and parentheses. Unless parentheses are used to change the evaluation or-
der, exponentiation is performed before division and multiplication, which,
in turn, are performed before addition and subtraction. Strings of opera-
tions at the same level are performed left to right. For example, 10 - 5 + 6
is evaluated as (10 - 5) + 6 = 11, not as 10 - (5 + 6) = -1.

A special division operator called DIV is available for performing integer
division, and the SQRT and ABS functions can be used to get square roots
and absolute values.

Computed variables are always considered to be observation variables and
can be used in following TPL statements in any place that codebook-de-
fined observation variables can be used. A computed variable is aggregated
over the entire file when used in a TABLE statement.

COMPUTE statements are executed in ANSI standard double precision
floating point.

Compute Entries

A computation can reference numeric literals and observation variables
from either the codebook or previous COMPUTE or Conditional Com-
pute statements. The numeric literals can contain an actual decimal point.
Parentheses can be used in the computation to any level. Computed values
aggregated over the entire file are rounded, if necessary, just before be-
ing displayed. An optional mask to the left of the equal sign indicates the
number of decimal places and special symbols to be displayed.

The statement:

COMPUTE	AMT	'Expenditure	Amount'	=		((INTEREST	+	3)		/	
	 (GROSS	-	INTEREST))	*	.5;

is a valid COMPUTE statement if INTEREST and GROSS are observation
variables from either the codebook or a previous COMPUTE or Condition-
al Compute statement. A computed variable can be set equal to a constant
value or to another observation variable.

	 Compute 167

For example:

COMPUTE	A	=	5;
COMPUTE	B	=	+	3;
COMPUTE	C	=		-95;
COMPUTE	FAMILY_INCOME	=	INCOME;

The "new-variable" being computed cannot have the same name as any
other variable created or used within the table request. If it has the same
name as a variable in the codebook named by the USE statement, refer-
ences to that name will be assumed to refer to the computed variable rather
than the codebook variable.

For example:

COMPUTE	WAGES	=	INCOME		/	50;

If a variable called WAGES has already been created in an earlier state-
ment, an error will be reported.

If division by zero is attempted, a warning message will be issued and the
quotient will be assigned a value of zero.

If any variable used in a computation has a NULL value, then the com-
puted variable will be assigned a NULL value. For example, if you specify
DATA ERROR = NULL when describing the variable INCOME in the
codebook, and you then use INCOME in a COMPUTE statement, the
computed result will be NULL for any record that has a data error for the
variable INCOME. NULL values are not included in tabulations.

Absolute Value
You can obtain the absolute value of any expression within a computation
by enclosing the expression in parentheses and preceding the left parenthe-
sis with the keyword ABS, as in:

COMPUTE	AMT	'Weighted	Income'	=	ABS	(WEIGHT		*	INCOME);

Square Root
Square root can be obtained by following the keyword SQRT with a
computation within parentheses. If square root is attempted on a negative
value, a warning message will be issued and a value of zero will be re-
turned.

	 Compute 168

OBS
The OBS function changes a character variable into an observation vari-
able which can be used in a computation. The conversion discards leading
blank space. It then supports an optional plus ("+") or minus ("-") sign
followed by numbers including an optional decimal point ("."). Note that
comma cannot be used as a decimal point. When a non-number or the end
of the field is encountered, the conversion is terminated.

"123.456" is converted to 123.456.
"123,456" is converted to 123 since the comma terminates the conversion.
"+ 12345" is converted to 0 since there is a blank following the "+".
"-123x45" is converted to -123 since the 'x' terminates the conversion.

Integer Division
If you want division to be performed in integer mode so that all decimal
places are truncated for each computed result, then use the DIV operator in
place of the divide symbol (/). For example, 3 DIV 4 is zero, whereas 3/4
is 0.75. A DIV by 1 will simply truncate the decimal places. For exam-
ple, 2.688 DIV 1 gives a result of 2.

Note The DIV function can only guarantee 11 to 12 digits of accuracy. The
reason for this is that TPL has code which prevents possible larger errors
when data values are converted to floating point in the computer. Suppose
the data value is really 7.000000000000000 but because of data conversion
errors the number is represented in the computer as 6.999999999999999.
If we do a straight truncation for DIV we will get an incorrect number, 6,
even at the integer level. TPL corrects for this by adding a small number
to the value before truncation. Hence the value becomes something like
7.000000000000754. Now if we truncate to integers or even to 7.0000000,
we get correct numbers but if we truncate to 7.0000000000007 we get an
incorrect value. TPL opts to give up a few digits of accuracy to prevent
errors from showing up in higher digits.

Masks for Output Formatting

The COMPUTE statement can also contain a concise expression of how
the computed variable is to be formatted when printed. This expression,
known as a mask, consists of a succession of 9's, one for each digit posi-
tion of the expected maximum aggregated value. Embedded within the 9's
can be commas, a decimal point, dollar sign, or percent symbol in positions
where they would appear when the computed variable is displayed.

For example, a mask of 9,999.99 would cause a cell value of 2467.34 to be
displayed as 2,467.34 and be centered within the column width. Without

	 Compute 169

the mask it would be displayed as 2,467 right-justified within the col-
umn width. A dollar sign can appear before the leftmost 9 or a percent
symbol(%) can appear after the rightmost 9 to cause these symbols to be
printed.

A footnote reference can optionally be included in the mask. If a text is
provided for the footnote in a SET FOOTNOTE statement, the associated
footnote symbol will precede all cell values containing the computed value.
Please refer to the chapter on Footnotes for complete details on the use of
footnotes in masks.

COMPUTE	FAMILY_INCOME	USING	MASK	$999,999.99	=	
	 (HEAD_INC	+	OTHER_INC)	/	100;

The total of HEAD_INC and OTHER_INC, which are recorded in cents,
are to be aggregated for all families and displayed in dollars and cents. A
dollar sign, comma, and decimal point are also to be printed. Since the
incomes are to be expressed in dollars and cents, the totals must be divided
by 100 to move the decimal point two positions to the left. Note that if
HEAD_INC and OTHER_INC were desribed in the codebook with the
clause SHIFT DECIMAL LEFT 2, we would not need to divide by 100 in
order to display the incomes in dollars and cents.

If FAMILY_INCOME is used in the heading expression of a TABLE state-
ment, the mask applies to each entry under FAMILY_INCOME; however,
dollar signs, and percent symbols only appear with the first non-empty cell
in the column. Since a mask is used, the data is automatically centered
within the column width based on the number of symbols in the mask.

If FAMILY_INCOME is used in the stub expression, the mask applies to
each FAMILY_INCOME row.

Data can be rounded and displayed with trailing zeros by inserting zeros in
the mask. For example, with a mask of 999,000 the value 876859 will be
displayed as 877,000.

For additional details on the use of masks, see the chapter on Masks.

	 Compute 170

Weighting

A common need in statistical processing is to weight various observed val-
ues in a data record which represent a sampling. Typically, each process-
ing unit contains a weighting factor to be applied to the entries before they
are tabulated, so that the final table values represent a larger universe.

The simplest example of weighting is creating a table with weighted
frequency counts. This does not require a COMPUTE statement. The
weighting factor observation variable is nested in the TABLE statement
so that weighting factors replace the default observation variable of record
name which has a value of one. In the following example, the weight vari-
able WGT is nested with all cells of that table and tabulated for each cell.

TABLE	W1	'Weighted	tabulation	of	population'	:
	 HEADING		WGT	BY	REGION;
	 STUB		MARITAL_STATUS	BY	EDUCATION;	

To obtain a weighted tabulation other than a frequency count, a COM-
PUTE statement is needed. A new weighted variable can be created by
multiplying the variable to be weighted by the weight factor. For example,

COMPUTE	WEIGHTED_INCOME	=	INCOME	*	WEIGHT_FACTOR;

COMPUTE	WEIGHTED_COST	=	COST	*	WEIGHT_FACTOR;

where, INCOME, COST, and WEIGHT_FACTOR are codebook obser-
vation variables. WEIGHTED_INCOME and WEIGHTED_COST are
computed for each record. They can then be used in a TABLE statement
such as:

TABLE	T1:		STUB		AUTO	BY	(REGION	THEN	TOTAL),
	 HEADING		WEIGHTED_INCOME	THEN	WEIGHTED_COST;

The computed weighted values will be aggregated from each record.

	 Compute 171

The COndiTiOnAL COmPuTe STATemenT

Introduction

An extension of the COMPUTE statement can be used to create an ob-
servation variable for which the computation varies depending on the
values of one or more other variables. The new variable will be assigned
the computation associated with the first condition satisfied. This type of
COMPUTE statement is called Conditional Compute.

There are two types of Conditional Compute. We call the first type "Select
Style" Conditional Compute, because any condition that can be expressed
in the SELECT statement can be used in this type of Conditional Compute.
We call the second type "Define Style" Conditional Compute, because its
form is similar to that of a DEFINE statement. The Define Style statement
provides a short-cut approach that can be used when the choice of compu-
tations depends on the values of only one variable.

Select Style Conditional Compute

Format	 COMPUTE	new-obs-var	['print	 label']	[USING	MASK	mask]	=
	 	 USING
	 	 MASK

computation-1		IF	condition-1A	[AND	condition-1B...];
NULL	 	 :	 	 OR

[computation-2	IF	condition-2A	[AND	condition-2B...];]
NULL	 	 :	 	 OR
								 .																	 .		 .
								 .																	 .	 .
[computation-n		IF		OTHER;]
NULL	 	 :

The keyword 'IF' and the colon can be used interchangeably.

Examples	 COMPUTE	WEIGHTED_INCOME		=
	 WEIGHT	*	INCOME	 IF		INCOME	>	20000;
	 INCOME	 		 IF		OTHER;

COMPUTE	TEST_ZERO_DENOMINATOR		=
	 EARNINGS	/	HOURS	 IF		HOURS	>	0;
	 NULL	 	 	 IF		OTHER;

	 Compute 172

COMPUTE	AMT3	USING	MASK	999	=	
	 A		 IF		L	>	25.55;
	 L	 IF		OTHER;

COMPUTE	CHILDREN	USING	MASK	9999	FOOTNOTE(C)	=
	 PERSONS_IN_FAMILY	-	2		IF
	 	 MARITAL_STATUS	=	1	AND	SEX	=	MALE;
	 PERSONS_IN_FAMILY	-	1		IF	
	 	 MARITAL_STATUS		IN		(1,	2,	3,	5);
	 	 0		IF		OTHER;	 	 /*	Never	Married	and	*/
		 	 	 	 	 /*	Not	available	*/

Condition Term

The variables used to the right of the 'IF' in the Conditional Compute can
be either control variables (but not a defined variable), char variables or
observation variables (but not a post computed variable).

The conditions are expressed identically to the IF form of the SELECT
statement. Conditions can test for relationships or sets of values. All
conditions which are valid for the SELECT statement are valid for the
Conditional Compute. Each condition can reference entirely different vari-
ables.

If there is a computation error such as a divide by zero in a condition, the
test will fail and the evaluation will go on to the next condition.

Compute Term

The entries to the left of the 'IF' can be:

1. numeric literals and observation variables from the codebook or com-
puted variables. A record name cannot be used.

or

2. the keyword NULL as explained later in this chapter.

As a first example, suppose that the control variable PAY_TYPE contains
either an 'H' or a 'W' to indicate whether the observation variable EARN-
INGS is stored as an hourly wage rate in cents or a weekly salary in
dollars. To create a new observation variable WEEKLY_SALARY to be
displayed in dollars and cents, we could write:

	 Compute 173

COMPUTE		WEEKLY_SALARY	USING	MASK		$999.99	=
	 (EARNINGS	*	USUAL_WEEKLY_HRS)/100	 IF		PAY_TYPE	=	'H';
	 EARNINGS/100		 IF		PAY_TYPE	=	'W';

Note that if EARNINGS had been described in the codebook with the
clause SHIFT DECIMAL LEFT 2, we would not need to divide by 100 in
order to display the results in dollars and cents.

The ordering of the entries is important in the Conditional Compute. The
conditions are evaluated in the order in which they are specified. The new
variable will be assigned the computation associated with the first condi-
tion satisfied.

Consider an expansion of the last example:

COMPUTE	WEEKLY_SALARY	USING	MASK	$999.99	=
	 (EARNINGS	*	USUAL_WEEKLY_HRS)/100	 IF		PAY_TYPE	=	'H';
	 EARNINGS/100	 IF		PAY_TYPE	=	'W';
	 EARNINGS	 IF		PAY_TYPE	=	'H';

If PAY_TYPE equals 'H', WEEKLY_SALARY will be set equal to the first
computation and no more testing will be done. Although 'H' occurs more
than once, any computation other than the one associated with the first oc-
currence of 'H' will be ignored.

If none of the conditions are satisfied, then the new variable will be as-
signed the value of zero. Thus in the above example, if PAY_TYPE='H',
then the new variable WEEKLY_SALARY will contain the value of the
computation expressed by (EARNINGS * USUAL_WEEKLY_HRS)/100.
If PAY_TYPE='W', then WEEKLY_SALARY will contain the value
EARNINGS/100. If neither condition is satisfied, WEEKLY_SALARY
will be assigned the value zero.

If PAY_TYPE cannot take values other than 'H' and 'W', the statement
could have been written using 'OTHER' as in:

COMPUTE		WEEKLY_SALARY	USING	MASK	$999.99	=
	 (EARNINGS	*	USUAL_WEEKLY_HRS)/100	 IF		PAY_TYPE	=	'H';
	 EARNINGS/100	 IF		OTHER;

In the Conditional Compute statement at least one computation or numeric
literal must appear in the first entry in the column under the new variable.
If subsequent entries do not contain a computation on the left, they will be
associated with the previous computation. For example, if we need a new
variable WEIGHT which varies depending on the value of the variable

	 Compute 174

STATE, we could use the following statement. Codebook condition names
associated with STATE are used.

(codebook)
STATE	CON	2	
			(
	 ALABAMA	=	1
	 	 .		.		 .
	 	 .		 .		 .
	 WYOMING	=	50
)

(request)
COMPUTE	WEIGHT	=
	 1	 IF		STATE	=	Arizona;
	 	 IF		STATE	=	Utah;
	 	 IF		STATE	=	Nevada	or	STATE	=	New_Mexico;
	 3	 IF		STATE	=	California;
	 	 IF		STATE	=	New_York;
	 2	 IF		OTHER;

WEIGHT will have a value of 1 if STATE = Arizona, Utah, Nevada or
New Mexico, and a value of 3 if STATE = California or New York. All

other state values will cause weight to have a value of 2.

The same computation can be repeated in different entries. For example,
to create WEIGHT we might wish to list the states in alphabetic order on
the right as follows:

COMPUTE	WEIGHT	=
	 2	 IF		STATE	=	Alabama;
	 2	 IF		STATE	=	Alaska;
	 1	 IF		STATE	=	Arizona;
	 2	 IF		STATE	=	Arkansas;
	 3	 IF		STATE	=	California;
	 2	 IF		STATE	=	Colorado;
	 2	 IF		OTHER;

An observation variable can be tested and also used in the computation.
For example:

COMPUTE	NEW_WEIGHT	=
		 WEIGHT	 IF		WEIGHT	<	25;
	 	 1	 IF		OTHER;

	 Compute 175

A conditionally computed variable can be used anywhere that an observa-
tion variable can appear, including in another Conditional Compute state-
ment.

If the computation associated with the first condition satisfied contains a
null value, the new variable value for that record will be null-valued.

Define Style Conditional Compute

If your calculations depend on the values of a single variable, you can use
an abbreviated form of Conditional Compute that looks similar to a DE-
FINE statement. This type of Conditional Compute works the same as the
SELECT style but has a more simple format.

Note that Define style Conditional Compute cannot be used if the old-vari-
able-name references a variable of type CHAR.

Format	 COMPUTE	new-obs-var	['print	 label']		 [USING	MASK	mask]	ON	old-variable;
	 	 	 USING
	 	 	 MASK

	 	 	 computation-1		IF		entry	-1;
	 	 	 NULL	 	 :

	 	 	 [computation-2	IF		entry-2;]
	 	 	 NULL	 				 :
	 			 . .
 . .
	 	 	 [computation-n	IF		OTHER;]
	 	 	 NULL	 				 :

The keyword IF and the colon can be used interchangeably.

The old-variable value is compared to the values in the entries below it.
The first match will determine the value to be assigned to the new-obs-var.

Examples	 COMPUTE	WEIGHTED_INCOME		ON		INCOME;
	 WEIGHT	*	INCOME	 	 IF		>	20000;
	 INCOME	 	 	 IF		OTHER;

COMPUTE	TEST_ZERO_DENOMINATOR		ON		HOURS;
	 EARNINGS	/	HOURS	 	 IF		>	0;
	 NULL	 	 	 	 IF		OTHER;

	 Compute 176

COMPUTE	WEEKLY_SALARY	USING	MASK	$999		ON		PAY_TYPE;
	 EARNINGS	*	WEEKLY_HRS	 IF		 'H';
	 EARNINGS	 	 	 IF		 'W';
	 EARNINGS	/	2	 	 	 IF		 'B';

Entries on the Right

The entry to the right of an IF can be any value or range of values, with or
without relation symbols, that is valid for a DEFINE statement. The word
ALL cannot be used. If the word OTHER is used as an entry, it must be
the last entry.

Computations on the Left

An entry to the left of the IF can be a computation or the value NULL as
allowed in the Select style Conditional Compute.

 Assigning NULL Values

A null value can be assigned to a conditionally computed variable by using
the keyword NULL on the left side of a condition. NULL values are not
included in tabulations.

Null assignments can be used to eliminate invalid values from computa-
tions such as averages, medians and other quantiles. These invalid values
may come directly from the data file or may be the result of computation
errors, such as "divide by zero".

Suppose that we want a table with average family income values and medi-
an income values. Assume that INCOME is five bytes long and that values
of zero or 99999 are to be treated as null values so that erroneous average
or median calculations are avoided. We can use the following statements
to exclude null INCOME values:

COMPUTE	VALID_INCOME	ON	INCOME;
	 INCOME	 IF		>	0	TO	<	99999;
	 NULL	 	 IF		OTHER;

COMPUTE	VALID_FAMILY	ON	INCOME;
	 1	 IF		>	0	TO	<	99999;
	 NULL	 IF		OTHER;

POST	COMPUTE	AVERAGE	=	VALID_INCOME	/	VALID_FAMILY;

MEDIAN	MEDIAN_INCOME	ON	VALID_INCOME	(4);

	 Compute 177

	TABLE	SAMPLE:		STUB		REGION,	
	 HEADING		AVERAGE	THEN	MEDIAN_INCOME;

If a computation specified in a COMPUTE statement results in a division
by 0 or the square root of a negative number, TPL TABLES produces an
error message and assigns a value of 0 to the computation. If the comput-
ed variable is used directly in a TABLE statement this action is probably
acceptable. On the other hand, if the computed variable is used in another
computation or define, the result is probably not what is desired.

In such a case you should replace the COMPUTE with a Conditional Com-
pute which produces the result you want. For example, if HOURS can
sometimes have the value 0, the COMPUTE statement

COMPUTE	RATE	=	COST	/	HOURS;

should be replaced by the Conditional Compute

	COMPUTE	RATE		 ON		 HOURS;
	 NULL	 	 IF			 0;
	 COST/HOURS	 IF	 OTHER;

Then you will get correct results for calculations such as:

	MEDIAN	MEDIAN_RATE	ON	RATE(10);

If a null-valued observation variable is referenced in a DEFINE statement,
the null values will be counted only if there is a specific entry that specifies
NULL as a category. Null values will not be counted in any other of the
defined categories, including ALL or OTHER.

In SELECT and Conditional Compute statements, no test involving a null-
valued variable will succeed unless it specifically references NULL. For
example, if variable "A" has a null value, then "A = 5" will not be satis-
fied. Similarly, "A NOT = 5" will not be satisfied. If all of the variables
referenced in a Conditional Compute are null-valued, all of the tests will
fail and the newly computed variable will take on the value associated with
the "OTHER" category if one is provided; it will take on the default value
of zero if no "OTHER" category is specified.

The keyword NULL can be explicitly used in the SELECT statement and
on the right side of a Conditional Compute statement. For example, sup-
pose that there are two income variables called MONTH_EARNINGS and

	 Compute 178

WEEK_EARNINGS. Suppose also that one of the two incomes can be
null-valued. We want to compute a new variable EARNINGS which is ex-
pressed in monthly earnings. We could use a statement like the following:

COMPUTE	EARNINGS	=
	 MONTH_EARNINGS		IF		MONTH_EARNINGS	NOT	=	NULL
		 	 AND		WEEK_EARNINGS	=	NULL;
	 (52	/	12)	*	WEEK_EARNINGS	IF
	 	 WEEK_EARNINGS	NOT	=		NULL
	 	 AND		MONTH_EARNINGS	=	NULL;
	 NULL	IF		OTHER;

NULL or Zero for OTHER

If there is no OTHER category in a Conditional Compute, then the comput-
ed variable is assigned a value of zero for records that do not meet any of
the conditions. In most cases, this will be acceptable treatment. However,
in the case where the computed variable is to be used in computations such
as averages or in QUANTILE or MEDIAN statements, you will probably
want to specify "NULL IF OTHER" to eliminate the possibility of includ-
ing unwanted zero values in the calculation.

In general, processing will be more efficient if you add the condition
"NULL IF OTHER" at the end of the Conditional Compute. When the
computed variable is used in a table, cells that have only NULL contribu-
tions will be treated the same as empty cells. A dash will be displayed in
these cells as it would be for any other situation where there is no value for
the cell. If you prefer that a zero value be displayed in the cells that have
only NULL contributions, you should use the default assignment of zero or
explicitly specify "0 IF OTHER" at the end of the Conditional Compute.

A Technique for Computing Ratios

A useful technique with the Conditional Compute is to compute ratios of
classifications within a control variable, also using the POST COMPUTE
statement (see POST COMPUTE chapter). Suppose a codebook control
variable entry is expressed as:

EMPLOYMENT_STATUS	CON	1
			(
	 EMPLOYED	 =		1
	 UNEMPLOYED	=		2
)

	 Compute 179

If we wish to compute a ratio of UNEMPLOYED to EMPLOYED workers,
we can write the following statements.

COMPUTE	EMPLOYED	ON	EMPLOYMENT_STATUS;
	 1	 IF			1;
	 NULL	 IF			OTHER;

COMPUTE	UNEMPLOYED	ON	EMPLOYMENT_STATUS;
	 1	 IF		2;
	 NULL	 IF		OTHER;

POSTCOMPUTE	RATIO	USING	MASK	99.9	=
	 	 	 	 UNEMPLOYED	/	EMPLOYED;

Then, within a TABLE statement, we might have:

TABLE	SAMPLE_RATIOS:
HEADING		INDUSTRY	BY
	 (TOTAL	THEN	EMPLOYMENT_STATUS	THEN	RATIO);
STUB		CITY;

The table would show the total number of workers, the employed, the un-
employed, and the ratio of unemployed to employed for each city.

	 Post Compute 180

C h a p t e r 1 1

Post Compute

COmPuTing new vAriABLeS On finAL
TABuLATed vALueS

Format	 POST	COMPUTE	new-var	['print	 label']	[USING	MASK	mask]	=	
POSTCOMPUTE	 USING
	 MASK
	 computation;

where new-var is an observation variable

The optional print label following the variable name replaces the variable
name on the printed table. There are many options associated with print
labels such as upper and lower case letters, special characters and foot-
notes. The Labels chapter describes print labels in more detail.

Examples	 POST	COMPUTE	AVG_INC	'Average	Income'	MASK	$99,999	=
	 INCOME	/	PERSONS;

POST	COMPUTE	PERCENT_INCREASE	=
	 ((AMT_1983	-	AMT_1982)/AMT_1982)	*	100;

POST	COMPUTE	AMOUNT	USING	$99,999.99	=
	 	EXPENDITURES/100;

POST	COMPUTE	FACTOR		=		(LEN	**2		-	SQRT(ALEN	*	
	 (BLEN	+	(CLEN-EXPEN))))	/	.456;

The purpose of the POST COMPUTE statement is to compute cell values
based on variables aggregated over the entire file. While the COMPUTE
statement results in a computation on each processing unit, the POST
COMPUTE computation is not done until each observation variable value
within the computation is accumulated over the entire file. For example, to

	 Post Compute 181

produce averages within a table, the arithmetic operation of division would
not be done until the amounts and counts from each record were accumu-
lated over the entire file.

Post Compute Entries

Each variable used in the computation must be an observation variable, and
each will be aggregated as a final total before the computation takes place.
The observation variable can be a record name. The computation can also
include the MAX and MIN built-in functions which are described below.

The observation variables used in the calculation of a new variable do not
need to be displayed in the table. All terms valid in the COMPUTE state-
ment are valid in the POST COMPUTE.

If the POST COMPUTE involves taking the square root of a negative
value, or if division by zero is attempted, the cell value will be displayed
as '**' with a footnote at the end of the table '** Computation error'. This
built-in footnote can be changed or suppressed. Please refer to the section
on footnotes for complete details.

Numeric literals appearing in a Post Compute expression are not aggre-
gated but are used in the final computation. All computations are done in
ANSI standard double precision floating point.

It is permissible in a POST COMPUTE to include a variable created in a
preceding COMPUTE or POST COMPUTE statement. Post Computed
variables must be created prior to their use in a TABLE statement.

For any table cell containing a Post Computed value, if any variable used
in the Post Compute computation has only null values for that cell, the
result of the Post Compute will be a null value.

MAX

MAX is an operator which is used in POST COMPUTE statements only.
Its form is 'MAX(var)' where the argument, 'var', is any single observation
variable. The observation variable can come from the codebook or from a
computed variable. The contribution of MAX(var) to the Post Compute is
the largest value of 'var' from any record which contributes to a cell.

	 Post Compute 182

Let us assume that the first condition value of REGION is 'Northeast', the
first of SEX is 'Male', and that INCOME is an observation variable. Now
consider the following example:

POST	COMPUTE	DOUBLE_HIGH_INCOME	=		2	*	MAX	(INCOME);

TABLE	T1:		REGION	BY	SEX,		DOUBLE_HIGH_INCOME;

The value occurring in the first row of the table will be twice the highest
income of any member of the data set who is male and lives in the North-
east.

MIN

MIN is an operator which follows the same rules as MAX except that the
contribution of MIN(var) to the Post Compute for a cell is the smallest
value of 'var' from any record which contributes to the cell.

Masks for Output Formatting

Masks can be used in the POST COMPUTE statement in the same way as
in the COMPUTE statement to insert dollar signs, decimal points, foot-
notes, etc. Use of masks will cause the post computed values to be cen-
tered within the column widths based on the size of the mask. Masks are
explained in more detail in the chapter called "Masks".

Sample Applications

Example A table is to be produced consisting of a column of total income followed
by a column of number of persons in each of three regions. It is desired
to POST COMPUTE a third column of average income derived from the
count of number of persons and total income for each region. Each person
is described by a record named PERSONS which contains a region code,
income amount, and years of schooling.

The required statements are:

POST	COMPUTE	AVERAGE_INCOME	=	INCOME	/	PERSONS;

TABLE	A:	
	 REGION,	
	 INCOME	THEN	PERSONS	THEN	AVERAGE_INCOME;

	 Post Compute 183

TABLE A: REGION, INCOME THEN PERSONS THEN
AVERAGE_INCOME;

INCOME PERSONS AVERAGE
INCOME

REGION=1 603,280 35 17,237
REGION=2 543,080 31 17,519
REGION=3 298,000 23 12,957

Example It is desired to produce a table showing the count of persons, their total
income, and total years of schooling for each of three regions. Separate
wafers are to be produced for each of two age groups. We wish to POST
COMPUTE average income and average years of schooling for each wafer.

The required statements are:

POST	COMPUTE	AVG_INCOME	=	INCOME	/	PERSONS;
POST	COMPUTE	AVG_SCHOOLING	=	SCHOOL	/	PERSONS;

TABLE	B:	
	 WAFER		AGE,
	 STUB		PERSONS	THEN	INCOME	THEN	AVERAGE_INCOME	
	 	 THEN	SCHOOL	THEN	AVG_SCHOOLING,
	 HEADING		REGION;

AGE=2

REGION=1 REGION=2 REGION=3

PERSONS 35 31 23
INCOME 603,280 543,080 298,000
AVERAGE INCOME 17,237 17,519 12,957
SCHOOL 350 341 322
AVG SCHOOLING 10 11 14

AGE=1

REGION=1 REGION=2 REGION=3

PERSONS 35 31 23
INCOME 603,280 543,080 298,000
AVERAGE INCOME 17,237 17,519 12,957
SCHOOL 350 341 322
AVG SCHOOLING 10 11 14

	 Post Compute 184

Example A table consisting of two wafers is to be produced. The first wafer is to
contain a count of persons for each city and income class. The second wa-
fer will contain the aggregated income for persons in each city and income
class. We wish to POST COMPUTE a third wafer whose corresponding
cells show their average income.

The required statements are:

POST	COMPUTE	AVG_INCOME	=	INCOME	/	PERSONS;

TABLE	C:	
	 WAFER		PERSONS	THEN	INCOME	THEN	AVERAGE_INCOME,
	 STUB		CITY,
	 HEADING	INCOME_CLASS;

PERSONS

0 - 6
THOUSAND

7 - 10
THOUSAND

over 10
THOUSAND

BOSTON 10 24 38
CHICAGO 44 30 43

TPL13660\P4T3.EPS

INCOME

0 - 6
THOUSAND

7 - 10
THOUSAND

over 10
THOUSAND

BOSTON 4,000 219,300 1,264,260
CHICAGO 4,000 271,700 1,498,760

TPL13660\P5T3.EPS

AVERAGE INCOME

0 - 6
THOUSAND

7 - 10
THOUSAND

over 10
THOUSAND

BOSTON 400 9,138 33,270
CHICAGO 91 9,057 34,855

TPL13660\P6T3.EPS

	 Post Compute 185

Standard Deviation

Example Standard Deviation is to be computed for all persons' income by using
square root.

COMPUTE	SQ_INCOME	=	INCOME	**	2;

POST	COMPUTE	ST_DEV_INCOME	=
	 SQRT	(SQ_INCOME	/	PERSONS		-	(INCOME	/	PERSONS)	**	2);

TABLE	DEVIATION:			INCOME_CLASS,	
	 ST_DEV_INCOME	BY	(TOTAL	THEN	REGION);

Using Post Computed Variables in Post Computes

Post computed variables can be referenced in subsequent POST COM-
PUTE statements. In the following example, the first statement calculates
the mean number of vehicles per household in the year 2000. The second
calculates the mean for the year 1990. The third calculates the difference
between the two means, and the fourth references both the 1990 mean and
the difference between the means to calculate percent change.

Example	 POST	COMPUTE	MEAN_VEHICLES_00
"Mean	vehicles	per	household"		USING	MASK	999,999.99	right
	 =	CARS_00		/	HHLDS_00;

POST	COMPUTE	MEAN_VEHICLES_90
"Mean	vehicles	per	household"		USING	MASK	999,999.99	right
	 =	CARS_90		/	HHLDS_90;

POST	COMPUTE	VEHICLES_DIFF
font	h	8	"Change	from	1990	-	2000"		USING	MASK	999,999.99	right
	 =	(MEAN_VEHICLES_00)	-	(MEAN_VEHICLES_90);

POST	COMPUTE	VEHICLES_PCT_DIFF
font	h	8	"Percent	change	from	1990	-	2000"
USING	MASK	999,999.99	right
	 =	100	*	VEHICLES_DIFF	/	MEAN_VEHICLES_90;

	 Post Compute 186

The DISPLAY Function

A POST COMPUTE calculation is done using unrounded values. No
rounding is done until just before the result is displayed in a table. If the
inputs to the POST COMPUTE are displayed as rounded values in a table,
you may occasionally see a small difference between the calculation based
on unrounded values and the calculation based on displayed values. If you
need to do the calculations based on rounded displayed data values, you
can use DISPLAY.

The DISPLAY function can be used in a POST COMPUTE to convert an
unrounded value into the same value as that which would be displayed in
the table after rounding. Thus the result of the POST COMPUTE will be
the same as a calculation using the values displayed in the table.

The function has two arguments: first, the variable or arithmetic expres-
sion for the value that was displayed with rounding; second, the number of
digits following the decimal point in the mask that was used to display the
rounded value.

Format	 DISPLAY(arith-expr,	n)

Example	 POST	COMPUTE	CHGWG_PAST	=	
	 DISPLAY(TOT_WAGES_PRES,	0)	-		 	 	 	 	
	 DISPLAY(TOT_WAGES_PAST,	0);

Example In the following table, columns 3 and 4 are obtained by post computing the
difference between the values displayed in columns 1 and 2. The first dif-
ference is calculated from the unrounded values. The second difference is
calculated using DISPLAY.

POST	COMPUTE	diff_regular	 'Difference'	mask	999,999.99	=	
	 pop_thousands_wgt	-	pop_thousands;

POST	COMPUTE	diff_display	'Difference	using	DISPLAY'
	 mask	999,999.99	=	
	 DISPLAY(pop_thousands_wgt,2)	-	DISPLAY(pop_thousands,2);

	 Post Compute 187

Table D-1. Households by State (in thousands)

Weighted
Count of
House-
holds

Number
Surveyed Difference

Difference
using

DISPLAY

Total .. 46,333.47 30.00 46,303.47 46,303.47
New England
Connecticut 682.18 0.33 681.84 681.85
Maine 241.43 0.29 241.14 241.14
Massachusetts 1,203.60 1.20 1,202.40 1,202.40
New Hampshire 211.67 0.27 211.40 211.40
Rhode Island 183.52 0.26 183.26 183.26
Vermont 105.19 0.26 104.93 104.93

In this example, the results of the two Post Computes are the same except
in one row where the cells are shaded. There is a small difference of .01
between these cells.

Subtracting the unrounded values gives the following:

682.175080	-	0.334000	=	681.84108	which	rounds	to	681.84

Subtracting the displayed values give:

682.18	-	0.33	=	681.85

The COndiTiOnAL POST COmPuTe STATemenT

Introduction

The Conditional Post Compute lets you adjust table cell values by testing
tabulated values to see if certain conditions have been met. The first suc-
cessful test for a table cell will determine the final cell value. Cell values
can be replaced with post computed values and footnotes.

The general format is similar to the format of the Conditional Compute
statement:

	 Post Compute 188

Format	 POST	COMPUTE	new-obs-var	['print	 label']	[USING	MASK	mask]	=

replacement1	 IF		condition1	 [AND	condition2.....]	;
	 	 	 	 	OR
					

replacement-n	 IF		condition-m	 [AND	condition-p.....]		 ;
	 	 	 	 	OR

Example	 POST	COMPUTE	NEW_INCOME	=
	 20000	 	 IF		INCOME	>	20000;
	 INCOME	 IF		OTHER;

A replacement expression can be a numeric literal, a single observation
variable, a computation or the keyword NULL. Any computation that is
valid for a POST COMPUTE statement can be used in the Conditional
Post Compute. Another example shows some valid entries, where each of
the letters represents an observation variable.

POST	COMPUTE	NEW		MASK	99,999.99	=
	 3.65	+	A	+	B	+	MAX(C)		 IF		E	*	F	<	(D	-	G);
	 SQRT	((L	*	M)/N)	 	 IF		H	>	5.1;

A footnote reference or complete conditional print mask can be included
at the end of the replacement expression. If a replacement expression ends
with a print mask, that mask will be used in place of the mask associated
with the post computed variable. If a replacement expression contains
ONLY a print mask and does not provide a replacement value, the contents
of the mask will be used in the cell. In this case, if there are 9's in the
mask, a zero replacement value will be assumed.

Conditions to the right of "IF" can contain numeric literals, observation
variables, including computed and post computed variables, computations,
the keyword OTHER or the keyword NULL. All of the relational operators
permitted in the SELECT statement can be used.

Sometimes the treatment of table cells cannot be determined simply by
looking at tabulated values but instead depends on other aggregate proper-
ties. Additional operators are available for testing other aggregate proper-
ties of variables. These operators are discussed later under the heading
"Testing Aggregate Properties with Status Variables".

	 Post Compute 189

Conditional Masks and Footnotes

The Conditional Post Compute can be used to assign conditional masks to
cells. As an example, assume that we are aggregating expenditure amounts
for different types of purchases. For large items such as automobiles or
boats, the tabulated values may be quite large and could be displayed in
hundreds of dollars; for small items such as candy or stockings, it might
be more appropriate to display the tabulated values in dollars and cents.
We can determine the cell format for each cell by testing the final tabulated
values as follows:

POST	COMPUTE	DISPLAY_VALUE	=	
	 AMOUNT	/	10000	MASK	999	FOOTNOTE	HUNDREDS	
	 	 	 	 	 IF		AMOUNT	>	100000;
	 AMOUNT	MASK	999.99	 IF		OTHER;

The Conditional Post Compute can be used for conditional footnoting,
where a unique footnote is associated with each condition. For example:

POST	COMPUTE	FOOTNOTE_TEST	MASK	999,999	=
	 INCOME	FOOTNOTE(A)	 IF		INCOME	<	100000;
	 INCOME	FOOTNOTE(B)	 IF		INCOME	>=	100000;

Note A REPLACE MASK statement in a format request will override a con-
ditional mask applied to the same cells. This means that the conditional
footnotes will be lost. To retain the conditional footnotes when replacing
a mask, see KEEP DATA FOOTNOTE in the FORMAT section of the
manual.

In TPL TABLES, footnotes for data cells are normally attached to masks.
In the Conditional Post Compute, there are two special cases where a foot-
note reference can be used alone:

1. If the cell is to contain only a footnote symbol, the replacement expres-
sion can consist of just a footnote reference.

	POST	COMPUTE	NEW_INCOME	99,999	=
	 INCOME	 	 IF		INCOME	>=	20000;
	 FOOTNOTE	(A)		 IF		OTHER;

 In this example, cells with tabulated INCOME values less than 20000
will contain only the symbol for FOOTNOTE A.

	 Post Compute 190

2. If the cell is to be footnoted, but will also contain a data value, a
footnote reference can be used at the end of the replacement expres-
sion. In this case, the rest of the cell format will be determined by
the mask associated with the post computed variable. In other words,
the footnote reference will act as a supplement to the mask of the post
computed variable.

	POST	COMPUTE	NEW_INCOME	99,999	=
	 INCOME	 	 	 IF		INCOME	>=	20000;
	 INCOME	FOOTNOTE	(A)	 IF		OTHER;

 In this example, cells with tabulated INCOME values less than 20000
will contain values formatted with the MASK 99,999 and footnoted
with FOOTNOTE A.

Tabulated values may need to be tested in situations where incomplete data
causes division by zero in some cells, or where too few contributions to
a cell can result in confidential information being revealed. Conditional
Post Compute statements can be used to make the required adjustments by
deleting, altering or footnoting cell values.

Suppose that we want to display average family incomes in all cells for
which at least 10 families have made contributions to the average. If fewer
than 10 families contributed to a cell, we want to replace the value with a
footnote to avoid disclosure of confidential information. This can be done
by specifying:

POST	COMPUTE	AVERAGE	MASK	$99,999	=
	 INCOME	/	FAMILIES	 IF		FAMILIES	>=	10;
	 FOOTNOTE(FEW)	 IF		OTHER;

with the footnote statement:

SET	FOOTNOTE(FEW)	TEXT		 'Fewer	Than	10	Families	Contributed';

Suppose that we use AVERAGE in a TABLE statement that has age of
family head as the stub expression and geographical region in the heading.

TABLE	SAMPLE:		AGE,	AVERAGE	BY	REGION;

We can interpret the logic of the Conditional Post Compute as follows:
The observation variables referenced in the Conditional Post Compute will
be summarized for each table cell. After all data have been summarized,
final aggregated amounts for INCOME and FAMILIES will be available in

	 Post Compute 191

each cell. If FAMILIES >= 10, an average will be computed for the cell.
Otherwise, the cell will contain only the footnote symbol for the footnote
FEW.

If we wish to compute the average for the "OTHER" condition but footnote
it, we can do so by specifying the calculation followed by the footnote
reference:

POST	COMPUTE	AVERAGE		MASK	$99,999	=
	 INCOME/FAMILIES	 IF		FAMILIES	>=	10;
	 INCOME/FAMILIES	FOOTNOTE(FEW)	 IF		OTHER;

Next, suppose that we want to avoid division by zero by replacing those
cells having a zero divisor with a null value. The null value is equivalent to
"data not available" and is displayed as a dash symbol. We can specify:

	POST	COMPUTE	AVERAGE	=
	 INCOME	/	FAMILIES	 IF		FAMILIES	>	0;
	 NULL	 	 	 IF		OTHER;

If an entire row of data contains null values, partially or fully because of
null-valued Post Computes, the entire row will be treated as empty and by
default will be deleted.

Suppose now that we want to display final income values that are at
least $30,000. For cells less than $30,000 we want to display the word
'SMALL'. We can specify:

POST	COMPUTE	NEW_INCOME	MASK	$99,999	=
	 INCOME	 IF		INCOME	>=	30000;
	 MASK	'SMALL'		 IF		OTHER;

In some cases, conditional footnoting or suppression of data values depends
on the summarized values that contribute to a cell. For example, in calcu-
lating average family incomes, we might wish to replace average income
with a footnote in cells where the family with the highest income has an
income greater than 1/2 of the total for the cell. This we could accomplish
simply with the conditional post compute:

POST	COMPUTE	AVERAGE_INCOME	MASK	$99,999.99	=
FOOTNOTE(LARGE_CONTRIBUTOR)	
	 	 	 IF		MAX(INCOME)	>	1/2	*	INCOME;
INCOME	/	FAMILIES	 IF		OTHER;

	 Post Compute 192

Status Variables

Sometimes, the treatment of cell values cannot be determined based on tab-
ulated values. Instead, we may wish to footnote a cell if any one contribu-
tor to the cell has a special property or if all contributors have the property.
To do this, we need to use a separate variable that we call a status vari-
able in order to keep track of the occurrence of the special property. We
can then test the status of cells after tabulation to decide whether footnotes
are required.

Status tests can be applied using the two operators, U for Union and I
for Intersection. The Union and Intersection operators treat numbers as
strings of binary 1's and 0's. Thus, for example, the number 3 will be
thought of as BIT '11' and the number 6 will be thought of as BIT '110'.
For the special cases of 1 and 0, their representations are just BIT '1' and
BIT '0' respectively.

Now suppose we wish to label a cell as revised if any data value contribut-
ing to the cell has been revised. Assume there is a field, REVISED, in our
data file which contains 1 if the INCOME field is revised and 0 if it is not
revised. We could now write our post compute as:

POST	COMPUTE	AVERAGE_INCOME	=
INCOME/FAMILIES	FOOTNOTE	(NEW_RESULT)
	 IF		U(REVISED)	=	BIT	'1';
INCOME/FAMILIES	 IF		OTHER;

U(REVISED) will be equal to 1 if one or more records contributing to a
table cell has a 1 in it.

Alternately we might want to footnote a cell as final if all of the cells con-
tributing to it are final. If we have a field, FINAL, in our data file which
contains 1 if income is final and 0 otherwise we can accomplish this with:

POST	COMPUTE	AVERAGE_INCOME	=
INCOME/FAMILIES	FOOTNOTE	(FINAL_RESULT)
	 IF		I(FINAL)	=	BIT	'1';
INCOME/FAMILIES	 IF		OTHER;

In this case I(FINAL) will be 1 only if all of the records contributing to a
cell have a FINAL value of 1.

	 Post Compute 193

Testing Aggregate Properties with Status Variables
More complicated requirements can be accommodated with more complex
testing clauses. However, things become unmanageable as the number of
conditions grows. To simplify the testing, you can include all status infor-
mation in a single status variable. Up to 31 switches can be grouped into a
single status variable that can be tested for a combination of results.

If your data file already contains fields with status switches in them, you
can describe them in your codebook as observation variables and use them
directly in conditional post computes. The fields can be 1 to 4 bytes long.

If your data file contains status information that is recorded in some other
form, you can create a status variable in a conditional compute statement
by assigning bit string values of 1 to 31 bits.

For example, suppose the data file has a control variable INCOME_STA-
TUS which is coded with "r" for revised, "p" for preliminary and "b" for
both. We can turn this into a usable status field with the following com-
pute:

COMPUTE	NEW_STATUS	=
	 BIT	'01'		 IF		INCOME_STATUS	=	'r';
	 BIT	'10'		 IF		INCOME_STATUS	=	'p';
	 BIT	'11'		 IF		INCOME_STATUS	=	'b';
	 BIT	'00'		 IF		OTHER;

The right-most bit is "on" (= 1) if INCOME is revised. The left bit is
"on" if INCOME is preliminary. Both bits are "on" if INCOME is both
revised and preliminary.

If this same status information were stored in two fields, REVISED and
PRELIMINARY, we could get the same results with:

COMPUTE	NEW_STATUS	=
	 BIT	'01'		 IF		REVISED	=	1	AND	PRELIMINARY	=	0;
	 BIT	'10'		 IF		REVISED	=	0	AND	PRELIMINARY	=	1;
	 BIT	'11'		 IF		REVISED	=	1	AND	PRELIMINARY	=	1;
	 BIT	'00'		 IF		OTHER;

We can now use NEW_STATUS in a post compute.

	 Post Compute 194

POST	COMPUTE	AVERAGE_INCOME	=
	 INCOME	/	FAMILIES	FOOTNOTE(REVISE)
	 	 	 	 IF		U(NEW_STATUS)	=	BIT	'01';
	 INCOME	/	FAMILIES	FOOTNOTE(PRELIM)	
	 	 	 	 IF		U(NEW_STATUS)	=	BIT	'10';
	 INCOME	/	FAMILIES	FOOTNOTE(P_AND_R)	
	 	 	 	 IF		U(NEW_STATUS)	=	BIT	'11';
	 INCOME	/	FAMILIES	 IF		OTHER;

In table cells where any contributing INCOME is revised, we will get the
REVISE footnote; in cells where any contributing INCOME is preliminary,
we will get the PRELIM footnote; and in cells where there is at least one
occurrence of a revised INCOME AND at least one occurrence of a pre-
liminary INCOME_R footnote.

Now suppose that instead of just 2 status conditions (revised and pre-
liminary in the preceding example), we have 10 that need to be tested
for certain combinations. In such a case, we would have 10 ** 2 = 100
possible status combinations. We probably do not want 100 different tests
and footnotes. Instead we would like to test for only a few of the possible
combinations, adding footnotes to only those cells with those attributes.

TPL TABLES lets you simplify the testing by using a "don't care" bit
denoted by the letter x. The bit string BIT '0xx1' will compare as equal to
BIT '0111' or BIT '0101' or BIT '0011' or BIT '0001'. In other words, it
will compare as equal with any string of four bits that has 0 in the left-
most bit and 1 in the right-most bit. It will not compare as equal if the
left-most bit is 1 or the right-most bit is 0. The bits you "don't care" about
will be ignored in the comparison.

If you compare a value to a bit string that is shorter than the value, TPL
TABLES will assume that you don't care about the bits at the left end. For
example, if you compare a 4-bit value to the string BIT '11', the result will
be the same as if you had specified BIT 'xx11'.

Restrictions

The following is a summary of the restrictions and other rules which gov-
ern the behavior of the Conditional Post Compute.

1. Only observation variables can be referenced.

2. No further testing is done after the first condition is satisfied.

	 Post Compute 195

3. An IF condition test must always have a replacement expression to the
left of the "IF". The following is invalid, because there is no replace-
ment expression specified to the left of "IF R < 1.5;".

POST	COMPUTE	INVALID	=
	 1	 IF		Y	>	3;
	 	 IF		R	<	1.5;
	 2	 IF		OTHER;

4. If OTHER is used, it must be the last condition.

5. If a computation error (divide by zero, etc.) occurs in evaluation of a
condition, no value will be post computed. All affected tables cells
will be footnoted with an error message. If there is a computation er-
ror to the left of the "IF", all cells that fit the corresponding condition
will be footnoted with an error message.

6. If conditionally computed values are used in percent calculations,
footnotes or other aspects of masks associated with those values will be
ignored. The mask for the percent variable will determine the format
for the cell value.

 One exception to this rule occurs if a conditionally computed value has
a built-in footnote for a missing value or a computation error. In that
case, the missing (EMPTY) or error footnote will be displayed in the
percent cell.

 Another exception occurs if the numerator for a percent cell is con-
ditionally computed to have a mask with only a footnote. Then no
percent will be calculated for that cell and the footnote symbol will be
displayed instead.

7. Variables can be tested for null values, but if a null-valued variable is
tested for a value other than null, the test will fail. For example, the
test: x > 0 will fail if the value of x is NULL.

8. If no condition is satisfied, the new variable is set to zero.

	 Percent 196

C h a p t e r 1 2

Percent

CALCuLATing PerCenTS frOm TABuLATed
vALueS

Introduction

The percent features in TPL TABLES allow nearly complete flexibility in
calculating and displaying percents in tables. You may specify whether
only percents or both original cell values and percents are to be displayed.

In specifying percent calculations to be performed on a table, it is neces-
sary to specify both where the percents should appear and what the base
(i.e. denominator) of each percent calculation should be.

For any percent calculation, a PERCENT statement is required to create a
percent variable to be referenced in a TABLE statement. We can specify
a variety of percent calculations for a table through a combination of a
percent variable and the use of that variable surrounded by the symbols
"<" and ">" to indicate where the base cells are located. When a percent
variable is surrounded by these symbols, it is called a base marker. Al-
ternately, instead of using a base marker, we can specify the location of the
bases in the PERCENT statement itself or at the beginning of the TABLE
statement.

	 Percent 197

Percent Variables

A percent variable is created by the PERCENT statement. The general
form of the PERCENT statement is:

Format PERCENT	variable-name		['print	 label']		 [USING	[MASK]	mask]
	 [percent-location]		[base-location]		;

[percent-conditions]

The optional percent-location is:

WHERE	 [=]	 STUB	 (Default)
	 [IS]	 WAFER

	 	 HEAD		(or HEADING)

The optional base-location is:

BASE	 [=]	 [FIRST]	 ROW
	 [IS]	 	 COLUMN		 (Default)
	 	 	 CELL

The format for the optional percent-conditions is:

[['print	 label']	[mask]	:	VALUE	;]
[['print	 label']	[mask]	:	PERCENT;]

The two percent-conditions can appear in either order. The percent condi-
tion can appear alone. If a mask is attached to a percent condition, it will
override the mask associated with the percent variable.

Percent conditions are similar to conditions in other types of statements
such as DEFINES, although there can be at most two of them. When both
conditions are present for a percent variable referenced in a TABLE state-
ment, there will be both original values and percents in the table.

Examples An example of the most simple kind of PERCENT statement is:

PERCENT PCT;

An example of a PERCENT statement using all of the options is:

PERCENT	PCT	"Percent"	MASK	999%
WHERE	=	STUB
BASE	=	FIRST	ROW;
"Percents"	MASK	999.99%	:	PERCENT;
"Counts"	MASK	99,999	:	VALUE;

	 Percent 198

The following simple table will be used as the basis for many examples
throughout this chapter to illustrate how percent variables can be used in
tables.

TABLE	P_1:	 AGE,	
	 	 REGION;

P 1

U.S North South

All Ages 2,000 1,200 800
Under 21 600 400 200
21 and Over 1,400 800 600

Tables without Percent Markers

Percent base markers are used to specify which cells are to be used as
bases. For simple cases, base markers are not necessary since the base
locations can be specified within the percent statement itself. We will first
look at some of these simple cases before moving on to tables requiring
base markers.

Consider the following simple PERCENT and TABLE statements:

PERCENT	P2	""
	 WHERE	=	HEAD	
	 BASE	=	FIRST	COLUMN;

TABLE	P_2	PERCENT	P2:
	 AGE,
	 REGION;

P 2

U.S North South

All Ages 100 60 40
Under 21 100 67 33
21 and Over 100 57 43

	 Percent 199

The percent variable name is included in the title line of the TABLE state-
ment which turns the table into a table of percents. When a percent is used
in the title line of a TABLE statement, the PERCENT statement usually
include both a WHERE clause and BASE clause though the defaults may
be relied on.

The PERCENT statement specifies that the BASE should be the first
column so the values in this column are used as the denominators for the
percent calculations. Since the percent variable does not have a label or
conditions, WHERE=STUB would produce an identical table.

Note Format statements were used to shade the base cells to make the discussion
easier. They have also been used to underline other cells. They are not
required.

A percent cell is calculated by dividing its numerator by its base cell and
then multiplying by 100. The numerator is the value the cell would have if
the table did not have percent variables. For most tables the base for a cell
is the nearest base cell which comes before or matches the percent cell.

Consider the underlined cell. From the previous table P_1 we know that
the numerator for this cell should be 400. The base for this cell is the
value that is in the first column of this row since this is the nearest base
cell. Again from our previous table we see this is 600. So our percent cell
is (400 / 600) * 100 = 67. Note that base cells which are also percent cells
are always 100 percent since they are their own base cells.

If we change our PERCENT statement slightly so the bases are the first
row we get:

PERCENT	P3	""	
		WHERE	=	HEAD
		BASE	=	FIRST	ROW;

TABLE	P_3	PERCENT	P3:
AGE,
REGION;

P 3

U.S North South

All Ages 100 100 100
Under 21 30 33 25
21 and Over 70 67 75

	 Percent 200

Now suppose we want a table with both values and percents. To do this
we use percent conditions:

PERCENT	P4	""	
		WHERE	=	HEAD
			BASE	=	FIRST	COLUMN;
"Value":	VALUE;
"Percent":	PERCENT;

TABLE	P_4		PERCENT	P4:
AGE,
REGION;

P 4

U.S North South

Value Percent Value Percent Value Percent

All Ages 2,000 100 1,200 60 800 40
Under 21 600 100 400 67 200 33
21 and Over 1,400 100 800 57 600 43

If we reversed the order of the conditions in the PERCENT statement, the
percents would come first in the table.

The base for the underlined cell is 600, the first cell in its row. The
numerator for the cell is 400, the same as the number from its associated
value cell.

If we modify our PERCENT statement so the percent variable is in the
stub we get:

PERCENT	P5	""	
		WHERE	=	STUB	
		BASE	=	FIRST	COLUMN;
"Value":	VALUE;
"Percent":	PERCENT;

	 Percent 201

TABLE	P_5		PERCENT	P5:
AGE,
REGION;

P 5

U.S North South

All Ages
Value 2000 1,200 800
Percent 100 60 40

Under 21
Value 600 400 200
Percent 100 67 33

21 and Over
Value 1,400 800 600
Percent 100 57 43

Since the percent variable is in the stub, the values and percents are in
alternating rows. The underlined 2000 is a cell which is a base but does
not apply to any percent since there is no percent cell in its row. There is
nothing wrong with this. In many cases we will not shade unused bases.
The base for the underlined 100 is itself.

The next table shows what we get when the percent base is a single cell:

PERCENT	P6	""	
	 WHERE	=	HEAD	
			 BASE	=	FIRST	CELL;
"Value":	VALUE;
"Percent":	PERCENT;

TABLE	P_6		PERCENT	P6:
AGE,
REGION;

P 6

U.S North South

Value Percent Value Percent Value Percent

All Ages 2,000 100 1,200 60 800 40
Under 21 600 30 400 20 200 10
21 and Over 1,400 70 800 40 600 30

	 Percent 202

Percents in Parts of Tables

Placing a percent variable in the title line of a table statement will result
in an entire table of percents or alternating values and percents. In some
cases we wish to have percents in only part of a table. We can do this by
nesting a percent variable in the wafer, stub, or header of a table and using
a base specification in the title line of the table.

PERCENT	P7	""	mask	right	99	%	
		WHERE	=	HEAD	
		BASE	=	FIRST	ROW;

TABLE	P_7		PERCENT	BASE	FIRST	COLUMN:
AGE	THEN	P7	BY	TOTAL,	
REGION;

P 7

U.S North South

All Ages 2,000 1,200 800
Under 21 600 400 200
21 and Over 1,400 800 600
Total 100% 60% 40%

When a percent is used in a table, the WHERE and BASE clauses are dis-
carded. Percent conditions, if they exist, are retained. All cells nested with
the percent variable are percent cells. The base cells are determined by the
base specification in the table title line.

A mask with % has been added to the PERCENT statement for clarity.

In the next table we place the percents in the last column. Note that the
bases are now in the first row. If we left them as the first column, then all
of the percents would have 100%.

PERCENT	P8	""	mask	right	99	%	;

TABLE	P_8		PERCENT	BASE	FIRST	ROW;
	 AGE,
	 REGION	THEN	P8	BY	TOTAL;

	 Percent 203

P 8

U.S North South Total

All Ages 2,000 1,200 800 100%
Under 21 600 400 200 30
21 and Over 1,400 800 600 70

It is possible in TPL to combine these tables to produce a table with both a
row and column of percents as shown below. But this table requires use of
both percent markers and multiple percents so we will delay discussing it
until later.

P 9

U.S North South Total

All Ages 2,000 1,200 800 100%
Under 21 600 400 200 30
21 and Over 1,400 800 600 70
Total 100% 60% 40% –

Base Markers

Using percents and base markers in the wafer, stub and header of a table
provides more flexibility than just placing specifications in the title line.
Unfortunately, it is also more complicated. We will begin by reproducing
some of the tables we produced earlier and then move on to more compli-
cated tables.

 Consider first the following simple PERCENT statement which defines a
percent variable called P:

	PERCENT	P;

This percent variable can be used in a TABLE statement along with a cor-
responding percent marker <P> to specify percent calculations.

Suppose we wish to specify a table of all percents using the first column
(in this case, U.S.) as the base for the percents. In other words, we want to
see regional percentages for each age group. We could specify:

	 Percent 204

TABLE		P_10:	 AGE,	
	 	 P	BY	<P>REGION;

P 10

P

U.S North South

All Ages 100 60 40
Under 21 100 67 33
21 and Over 100 57 43

This is the same table as P_2 except that the percent variable P does not
have a blank label so P is shown. In this table specification, the percent
variable P is nested with all cells in the table; thus all cells in the table
contain percents. The variable P could have been nested with the stub
expression or used in the wafer expression to indicate that the entire table
contains percents. The percent marker <P> associated with the percent
variable P appears directly in front of the variable REGION in the head-
ing expression. This means that the first element of REGION is the base
for the percent calculations. The first element of REGION describes the
column of values under U.S. in the table. Each cell value for U.S. is the
base for the percents in its row.

Now, suppose that we wish to specify the same table with all percents
using the first row of the table as the base. In other words, we want age
group percentages for each region category. We could specify:

TABLE		P_11:
	 P	BY	<P>AGE,
	 REGION;

P 11

U.S North South

P
All Ages 100 100 100
Under 21 30 33 25
21 and Over 70 67 75

This is the same table as P_3 except that the percent variable P does not
have a blank label so P is shown. As in TABLE P_10, the percent variable
P is nested with all cells of the table so that all cells contain percents. In
TABLE P_11, however, the percent marker <P> precedes the variable AGE
in the stub to indicate that the first element of AGE defines the bases. The

	 Percent 205

first element of AGE describes the row of values to the right of "All Ages"
in the table. Each cell value for "All Ages" is the base for the percents in
its column.

Use of Base Markers

The general rule regarding percent bases is that they are always applied
from left to right, from top to bottom, or from front to back (i.e. through
wafers) within a table. If you want to show the base in the rightmost col-
umn or bottom row, the base may be duplicated and the first base deleted
using a DELETE statement in a FORMAT request.

Before proceeding with further examples, we consider more fully how the
base marker works. A base marker associated with a particular percent
variable is written as the name of the percent variable enclosed in "pointed
brackets". For example, the marker associated with the percent variable
P was written as <P>. For a percent variable named PER, the marker
would be <PER>; for a percent variable named PCT, the marker would be
<PCT>.

A base marker applies to the expression directly following it in a TABLE
statement. If the base marker applies to an expression containing more
than one variable, then parentheses must surround the expression to show
the scope of the base marker's application. An example is:

TABLE	P_12:	 <P>(TOTAL	THEN	INDUSTRIES),
	 	 P	BY	REGION;

P 12

P

U.S North South

Total 100 100 100
White colar 45 46 44
Blue colar 55 54 56

Parentheses are required in the above TABLE statement to show that the
base marker applies to the entire stub expression. All cells of the table will
be percents since P is nested into the heading expression.

	 Percent 206

A base marker indicates that the first element of the "marked" expression
will determine the bases for all percents in all cells nested with its associ-
ated percent variable. For example, in

TABLE	P_13:	 P	BY	<P>AGE,
		 	 REGION;

P 13

U.S North South

P
All Ages 100 100 100
Under 21 30 33 25
21 and Over 70 67 75

the cells associated with the first element of AGE, "All Ages", are the bases
for the table of percents. In the next TABLE statement the percent variable
is nested only with SEX. The result is that the first element of AGE will
serve as the bases for SEX but not REGION since REGION is not within
the scope of the percent variable. In this way we can get tables of num-
bers and percents.

TABLE	P_14:	 <P>	AGE,	
	 	 REGION	THEN	P	BY	SEX;

P 14

U.S North South
P

Both sexes Male Female

All Ages 2,000 1,200 800 100 100 100
Under 21 600 400 200 30 33 27
21 and Over 1,400 800 600 70 67 73

This table could also be specified as:

Table	P_14		PERCENT	BASE	FIRST	ROW:
	 AGE,
	 REGION	THEN	P	BY	SEX;

	 Percent 207

We will now examine more tables which are similar to the first examples
but show additional possibilities. In the following table of three variables
we will first consider how the placement of the base marker in a table stub
affects the types of percents we will get.

TABLE	P_15:	 AGE	BY	SEX,	
	 	 REGION;

P 15

U.S North South

All Ages
Both sexes 2,000 1,200 800
Male 900 550 350
Female 1,100 650 450

Under 21
Both sexes 600 400 200
Male 300 150 150
Female 300 250 50

21 and Over
Both sexes 1,400 800 600
Male 600 400 200
Female 800 400 400

With TABLE P_16, we give another illustration of percents calculated with
the first row of the table used as the base:

TABLE	P_16:	 P	BY	<P>(AGE	BY	SEX),
	 	 REGION;

P 16

U.S North South

P
All Ages

Both sexes 100 100 100
Male 45 46 44
Female 55 54 56

Under 21
Both sexes 30 33 25
Male 15 12 19
Female 15 21 6

21 and Over
Both sexes 70 67 75
Male 30 33 25
Female 40 33 50

	 Percent 208

In this example, the placement of the percent marker in front of the expres-
sion (AGE BY SEX) specifies that the first element of (AGE BY SEX) will
determine the base cells. The first element is "All Ages"-"Both Sexes", or,
in other words, the first element of Age and the first element of Sex. All
cells nested with this element are base cells. This includes each category
of REGION.

The effect of removing the parentheses from the stub expression is to get
the percent of each sex category within each age group as shown in the
next table.

TABLE	P_17:	 P	BY	<P>AGE	BY	SEX,
	 	 REGION;

P 17

U.S North South

P
All Ages

Both sexes 100 100 100
Male 100 100 100
Female 100 100 100

Under 21
Both sexes 30 33 25
Male 33 27 43
Female 27 38 11

21 and Over
Both sexes 70 67 75
Male 67 73 57
Female 73 62 89

In TABLE P_17 the percent marker <P> precedes the variable AGE. Thus
the first element of AGE determines the location of the bases for the per-
cent calculations. Since all cells nested with the first category of AGE are
also base cells, the first element of AGE, "All Ages", applies to all cells
in the first three rows of the table. The values in the "All Ages" category
are the set of bases for the corresponding values of "Under 21", and "21
and Over". For example, females 21 and over represent 62 percent of all
females in the North region, and males under 21 represent 43 percent of all
males in the South.

This is the first table which requires percent base markers. It is also rather
confusing. Earlier we stated that "For most tables the base for a cell is
the nearest base cell which comes before or matches the percent cell."
This is a table for which this is not true. The underlined 100 is the base

	 Percent 209

for the other underlined cells even though it is not the nearest base to them.
It would be better to rearrange the table:

TABLE	P_18:	 P	BY	SEX	BY	<P>AGE,
	 	 REGION;

P 18

U.S North South

P
Both sexes

All Ages 100 100 100
Under 21 30 33 25
21 and Over 70 67 75

Male
All Ages 100 100 100
Under 21 33 27 43
21 and Over 67 73 57

Female
All Ages 100 100 100
Under 21 27 38 11
21 and Over 73 62 89

The first condition of AGE is "All Ages". Each "All Ages" cell is a base.
This includes the cells for each category of REGION and each category of
SEX. The percent variable is nested into the stub expression, so the entire
table will be percents.

As with the previous table, the underlined 100 is the base for the other
underlined cells. But now the base and its related percents are near each
other.

Nesting Percent Markers

It is possible to nest percent markers for a given percent variable to further
restrict the number of base cells. For example, if we wished to specify a
table of percents where all percents were calculated using the first cell of
the table, we would specify:

TABLE	P_19:	 P	BY	<P>AGE,	
	 	 <P>REGION;

	 Percent 210

P 19

Region

North South

P
All Ages 100 67
Under 21 33 17
21 and Over 67 50

In this case, we say that the bases are determined by the first element of
Age, "All Ages", and the first element of Region, "U.S.". Since only one
cell of the table is "All Ages"-"U.S.", i.e., the upper left-hand cell of the
table, all cells of the table will be divided by this cell's value in calculating
percents.

Tables of Original Values and Percents

So far we have emphasized tables in which only percents were shown or
tables in which there are alternating rows or columns of numbers and per-
cents. However, it is often the case that we would like to see some or all
of the original values as well as the percents in more varied arrangements.
For example we might like to see the original values of only the base
cells along with the percents. All such possibilities can be accommodated
through the use of the usual table operations. For a simple example of a
table with both original values and percents, we can specify TABLE P_20
to display alternating columns of original values and percents as follows:

TABLE		P_20:	 AGE,
	 <P>REGION	BY	(TOTAL	THEN	P);

This table could also be written using percent conditions as:

PERCENT		PC;
	 "Total"	:	VALUE;
	 "P"	:	PERCENT;

TABLE	P_20:	AGE:	
	 AGE,
	 <PC>REGION	BY	PC;

	 Percent 211

As before, the first element of Region will determine the bases, but only
the cells nested with the percent variable P will contain percents. These
include the cells formed by P, REGION, and AGE.

P 20

U.S North South

Total P Total P Total P

All Ages 2,000 100 1,200 60 800 40
Under 21 600 100 400 67 200 33
21 and Over 1,400 100 800 57 600 43

We could specify a block of original values followed by a block of per-
cents as follows:

	TABLE	P_21:		AGE,
	 	 (TOTAL	THEN	P)	BY	<P>REGION;

Alternately we could write this as:

TABLE	P_21:	 AGE,
	 	 PC	BY	<PC>REGION;

P 21

Total P

U.S North South U.S North South

All Ages 2,000 1,200 800 100 60 40
Under 21 600 400 200 100 67 33
21 and Over 1,400 800 600 100 57 43

Or, suppose we wish to show original values for only the bases.

					TABLE	P_22:	 AGE,
	 	 	 TOTAL	THEN	P	BY	<P>REGION;

P 22

Total
P

U.S North South

All Ages 2,000 100 60 40
Under 21 600 100 67 33
21 and Over 1,400 100 57 43

	 Percent 212

Perhaps Region has only the values "North" and "South", but we wish to
duplicate the results of the preceding table. We could then specify:

TABLE	P_23:	 AGE,
	 	 TOTAL	THEN	P	BY	<P>(TOTAL	THEN	REGION);

According to this specification, the first element of (TOTAL THEN
REGION) will determine the bases for the percents. Since the first element
is TOTAL, we will have exactly the same result as in the preceding table
(only with slightly different labels in the heading):

P 23

Total

P

Total
Region

North South

All Ages 2,000 100 60 40
Under 21 600 100 67 33
21 and Over 1,400 100 57 43

Using Percents with Different Observation Variables

It is important to examine more closely how the percent variable works.
The percent variable initially represents values that form the numerator
for calculating the percentages. These numerator values are then replaced
with the actual percentage. If the percent variable P is not nested with
an observation variable, the numerator for calculating percents will be
frequency counts. If the percent variable has conditions, the VALUE will
just be a count and the numerator of the PERCENT will also be a count.

To illustrate these points, we go back to the table P1 from the beginning of
the chapter. Assume for this example that each record in the data rep-
resents one family. There are no percents in table P1. It simply counts
the number of families according to region and the age of the head of the
household.

	 Percent 213

P 1

U.S North South

All Ages 2,000 1,200 800
Under 21 600 400 200
21 and Over 1,400 800 600

Now assume also that each family record has a variable called PERSONS
that contains the number of persons in the family. If we wish to see the
number and percent of persons in each region, then we might accidentally
specify it as follows:

PERCENT	P	'Percent'	USING	MASK	999.9%;

TABLE	P_24		 'P_24	-	Wrong	Usage	of	Percent':	
	 AGE	BY	<P>(PERSONS	THEN	P),
	 <P>REGION;

P 24 - Wrong usage of percent

U.S. North South

All Ages
Persons 5,250 3,300 1,950
Percent 38.1% 22.9% 15.2%

Under 21
Persons 2,450 1,700 750
Percent 24.5% 16.3% 8.2%

21 and Over
Persons 2,800 1,600 1,200
Percent 50.0% 28.6% 21.4%

The use of the two base markers in the TABLE statement identifies the
percent base as PERSONS within each category of AGE for the U.S.
category of REGION. Since P is nested (crossed) with only the control
variable AGE, the numerators for the percents will be family frequency
counts which appear in table P1 above. These numerators will be replaced
by percents calculated using PERSONS as the base. Thus, the percents are
based on the ratio of family frequency counts to PERSONS aggregations.
The results are not what we intended.

For example, the top left underlined "percent" is 2000 families/5250 per-
sons*100 = 38.1 when we actually intended it to be 5250 persons/5250
persons = 100%. The bottom right underlined "percent" is 600 fami-
lies/2800 persons = 21.4 when we actually intended it to be 1200 per-
sons/2800 persons = 42.9%.

	 Percent 214

We could try:

PERCENT	P25	"";
	 "Value"	MASK	99:	VALUE;
	 "Percent"	MASK	999.9%	:	PERCENT;

TABLE	P_25	:	
		 	AGE	by	P25,
	 		<P25>REGION;

P 25

U.S. North South

All Ages
Value 23 12 11
Percent 100.0% 52.2% 47.8%

Under 21
Value 15 8 7
Percent 100.0% 53.3% 46.7%

21 and Over
Value 8 4 4
Percent 100.0% 50.0% 50.0%

This is a valid table but it shows FAMILY percents rather than PERSONS
percents. Changing the label "Value" to "Persons" would not change the
numbers.

If we wish to see percents of persons in each region, then PERSONS must
be nested with P to make PERSONS the numerator for the percents as well
as the denominator. This may be done by either adding PERSONS to the
wafer expression, nesting PERSONS into the heading expression, or by
writing the stub expression as follows:

TABLE	P_26:	 AGE	BY	PERSONS	BY	<P>(TOTAL	THEN	P),
	 	 <P>	REGION;

	 Percent 215

P 26

U.S. North South

All Ages
Persons

Total 5,250 3,300 1,950
Percent 100.0% 62.9% 37.1%

Under 21
Persons

Total 2,450 1,700 750
Percent 100.0% 69.4% 30.6%

21 and Over
Persons

Total 2,800 1,600 1,200
Percent 100.0% 57.1% 42.9%

We can actually produce a table with both FAMILY and PERSONS pre-
cents with the following:

PERCENT	P27	"":
	 ""	mask	9,999	:	VALUE;
	 "Percent"	mask	999.9%	:	PERCENT;

TABLE	P_27:
	 AGE_GP	BY	PERSONS	BY	P27	THEN	
	 AGE_GP	BY	FAMILY	BY	P27,
	 <P27>REGION;

P 27

U.S. North South

All Ages
Persons 5250 3300 1950
Percent 100.0% 62.9% 37.1%

Under 21
Persons 2450 1700 750
Percent 100.0% 69.4% 30.6%

21 and Over
Persons 2800 1600 1200
Percent 100.0% 57.1% 42.9%

All Ages
Families 23 12 11
Percent 100.0% 52.2% 47.8%

Under 21
Families 15 8 7
Percent 100.0% 53.3% 46.7%

21 and Over
Families 8 4 4
Percent 100.0% 50.0% 50.0%

	 Percent 216

No label was assigned to VALUE in the PERCENT statement so it would
get its label from the variable nested above. This enabled the same percent
to be used for both PERSONS and FAMILY. To make the table look more
natural, format statements were added to line up PERSONS, PERCENT,
and FAMILY. These involved making the stub indent smaller and adding
indents to the start of PERSONS and FAMILY.

Multiple Percent Variables within a Table

It is also possible to specify more than one type of percent distribution
within the same table through the use of more than one percent variable.
To combine the percent calculations of tables P2 and P3 (first column as
base; first row as base), we could create two percent variables:

PERCENT	P_ACROSS;
PERCENT	P_DOWN;

The following TABLE statement would produce the desired results:

TABLE	P_28:
	 <P_DOWN>AGE,
	 (P_ACROSS	THEN	P_DOWN)	BY	<P_ACROSS>REGION;

P 28

P ACROSS P DOWN

U.S North South U.S North South

All Ages 100 60 40 100 100 100
Under 21 100 67 33 30 33 25
21 and Over 100 57 43 70 67 75

Here, the first element of AGE determines the base for all cells nested with
P_DOWN; the first element of REGION determines the base for all cells
nested with P_ACROSS. It is important to note that a base marker for one
percent variable will have no effect on the cells within the scope of a dif-
ferent percent. We have emphasized this by using different shading for the
different bases.

	 Percent 217

The next table is the one we showed earlier with the last row and columns
being percents. The table is produced from the following:

PERCENT	P1	""	MASK	RIGHT	999%;
PERCENT	P2	""	MASK	RIGHT	999%;

TABLE	P_29:
	 <P1>(AGE	THEN	P2	BY	TOTAL),
	 <P2>(REGION	THEN	P1	BY	TOTAL);

P 29

U.S North South Total

All Ages 2,000 1,200 800 100%
Under 21 600 400 200 30
21 and Over 1,400 800 600 70
Total 100% 60% 40% –

This table has percents in two different dimensions. This results in the
informational warning:

*** WARNING: Percent variables occur in more than one dimension.
All cells in their intersection will be set to null.

Treatment of Masks in Percents

In general, the mask associated with the percent variable will determine the
format for the cell value. Footnotes and other aspects of masks associated
with the numerator and denominator will be ignored.

If the numerator value for a percent cell has a mask with no 9's, in other
words, a mask with only a footnote reference and/or a character string, then
no percent will be calculated for that cell and the footnote reference and/
or character string will be displayed instead. The only exception to this
rule is when either the numerator or the denominator carries the built-in
footnote called ERROR. In this case, the ERROR footnote symbol will be
displayed.

	 Percent 218

Summary of Rules for Producing Percents

• Bases for percentages are derived from top to bottom, from left to
right, and from front to back through wafers within a table.

• All cells that are nested with a percent variable or percent condition
are percent cells. If the percent variable is not nested with an observa-
tion variable, the numerator for calculating percents will be frequency
counts.

• The set of bases for these percent cells includes every cell that is
nested with the first element that the markers apply to.

• The bases for percents remain in the table unless removed by FOR-
MAT statements.

Checking for Percent Errors in Post Translator

Some error messages related to percents are displayed in the Post Transla-
tor (POSTRANS) or Sisyphus portions of the output listing and not by
the TPL Translator (TRANSLATOR). This means that although the TPL
Translator may indicate that no errors were detected and a reasonable table
layout is produced, the messages produced by Post Translator and Sisyphus
will still have to be examined. For example, messages related to missing
base markers will be produced by Post Translator. Sisyphus will produce
messages warning of missing or zero percent bases.

	 Percent Change 219

C h a p t e r 1 3

Percent Change

Creating Table Requests with Percent Change or
Numeric Change

The Percent Change and Numeric Change statements create new observa-
tion variables which can be used in tables statements. Specification of the
statements requires 2 On variables, an observation variable and a control
variable. The changes that appear in the table are the change in the On
Observation value that occur when you move from one condition of the On
Control variable to the next.

Format 	 PERCENT	CHANGE	new-variable-name	['variable-label'][mask]	ON	
control-var	AND	obs-var	;

NUMERIC	CHANGE	new-variable-name	['variable-label'][mask]	ON	
control-var	AND	obs-var	;

How Percent Change is Calculated

If the change variable appears in a table statement but is not in the same
cross tabulation (See Cross Tabulation in the Tables chapter) as its on con-
trol variable, cells in the cross tabulation will just get the values they would
get if the change variable were replaced by the on observation variable.

If a cross tabulation contains both a percent change variable and its on con-
trol variable, cells nested below the first condition of the control variable
will get a -. Other cells will get a value calculated by the formula

cell-valuen	=	100	*	((vn-	vn-1)	/ vn-1)
where

vn	 is	the	cell-value	which	would	occur	as	the nth	condition	of	the	
control	variable	if	the	on	observation	variable	had	been	used	in-
stead	of	the	change	variable.

	 Percent Change 220

If Numeric Change is used instead, the cells will get a value calculated by
the formula:

cell-value
n
 = v

n
 - v

n-1

Examples

We begin with a simple table request based on hospital data.

Define	FILTERED_YEAR	on	YEAR;
"1985"	if	"85";

Define	WHY	on	PROBLEM;
"Not	yet	Classified"		 	 if	"000";
"Brain	&	Nervous	System"		 if	"001":	"035";
"Respiratory	System"		 	 if	"076":	"102";
"Heart	&	Circulatory	System"		 if	"103":	"145";

Table	TABLE_1:
Stub	FILTERED_YEAR	by	MONTH;
Head	WHY;

TABLE 1

Not yet
Classified

Brain &
Nervous
System

Respiratory
System

Heart &
Circulatory

System

1985
JANURARY 1 39 66 90
FEBRUARY 3 28 89 87
MARCH 4 31 65 79
APRIL 5 32 49 69
MAY 8 29 30 64
JUNE 2 21 33 68
JULY – 25 22 59
AUGUST 2 18 16 63
SEPTEMBER 2 21 29 63
OCTOBER 4 17 27 58
NOVEMBER 4 18 34 64
DECEMBER 21 23 39 60

– Data not available.

	 Percent Change 221

We now add a Percent Change statement to our table request. Note that
Count is used as the observation since there is no observation in the re-
quest.

Percent	Change	PCH	"Monthly	Change"	Mask	99.99%	center	
on	COUNT	and	MONTH;

Table	Table_2:
Stub	FILTERED_YEAR	by	MONTH;
Head	PCH	by	WHY;

TABLE 2

Monthly Change

Not yet
Classified

Brain &
Nervous
System

Respiratory
System

Heart &
Circulatory

System

1985
JANURARY – – – –
FEBRUARY 200.00% -28.21% 34.85% -3.33%
MARCH 33.33 10.71 -26.97 -9.20
APRIL 25.00 3.23 -24.62 -12.66
MAY 60.00 -9.38 -38.78 -7.25
JUNE -75.00 -27.59 10.00 6.25
JULY – 19.05 -33.33 -13.24
AUGUST – -28.00 -27.27 6.78
SEPTEMBER 0.00 16.67 81.25 0.00
OCTOBER 100.00 -19.05 -6.90 -7.94
NOVEMBER 0.00 5.88 25.93 10.34
DECEMBER 425.00 27.78 14.71 -6.25

– Data not available.

Notice that the first row is all dashed because there is no previous month.
Also note that July and August of the first column are dashed. July is be-
cause July is also dashed in the based-on table. August is dashed because
the calculation of the August value involves dividing by the July value
which is zero. If Numeric Change were used instead of Percent Change,
July would still be dashed since it is zero but August would have a value.

Combining the two tables we get.

Table	TABLE_3:
Stub	FILTERED_YEAR	by	(MONTH);
Head	WHY	by	(COUNT	then	PCH);

	 Percent Change 222

TABLE 3

Not yet Classified Brain & Nervous
System Respiratory System Heart & Circulatory

System

Count Monthly
Change Count Monthly

Change Count Monthly
Change Count Monthly

Change

1985
JANURARY 1 – 39 – 66 – 90 –
FEBRUARY 3 200.00% 28 -28.21% 89 34.85% 87 -3.33%
MARCH 4 33.33 31 10.71 65 -26.97 79 -9.20
APRIL 5 25.00 32 3.23 49 -24.62 69 -12.66
MAY 8 60.00 29 -9.38 30 -38.78 64 -7.25
JUNE 2 -75.00 21 -27.59 33 10.00 68 6.25
JULY – – 25 19.05 22 -33.33 59 -13.24
AUGUST 2 – 18 -28.00 16 -27.27 63 6.78
SEPTEMBER 2 0.00 21 16.67 29 81.25 63 0.00
OCTOBER 4 100.00 17 -19.05 27 -6.90 58 -7.94
NOVEMBER 4 0.00 18 5.88 34 25.93 64 10.34
DECEMBER 21 425.00 23 27.78 39 14.71 60 -6.25

– Data not available.

If we replace our Percent Change statement with a Numeric Change state-
ment we get:

Numeric	Change	NCH	"Numeric	Monthly	Change"	mask	99	center;

Table	TABLE_4:
Stub	FILTERED_YEAR	by	(MONTH);
Head	WHY	by	(COUNT	then	NCH);

TABLE 4

Not yet Classified Brain & Nervous
System Respiratory System Heart & Circulatory

System

Count
Numeric
Monthly
Change

Count
Numeric
Monthly
Change

Count
Numeric
Monthly
Change

Count
Numeric
Monthly
Change

1985
JANURARY 1 – 39 – 66 – 90 –
FEBRUARY 3 2 28 -11 89 23 87 -3
MARCH 4 1 31 3 65 -24 79 -8
APRIL 5 1 32 1 49 -16 69 -10
MAY 8 3 29 -3 30 -19 64 -5
JUNE 2 -6 21 -8 33 3 68 4
JULY – – 25 4 22 -11 59 -9
AUGUST 2 2 18 -7 16 -6 63 4
SEPTEMBER 2 0 21 3 29 13 63 0
OCTOBER 4 2 17 -4 27 -2 58 -5
NOVEMBER 4 0 18 1 34 7 64 6
DECEMBER 21 17 23 5 39 5 60 -4

– Data not available.

	 Percent Change 223

Suppose we want to create a table with percent changes that spans years.
The Percent Change statement can only take one control variable so we
must combine the years and months into a single control variable. If
Month and Year are separate fields, the easy way to do this is with a Define
on multiple variables.

Define	YEAR_MONTH;
"1984"	/
"		September"	if	YEAR	=	84	and	MONTH	=	'9	 ';
"		October"	if	YEAR	=	84	and	MONTH	=	10;
"		November"	if	YEAR	=	84	and	MONTH	=	11;
"		December"	if	YEAR	=	84	and	MONTH	=	12;
"1985"	/	
"		January"	if	YEAR	=	85	and	MONTH	=	'1	 ';
"		February"	if	YEAR	=	85	and	MONTH	=	'2	 ';
"		March"	if	YEAR	=	85	and	MONTH	=	'3	 ';
"		April"	 if	YEAR	=	85	and	MONTH	=	'4	 ';
"		May"	if	YEAR	=	85	and	MONTH	=	'5	 ';
"		June"	if	YEAR	=	85	and	MONTH	=	'6	 ';
"		July"	if	YEAR	=	85	and	MONTH	=	'7	 ';
"		August"	 if	YEAR	=	85	and	MONTH	=	'8	 ';
"		September"	if	YEAR	=	85	and	MONTH	=	'9	 ';
"		October"	if	YEAR	=	85	and	MONTH	=		10;
"		November"	if	YEAR	=	85	and	MONTH	=	11;
"		December"	if	YEAR	=	85	and	MONTH	=	12;
"1986"	/	
"		January"	if	YEAR	=	86	and	MONTH	=	'1	 ';
"		February"	if	YEAR	=	86	and	MONTH	=	'2	 ';
"		March"	if	YEAR	=	86	and	MONTH	=	'3	 ';
"		April"	 if	YEAR	=	86	and	MONTH	=	'4	 ';
"		May"	if	YEAR	=	86	and	MONTH	=	'5	 ';
"		June"	if	YEAR	=	86	and	MONTH	=	'6	 ';
"		July"	if	YEAR	=	86	and	MONTH	=	'7	 ';
"		August"	 if	YEAR	=	86	and	MONTH	=	'8	 ';

Percent	Change	PCH	"Monthly	Change"	Mask	99.99	%	ON	
YEAR_MONTH	AND	COUNT;

Table	TABLE_1:
	 Stub	YEAR_MONTH;

Head WHY by (COUNT then PCH);

	 Percent Change 224

TABLE 5

Not yet Classified Brain & Nervous
System Respiratory System Heart & Circulatory

System

Count Monthly
Change Count Monthly

Change Count Monthly
Change Count Monthly

Change

1984
 September – – – – – – – –
 October 4 – 19 – 50 – 78 –
 November 2 -50.00% 24 26.32% 41 -18.00% 79 1.28%
 December 7 250.00 29 20.83 61 48.78 91 15.19
1985
 January 1 -85.71 39 34.48 66 8.20 90 -1.10
 February 3 200.00 28 -28.21 89 34.85 87 -3.33
 March 4 33.33 31 10.71 65 -26.97 79 -9.20
 April 5 25.00 32 3.23 49 -24.62 69 -12.66
 May 8 60.00 29 -9.38 30 -38.78 64 -7.25
 June 2 -75.00 21 -27.59 33 10.00 68 6.25
 July – – 25 19.05 22 -33.33 59 -13.24
 August 2 – 18 -28.00 16 -27.27 63 6.78
 September 2 0.00 21 16.67 29 81.25 63 0.00
 October 4 100.00 17 -19.05 27 -6.90 58 -7.94
 November 4 0.00 18 5.88 34 25.93 64 10.34
 December 21 425.00 23 27.78 39 14.71 60 -6.25
1986
 January 14 -33.33 31 34.78 68 74.36 62 3.33
 February 13 -7.14 22 -29.03 43 -36.76 65 4.84
 March 15 15.38 25 13.64 60 39.53 81 24.62
 April 10 -33.33 26 4.00 39 -35.00 88 8.64
 May 7 -30.00 21 -19.23 29 -25.64 69 -21.59
 June 8 14.29 34 61.90 24 -17.24 52 -24.64
 July 410 5025.00 – – – – – –
 August 297 -27.56 – – – – – –

– Data not available.

	 Statistics 225

C h a p t e r 1 4

Statistics

STATiSTiCAL funCTiOnS And STATemenTS

The built-in functions MAX and MIN can be entered in POST COMPUTE
statements.

The following built-in statistical functions can be used to create new vari-
ables. These variables can be referenced in POST COMPUTE and TABLE
statements.

MEDIAN
FMEDIAN - Alternate median calculation
QUANTILE
FQUANTILE - Alternate quantile calculation
MEAN
VAR - variance of sample
VARP - variance of whole population
STDEV - standard deviation of sample
STDEVP - standard deviation of whole population
STDERR - standard error of means

Note that in some cases you may wish to exclude certain values from these
calculations in order to get the desired results. For example, if you are
applying these functions to variables that have been computed by division,
you may need to screen out "divide by zero" error values using Conditional
Compute statements. If you are applying these functions to variables in
your data file and have records with data errors, you may need to eliminate
those records. For more information on this subject, see the discussion
of "Null Values" in the section on Conditional Compute in the "Compute"
chapter, the section on "Data Errors" in the "Data" chapter and the discus-
sion on "Errors in Observation Values" in the "Codebook" chapter.

	 Statistics 226

If you are applying these functions to values that are taken directly from
the data file and there are no data errors, you do not need to be concerned
with the above paragraph.

MAX

MAX is an operator which is used in POST COMPUTE statements only.
Its form is MAX(var) where the argument, var, is any single observation
variable. The observation variable may come from the codebook or from a
computed variable. The contribution of MAX(var) to the Post Compute is
the largest value of 'var' from any record which contributes to a cell.

Example Assume that we want to show the maximum family income for each region
according to sex of the head of household. We can Post Compute the
maximum value, then nest it into the table statement as follows:

POST	COMPUTE	MAX_INCOME	‘Maximum	income’	=
	 MAX(INCOME);

TABLE	Q1	‘Maximum	family	income	by	region	and	sex’:
	 HEADING		MAX_INCOME		BY		SEX;

	 	 STUB		REGION;

Each cell of the table will contain a maximum income value.

MIN

MIN is an operator which follows the same rules as MAX except that the
contribution of MIN(var) to the Post Compute for a cell is the smallest
value of var from any record which contributes to the cell.

Example Assume that we want to show the minimum family income for each region
according to sex of the head of household. We can Post Compute the
minimum value, then nest it into the table statement as follows:

POST	COMPUTE	MIN_INCOME	‘Minimum	income’	=	MIN(INCOME);

TABLE	Q2	‘Minimum	family	income	by	region	and	sex’:
	 HEADING		MIN_INCOME		BY		SEX;
	 STUB		REGION;

Each cell of the table will contain a minimum income value.

	 Statistics 227

Now assume that in some cases, the family income is not reported so that
for some families the income is zero. This would result in the minimum
value being zero for all or most of the cells. If we wish, we can eliminate
the zero values from the MIN calculation by using a conditional Compute
to create a new income variable that has only the non-zero income values.

COMPUTE	NONZERO_INCOME	=
	 INCOME	 IF	INCOME	>	0;
	 NULL	 	 IF	OTHER;

Then we can change our Post Compute of the minimum values to calculate
the minimum of the non-zero values.

POST	COMPUTE	MIN_INCOME	‘Minimum	income’	=
	 MIN(NONZERO_INCOME);

MEDIAN and FMEDIAN

The MEDIAN statement is used to find the median of an observation vari-
able. The variable generated by the statement may be used in a POST
COMPUTE statement or a TABLE statement. The FMEDIAN statement
is a variation of the Median Statement which uses a slightly different
algorithm for its calculation. FMEDIAN should only be used when you
are ranking integer values. MEDIAN may be used for integers or other
numbers. See Quantile Algorithm for a discussion of the differences in the
calculation.

The format of the statement is:

Format	 MEDIAN		new-var		['print	 label']	 USING	MASK	mask]	ON	
	 	 	 USING	 	 :
	 	 	 MASK

rank-var(isd)	[WEIGHTED	BY	weight-var];

	 FMEDIAN		new-var		['print	 label']	USING	MASK	mask]	ON	
	 	 	 USING	 	 :
	 	 	 MASK

rank-var		[WEIGHTED	BY	weight-var];

where new-var is the new observation variable generated by the statement,
rank-var is the observation variable to be ranked which may come from

	 Statistics 228

either the codebook or a COMPUTE statement, and the isd value is an in-
teger between 1 and 23 which must be specified to regulate the accuracy of
the results for median statements but must not be specified for fmedians. A
discussion of how to select an ISD value appears in the section Choosing
the ISD. A print label and mask are optional parameters for medians.

Weighted Medians

In some cases, records contain weighting factors. These records may be,
for example, records from sampling. The contribution of each such record
to the median of a rank variable should be the value of the weight-var
occurrences of the rank variable value. The clause, WEIGHTED BY
weight-var is an optional specification to allow for this type of processing.
The values of weight-var need not be integers.

For example, we might have an Industry Wage Survey file where each
establishment record contains an industry code (retail, manufacturing, etc.),
region code, an hourly rate, number of workers earning that hourly rate,
and the hours worked at that hourly rate. A request specifying two types
of medians might be as follows:

MEDIAN	MED_HR_PAY_HOUR
Median	hourly	rate	for	each	hour	worked'
		 ON	HOUR_RATE(5)	WEIGHTED	BY	HOURS_WORKED;

MEDIAN	MED_HR_PAY_WORKER
Median	hourly	pay	rate	for	each	worker'
	 ON	HOUR_RATE(5)	WEIGHTED	BY	WORKERS;

TABLE	INDUSTRY_MEDIANS:		INDUSTRY,		REGION	BY
	 (MED_HR_PAY_HOUR	THEN	MED_HR_PAY_WORKER);

In a hierarchical data file with LEVEL 0 family records and level 1 expen-
diture records, to find the median total family expenditures, the individual
expenditures for each family must be added and be available as a total
expenditure value at the family record level. Since TPL TABLES cannot
summarize lower level expenditure values to the family level, the median
family expenditure cannot be found. If each total family expenditure were
available at the family level, the next statement would be meaningful.

MEDIAN	MEDIAN_FAMILY_EXPENDITURE	ON
		 TOTAL_FAMILY_EXPENDITURE(4);

	 Statistics 229

Special care must be taken when weighting is used with hierarchical files.
In most cases, you will want the rank variable and weighting variable to be
at the same level so that weighting will apply once to a variable for each
occurrence of its hierarchical level. Therefore, to avoid confusion about
the effect of weighting, the rank variable must be at the same record level
as the weighting variable. A weighting variable or a rank variable must be
brought down to the lower level containing the other type of variable by a
COMPUTE statement before weighting is used in the MEDIAN statement.
See an explanation of the COMPUTE statement in the Hierarchical Files
chapter.

QUANTILE and FQUANTILE Statements

An FQUANTILE or QUANTILE statement is a generalization of the ME-
DIAN statement. Fquantiles should only be used when the rank variable
has integers values while the quantile statement has no such restriction.
The statement format is:

Format	 QUANTILE[S](quantity#)	new-var	['print	 label']	[USING	MASK	mask]
	 	 USING
	 	 MASK

ON	rank-var	(isd)		[WEIGHTED	BY	weight-var]

;

or

FOR	EACH	;

or

;
[label	1]	IF	quantile#1	;
. . .
. . .
[label	n]	IF	quantile#n	;

The format of an FQUANTILE is identical to that of a QUANTILE except
that no ISD is specifield

	 Statistics 230

Examples	 QUANTILE	(10)	DECILE	'Income	Decile'	ON	INCOME	(4);	 	 	
	 '1st	Decile'	 IF	1;

	 	 '2nd	Decile'	 IF	2;
	 	 '3rd	Decile'	 IF	3;
	 	 '4th	Decile'	 IF	4;
	 	 'Median'	 IF	5;
	 	 '6th	Decile'	 IF	6;
	 	 '7th	Decile'	 IF	7;
	 	 '8th	Decile'	 IF	8;
	 	 '9th	Decile'	 IF	9;

FQUANTILE	(100)	TEST_SCORES	ON	SCORE;
	 '1st	Percentile'	 IF		1;
	 '1st	Decile'	 IF	10;
	 '1st	Quartile'	 IF	25;
	 'Median'	 IF	50;

The quantity# is a positive integer which gives the number of divisions
of the quantile; e.g., a quantity# of 4 yields quartiles, a quantity# of 100
yields percentiles. The observation variable, rank-var, is the rank variable
on which the quantile is created. It may be either a codebook variable or
a computed variable. For a QUANTILE statement, the isd number is a re-
quired value between 1 and 23 which controls the accuracy of the quantile.
For an FQUANTILE statement, no isd is specified. See the section Choos-
ing the ISD for a discussion of this parameter. The weighting variable,
weight-var, is optional as in the MEDIAN statement. The print label and
mask are optional.

The quantile numbers (quantile#
1
...) are integers between 0 and quantity#.

The quantiles need not be in any special order and only those of interest
need be specified. If the quantity# is 4, a quantile# of 2 would result in a
value of the 2nd quartile (median). If the quantity# is 100, the quantile# of
2 would yield the 2nd percentile. A quantile# of 0 yields the approximate
minimum. A quantile# of quantity# yields the approximate maximum.

The new variable is the name for the one or more observation variables
created by the QUANTILE statement.

Referencing the Quantile Variable

There are two ways that the new variable may be used in a table request.

The new variable may be used in a POST COMPUTE if it has a single
quantile number, or if it is qualified by a quantile number, using the form:
new-var (quantile#), where quantile# is one of the quantile numbers ap-

	 Statistics 231

pearing in the QUANTILE statement which generates the new variable.
Suppose we have:

QUANTILE	(4)	SCORE_QUARTILE	'Score	Distribution'	ON	SCORE(7);
	 '1st	Quartile'	 IF	1;
	 '3rd	Quartile'	 IF	3;
	 'Median'	 IF	2;

POSTCOMPUTE	SECOND_TO_THIRD_SPREAD	=
	 SCORE_QUARTILE(3)	-	SCORE_QUARTILE(2);

The contribution of SCORE_QUARTILE(3) to a Post Compute for a cell
would be the third quartile score of those records which contribute to the
cell. The contribution of SCORE_QUARTILE(2) would be medians.

Note Referencing the new variable qualified by a quantile number is restricted to
quantile variables that have quantity numbers less than 256.

The new variable created by a QUANTILE statement may also be used
directly in a TABLE statement. For such use it must not have a quantile
number as a qualifier. The effect of using a variable created by a QUAN-
TILE statement in a TABLE statement is that of replacing the single
variable by the concatenation of the quantiles created in the QUANTILE
statement.

If the specification of the heading of a table is SCORE_QUARTILE BY
SEX, and SEX is a control variable, the heading will look like:

Score Distribution

1st Quantile 3rd Quantile Median

Male Female Male Female Male Female

The FOR EACH Option

As a convenience the keywords, "FOR EACH", can be used in QUANTILE
statements. The clause, "FOR EACH" is used when all quantities for a
given quantity# are to appear in a QUANTILE statement and they are to
appear in ascending order, as in:

	 Statistics 232

QUANTILE	(100)	SCORE_PERCENTILE	'Test	Scores'	ON	SCORE	(4)			
	 FOR	EACH;

This statement is equivalent to:

QUANTILE	(100)	SCORE_PERCENTILE	'Test	Scores'	ON	SCORE	(4);
	 '1'	 IF	1;
	 '2'	 IF	2;
	 	 .
 .
 .
	 '99'	 IF	99;

Choosing the ISD

Calculating the quantiles exactly can take a long time, especially for large
data files. The approach in TPL TABLES is to use a grouping technique to
calculate the quantiles. That is, the range of values are divided into a set
of intervals, the interval which contains the desired quantile is determined,
and the quantile is interpolated within that interval. The interval size
designator(ISD) is used to control the grouping intervals.

There is an upper bound on the relative error of the computation. For each
ISD number,

Maximum	Relative	Error	=
Interval	Size	/	Lower	bound	of	Interval	containing	the	quantile

The maximum possible relative error for each ISD number regardless of
the value of the quantile is given in the following table:

 ISD Maximum ISD Maximum
 Number Relative Error Number Relative Error

	 1	 100.00%	 13	 .024
	 2	 50.00	 14	 .012
	 3	 25.00	 15	 .0061
	 4	 12.50	 16	 .0031
	 5	 6.25	 17	 .0015
	 6	 3.13	 18	 .00076
	 7	 1.56	 19	 .00038
	 8	 0.78	 20	 .00019
	 9	 0.39	 21	 .000095
	 10	 0.19	 22	 .000044
	 11	 0.09	 23	 .000022

	 12	 0.048

	 Statistics 233

The smoother the distribution of rank variables and the more data, the
smaller will be the error in quantile calculations. This means that although
an ISD of 4 is chosen, most cells will probably have a percentage error of
considerably less than 12.5%. However, if a guaranteed accuracy of 12.5%
is required for all cells, then ISD=4 should be used.

The ISD establishes the interval size for grouping of the rank variable
values used in calculating the quantiles. The interval size for a given ISD
number is not fixed but varies relative to the rank variable values. The fol-
lowing table shows the actual interval sizes used for selected rank variable
values and selected ISD numbers.

Rank Variable ISD Number
 Values 1 3 4 8 21

From Up To
1 2 1 1/4 1/8 1/128 1/1048576
2 4 2 1/2 1/4 1/64 1/524288
4 8 4 1 1/2 1/32 1/262144
8 16 8 2 1 1/16 1/131072
16 32 16 4 2 1/8 1/64436
32 64 32 8 4 1/4 1/32768
64 128 64 16 8 1/2 1/16384
128 256 128 32 16 1 1/8192
256 512 256 64 32 2 1/4096
512 1024 512 128 64 4 1/2048
1024 2048 1024 256 128 8 1/1024
2048 4096 2048 512 256 16 1/512
32768 65536 23768 8192 4096 256 1/32
1048576 2097152 1048576 262144 131072 8192 1

It can be seen from the table that any rank variable value which is twice
as large as another rank variable value will be grouped within an interval
which is twice as large. Also, increasing the ISD number by 1 will halve
the interval size.

For all practical purposes, specifying an ISD number of 23 will produce
quantiles without any grouping of the rank variable values. However, for
a variety of reasons, some related to the nature of the rank variable data,

	 Statistics 234

but often related to the processing time required to produce the quantiles, it
may be desirable to group the data before calculating the quantiles.

Specifying the ISD number provides you with a flexible and convenient
way of establishing the interval size. For example, in producing quantiles
for such diverse values as the price of candy, television sets, and automo-
biles, a single quantile statement may be nested with the control variable
ITEM. For any ISD number the interval size for the price of candy will be
small and for automobiles will be large. The appropriate intervals should
be determined by someone who is familiar with the nature of the data be-
ing processed.

Processing Time and the ISD

Quantile calculations on moderate to large datasets may take a long time.
The conditions which contribute to a long processing time are:

• a large number of table cells in a run which will have
medians or quantiles;

• a high ISD number;

• the field values on which quantile computations are
to be done are not clustered and are distributed over a
large range;

• limited memory.

If you would like to reduce the processing time for calculating quantiles,
try one or more of the following:

1. Use as few distinct QUANTILE statements as possible in a run. For
example, it will usually be faster to get three quantiles from a single
quantile statement than to get two quantiles from separate statements.

2. Use the lowest ISD number you can. A value of 4 should be reason-
able for moderate to large datasets.

3. Use Conditional Computes to clump rank variable values which are not
likely to be quantile results. Suppose your run consists of a median
based on a rank variable, A, crossed with a control variable. Further,
suppose you know all the resulting medians will be between 300 and
350. A Conditional Compute like the following may result in internal
processing efficiency, especially if there are many values outside the
median range.

	 Statistics 235

	COMPUTE	B	=
	 	-99999		 IF	A	<	300;
	 	A	 	 IF	A	>=	300	AND	A	<=	350;
	 	99999	 	 IF	A	>	350;

B should then be used as the rank variable in the QUANTILE statement in-
stead of A. If the actual median fell below 300 or above 350, an obviously
wrong answer would be displayed.

Quantile Algorithm

The method used to find Medians and Quantiles is as follows: For each
median or quantile, an ordered distribution of the occurrences of grouped
rank variable values is prepared. For Quantiles and Medians, the size of
the intervals into which the rank variable values are grouped is determined
by the ISD you supply. For Fquantiles and Fmedians. the interval size is
always 1. For cases in which weighting has been specified, weighted oc-
currences are used. After determining the total occurrences for a quantile,
the quantile point, QP, is computed to be:

QP	=	Total	Occurrences	of	ranking	variable	values	*	quantile#	/	quantity#

The occurrences in each interval, starting with the lowest, are then added
together until the i-th sum, S(i), equals or exceeds the quantile point. Thus
the quantile is either some value in the i-th interval or between the i-th and
the (i+1)-st interval.

If S(i) exceeds the quantile point the quantile value is within the i-th inter-
val and is computed as follows:

Quantile	Value	=	V(i)	+	R(i)	*	(QP	-	S(i-1))	/	N(i)

If S(i) equals the quantile point the quantile value is between the i-th and
the (i+1)-st interval.

Quantile	Value	=
	 V(i)	+	R(i)	+	(V(i+1)	-	(V(i)	+	R(i)))	*	Quantile#	/	quantity#

Where:

V(i) = the lowest rank-var value of the i-th interval.
R(i) = the size of the i-th interval.
N(i) = the number of occurrences in the i-th interval.
V(i+1) = the lowest rank-var value of the next higher

interval having any occurrences.

	 Statistics 236

Sample Quantile Tables

A sample request, illustrating various capabilities of order statistics, is
shown on the following pages.

USE	HIERARCH	CODEBOOK;

DEFINE	INCOME_CLASS	/'Family	count	for	 income	ranges:'
	 	 	 	 	 ON	INCOME;
	 'Exactly	Equal	to	$0.00'		 IF		0	;
	 'From	$1	to	$5,000'	 		 IF		1	:	5000;
	 'From	$5,001	to	$10,000'	 IF		5001	:	10000;
	 'From	$10,001	to	$20,000'	 IF		10001	:	20000;
	 'From	$20,001	to	$30,000'	 IF		20001	:	30000;
	 'Greater	than	$30,000'	 		 IF		>	30000;

COMPUTE	RECORD_NAME	'Number	of	Families	Surveyed'		
	 USING	999	=	FAMILIES;

COMPUTE	NEW_INCOME	/'Income	of	Families	Surveyed'	
	 USING	$9,999,999	=	INCOME;

MEDIAN	MED_INCOME	/'Median	Income	of	Surveyed	Families'	
	 USING	$99,999	ON	INCOME	(15);

MEDIAN	OTHER_MED_INCOME
	 /'Median	Income	of	Surveyed	Families'	
	 USING	MASK	$99,999	ON	INCOME	(15);

POST	COMPUTE	MAX_INCOME
	 /'Largest	Income	of	Surveyed	Families'
	 USING		MASK	$99,999	=	MAX	(INCOME);

POST	COMPUTE	MIN_INCOME
	 /'Smallest	Income	of	Surveyed	Families'	
	 USING	MASK	$99,999	=	MIN	(INCOME);

QUANTILE(4)	QUARTILE_INCOME
	 'Quartile	Ranking	of	Family	Income'
	 USING	MASK	$99,999		ON		INCOME	(15);
	 	 '1st	Quartile'	 IF		1	;
	 	 'Median'	 IF		2	;
	 	 'Third	Quartile'		IF		3	;

QUANTILE(10)	RANK_INCOME	'Decile	Ranking	of	Family	Income'
	 USING	MASK	$99,999	ON	INCOME		(15)		FOR	EACH	;

	 Statistics 237

DEFINE	ALL_FAM		ON	RECORD_NAME;
	 'Families	Surveyed'	 IF		ALL;

DEFINE	NEW_HEADS_CLASS_OF_WORK
/	'Class	of	Work	for	Family	Head'	ON		HEADS_CLASS_OF_WORK;

	 	 'White	collar'	 	 IF		1;
	 	 /		 'Blue	collar'	 	 IF		2;
	 	 /		 'Farm	workers'	 IF		3;
	 	 /		 'Service	workers'	 IF		4;
	 	 /		 'Other	workers'	 IF		OTHER;

DEFINE	NEW_LIVING_QRT
'Type	of	Family	Living	Quarters'	ON	LIVING_QRT;

	 	 'Owned'		 IF		1;
	 	 'Condominium'	 IF		2;
	 	 'Rented'	 IF		3;
	 	 'Other	types'	 IF		OTHER;

DEFINE	NEW_EARNER_COMP
/	'Earner	Composition	of	Families'	ON		EARNER_COMP;

	 	 'Head	only	Employed'	 	 	 	 IF		0;
	 	 'Head	&	Spouse	Employed'	 	 	 IF		1;
	 	 'Head	&	Family	members	>=	18	yrs.'	 	 IF		2;
	 	 'Head	&	Family	members	<	18	yrs.'	 	 IF		3;
	 	 'Head	&	other	types	of	members	Employed'	 IF		4:5;
	 	 'Head	Unemployed'	 	 	 	 IF		6;
	 	 'Head	Unemployed	&	Spouse	Employed'	 IF		7;
	 	 'Other	types'	 	 	 	 	 IF		OTHER;

	 Statistics 238

TABLE	SAMPLE_01		 'First	Special	Table	for	Order	Statistics	 '
	 	 'Using	Median,	Maximum	and	Minimum'	:
	 	 STUB	RECORD_NAME	THEN	NEW_INCOME	THEN
	 	 	 INCOME_CLASS	THEN	MED_INCOME	THEN	
	 	 	 MAX_INCOME	THEN	MIN_INCOME,
	 	 HEADING		TOTAL	THEN	REGION;

First Special Table for Order Statistics Using Median, Maximum and Minimum

Total Northeast North
Central South West

Number of Families Surveyed 117 35 31 23 28

Income of Families Surveyed $1,058,371 $327,531 $179,990 $252,995 $297,855

Family count for income ranges:
Exactly Equal to $0.00 9 3 2 – 4
From $5,001 to $10,000 34 12 12 – 10
From $10,001 to $20,000 32 6 4 11 11
From $20,001 to $30,000 12 6 – 4 2

Median Income of Surveyed Families $7,205 $6,005 $5,400 $12,100 $9,610

Largest Income of Surveyed Families 27,200 27,200 13,500 23,060 23,500

Smallest Income of Surveyed Families 0 0 0 3,000 0

– Data not available.

	 Statistics 239

TABLE	SAMPLE_02		 'Second	Table	for	Order	Statistics	Using	the'
	 /'Variable	Created	in	the	Quantile	Statement	in	the	Stub'	:
	 STUB			(TOTAL	THEN	NEW_HEADS_CLASS_OF_WORK)
	 	 BY	QUANTILE_INCOME,
	 HEADING		SEX	THEN	NEW_LIVING_QRT;

Second Table for Order Statistics Using the
Variable Created in the Quantile Statement in the Stub

Head’s sex Type of Family Living Quarters

Male Female Owned Condomin-
ium Rented Other

types

Total
Quartile Ranking of Family Income

1st Quartile $5,890 $1,200 $4,750 – $3,100 –
Median ... 10,015 3,605 11,063 – 6,005 –
Third Quartile 15,515 5,400 14,000 – 9,700 –

Class of Work for Family Head
White collar

Quartile Ranking of Family Income
1st Quartile 5,695 1,501 5,695 – 6,005 –
Median ... 12,100 6,303 12,100 – 9,856 –
Third Quartile 20,200 9,700 19,851 – 16,700 –

Blue collar
Quartile Ranking of Family Income

1st Quartile 7,361 3,605 8,351 – 6,000 –
Median ... 11,565 4,503 13,163 – 8,108 –
Third Quartile 14,150 5,400 13,875 – 14,200 –

Farm workers
Quartile Ranking of Family Income

1st Quartile 1,800 – – – 1,800 –
Median ... 1,800 – – – 1,800 –
Third Quartile 1,800 – – – 1,800 –

Service workers
Quartile Ranking of Family Income

1st Quartile 7,205 – 12,820 – 5,776 –
Median ... 9,000 – 12,820 – 8,103 –
Third Quartile 15,050 – 15,050 – 22,650 –

Other workers
Quartile Ranking of Family Income

1st Quartile 2,550 600 0 – 2,194 –
Median ... 2,925 2,400 600 – 3,013 –
Third Quartile 3,100 4,600 2,550 – 4,690 –

– Data not available.

	 Statistics 240

TABLE	SAMPLE_03
	 'Third	Table	for	Order	Statistics	Using	the	Variable'/
	 'Created	in	the	Quantile	Statement	in	the	Heading'	:
		 	 STUB		ALL_FAM	BY	(REGION	THEN	
	 	 	 NEW_EARNER_COMP),
	 	 HEADING		RANK_INCOME;

Third Table for Order Statistics Using the Variable
Created in the Quantile Statement in the Heading

Decile Ranking of Family Income

1 2 3 4 5 6 7 8 9

Families Surveyed
Northeast $1,735 $2,320 $4,600 $5,331 $6,005 $6,560 $11,650 $17,102 $24,001
North Central 600 1,800 2,925 3,100 5,400 7,215 9,000 9,000 13,200
South 3,600 3,740 4,750 10,025 12,100 12,820 14,000 14,200 20,201
West 0 5,695 5,890 7,205 9,610 13,125 15,515 18,800 19,851

Earner Composition of
Families

Head only Employed 3,000 4,750 5,400 6,005 7,205 9,000 10,005 12,000 20,201
Head & Spouse

Employed 7,215 9,610 12,100 13,125 13,500 14,200 15,515 16,701 17,103
Head & Family

members >= 18 yrs. 5,890 5,890 9,000 9,000 14,425 19,850 19,851 23,060 23,061
Head & other types of

members Employed 5,695 7,120 12,820 13,292 14,000 16,880 18,800 22,560 23,500
Head Unemployed 0 600 1,800 2,158 2,400 2,550 2,925 4,600 5,331
Head Unemployed &

Spouse Employed .. 3,100 3,100 3,100 3,100 4,800 6,500 6,500 6,500 6,500
Other types 3,600 3,600 3,600 3,600 3,600 3,600 3,600 3,600 3,600

MEAN

Format	 MEAN	mean-var	['print	 label']		 [USING	MASK	mask]	ON	obs-var;
	 	 	 USING	 	 	 :

	 	 	 	 MASK
	 [Weighted	by	weight-var]

where mean-var is the new mean variable and obs-var is an observation
variable from the codebook or a COMPUTE statement.

 The mean is calculated using the formulas:

Formula	
v

n

i
i

T

∑

or, with weighting	

w v

w

i i
i

T

∑

	 Statistics 241

where the v
i
's are the values of the obs-var mapped into a table cell and the

w
i'
's, if used, are the corresponding weights. n

T
 is the number of values

that contribute to the cell. w
T

is the sum of the weights.

Note Be sure the ON variable uses NULL for bad or missing values rather than
0. Otherwise incorrect answers may result.

Example	 Mean	MEAN_INC	'Mean	Income'	on	INCOME;

This statement creates the mean variable MEAN_INC that can be used in
POST COMPUTE and TABLE statements.

VAR - Variance of a Sample
Format	 VAR	var-samp	['print	 label']		 	 [USING	MASK	mask]	ON	obs-var;

	 	 	 	 USING	 	 	 :
	 	 	 	 MASK

	 [Weighted	by	weight-var]

where var_samp is the new variance variable and obs-var is an observation
variable from the codebook or a COMPUTE statement. The variance is
calculated using the formulas:

Formula	 n v v

n n

T i i
ii

T T

2

2

1

−

−()
∑∑ 	or, with weighting		

w w v w v

w w

T i i i i
ii

T T

2

2

1

−

−()
∑∑

where the v
i
's are the values of the obs-var mapped into a table cell and the

w
i'
's, if used, are the corresponding weights. n

T
 is the number of values

that contribute to the cell. w
T

is the sum of the weights.

Note Be sure the ON variable uses NULL for bad or missing values rather than
0. Otherwise incorrect answers may result.

Example	 VAR	VAR_INC	'Income	Variance'	Mask	99,999	on	INCOME;

This statement creates the variance variable VAR_INC that can be used in
POST COMPUTE and TABLE statements.

	 Statistics 242

VARP - Variance of Whole Population
Format	 VARP	var-pop	['print	 label']		 	 [USING	MASK	mask]	ON	obs-var;

	 	 	 	 USING	 	 	 :
	 	 	 	 MASK

	 [Weighted	by	weight-var]

where var_pop is the new variance variable and obs-var is an observation
variable from the codebook or a COMPUTE statement. The variance is
calculated using the formulas:

Formula

n v v

n

T i i
ii

T

2

2

2

−

∑∑

	or,	with	weighting	

w w v w v

w

T i i i i
ii

T

2

2

2

−

∑∑

where the v
i
's are the values of the obs-var mapped into a table cell and the

w
i'
's, if used, are the corresponding weights. n

T
 is the number of values

that contribute to the cell. w
T

is the sum of the weights.

Note Be sure the ON variable uses NULL for bad or missing values rather than
0. Otherwise incorrect answers may result.

Example	 VARP	VARP_INC	'Income	Variance'	Mask	99,999	on	INCOME;

This statement creates the variance variable VARP_INC that can be used in
POST COMPUTE and TABLE statements.

STDEV - Standard Deviation of a Sample

Format	 STDEV	std-samp	['print	 label']		 [USING	MASK	mask]	ON	obs-var;
	 	 	 USING	 	 	 :

	 	 	 	 MASK
	 [Weighted	by	weight-var]

where std-samp is the new standard deviation variable and obs-var is an
observation variable from the codebook or a COMPUTE statement. The
standard deviation is calculated using the formulas:

Formula	
n v v

n n

T i i
ii

T T

2

2

1

−

−()
∑∑

or,	with	weighting	
w w v w v

w w

T i i i i
ii

T T

2

2

1

−

−()
∑∑

	

	 Statistics 243

where the v
i
's are the values of the obs-var mapped into a table cell and the

w
i'
's, if used, are the corresponding weights. n

T
 is the number of values

that contribute to the cell. w
T

is the sum of the weights.

Note Be sure the ON variable uses NULL for bad or missing values rather than
0. Otherwise incorrect answers may result.

Example	 STDEV	DEV_INC	'Standard	Deviation	of	Sample'	Mask	99,999	on
	 	 INCOME;

This statement creates the standard deviation variable DEV_INC that can
be used in POST COMPUTE and TABLE statements.

STDEVP - Standard Deviation of Whole Population

Format	 STDEVP	std-pop	['print	 label']		 [USING	MASK	mask]	ON	obs-var;
	 	 	 USING	 	 	 :

	 	 	 	 MASK
	 [Weighted	by	weight-var]

where std-pop is the new standard deviation variable and obs-var is an
observation variable from the codebook or a COMPUTE statement. The
standard deviation is calculated using the formulas:

Formula
n v v

n

T i i
ii

T

2

2

2

−

∑∑

or, with weighting	
w w v w v

w

T i i i i
ii

T

2

2

2

−

∑∑

where the v
i
's are the values of the obs-var mapped into a table cell and the

w
i'
's, if used, are the corresponding weights. n

T
 is the number of values

that contribute to the cell. w
T

is the sum of the weights.

Note Be sure the ON variable uses NULL for bad or missing values rather than
0. Otherwise incorrect answers may result.

Example	 STDEVP	DEVP_INC	'Income	Deviation'	Mask	99,999	on	INCOME;

This statement creates the standard deviation variable DEVP_INC that can
be used in POST COMPUTE and TABLE statements.

	 Statistics 244

STDERR - Standard Error of the Mean
Format	 STDERR	std-err	['print	 label']		 [USING	MASK	mask]	ON	obs-var;
	 	 USING	 	 	 :

	 	 	 	 MASK
	 [Weighted	by	weight-var]

where std-err is the new standard error variable and obs-var is an observa-
tion variable from the codebook or a COMPUTE statement. The standard
error is calculated using the formulas:

Formula
n v v

n n
n

T i i
ii

T T
T

2

2

1

−

−()
∑∑

 or, with weighting
w w v w v

w w
w

T i i i i
ii

T T
T

2

2

1

−

−()
∑∑

where the v
i
's are the values of the obs-var mapped into a table cell and the

w
i'
's, if used, are the corresponding weights. n

T
 is the number of values

that contribute to the cell. w
T

is the sum of the weights.

Note Be sure the ON variable uses NULL for bad or missing values rather than
0. Otherwise incorrect answers may result.

Example	 STDERR	ERR_INC	'Income	Standard	Error'	Mask	9,999.99	on
	 	 	INCOME;

This statement creates the standard error variable ERR_INC that can be
used in POST COMPUTE and TABLE statements.

	 Statistics 245

Example Showing Multiple Statistics

Multiple statistics can be calculated for the same table. The following
shows several statistics calculated for AGE.

Mean	MEAN_AGE	"Mean	age"	Mask	99.999	on	AGE;
Mean	MEAN_AGE_WGTD	"Mean	age	weighted"	Mask	99.999	
	 on	AGE	Weighted	by	WEIGHT;
Var	VAR_AGE	"Variance	of	sample"	Mask	99.999	on	AGE;
Varp	VAR_AGE_WHOLE	"Variance	of	whole	population"	Mask	99.999
	 on	AGE;
Stdev	STD_DEV_AGE	"Standard	deviation	of	sample"	Mask	99.999
	 on	AGE;
Stdevp	ST_DEV_AGE_WHOLE
	 "Standard	deviation	of	whole	population"
	 	Mask	99.999	on	AGE;
Stderr	STD_ERROR_AGE	"Standard	error	of	means"	Mask	99.999
	 on	AGE;

Table	STATS	"Table	showing	statistics	for	age":
Stub	TOTAL	then	SEX;
Heading	TOTAL	then	MEAN_AGE	then	MEAN_AGE_WGTD	then
	 VAR_AGE	then	VAR_AGE_WHOLE	then	STD_DEV_AGE	then
	 ST_DEV_AGE_WHOLE	then	STD_ERROR_AGE;

Table showing statistics for age

Total Mean age Mean age
weighted

Variance
of sample

Variance
of whole

population

Standard
deviation
of sample

Standard
deviation
of whole

population

Standard
error of
means

Total 30,000 47.988 47.799 308.408 308.398 17.562 17.561 0.101
Sex of Householder
Male 20,821 46.553 46.466 265.816 265.803 16.304 16.303 0.113
Female 9,179 51.243 50.787 389.792 389.750 19.743 19.742 0.206

	 Ranking 246

C h a p t e r 1 5

Ranking

Ordering rOwS BASed On The vALueS
in A TABLe COLumn

Introduction

With the RANK statement, you can create a variable for ordering table
rows based on the values in a selected table column. The ranking can be
descending or ascending. An option lets you keep only the top or bottom
n rows for a particular ranking. With this option, you can request a row
to display the residual. The residual category includes all values not in the
top or bottom n rows, respectively.

You can also add a RANK DISPLAY column to the table. This column
contains the rank number for each row. For rows that are not included
in the ranking, blanks can be displayed in this column or you can use the
built-in NORANK footnote to choose something other than blank.

A second method of displaying ranking is specified by the Format state-
ment RANK ON VALUES. One or more columns of the table are picked,
and the values in those columns are replaced by a rank number for the val-
ues. See RANK ON VALUES in the Format chapter for more information.

The RANK Statement

The RANK statement is similar to a DEFINE statement. It creates a new
control variable based on the values of an existing variable and assigns
labels to the new categories. The old variable can be one already described
in the codebook or created by a Compute statement. The new variable
definition can regroup or delete old variable values.

	 Ranking 247

RANK variables can be used in TABLE statements. Since they are used to
order the rows of a table, they can only be used in the table stub. They
can be nested with other variables but must be at the bottom level of the
nest.

More than one RANK variable can be used in a table, so different groups
of rows can be ranked in different ways.

In a DEFINE, items are displayed in the table in the order they are listed
in the DEFINE. In a RANK statement, the order of display in the table is
determined by the table values in the specified ranked-on column.

Format	 RANK	new-variable-name	['var	label']	 ON	ranked-on-var-name
	 	 :

[COLUMN	c]	[KEEP	n]	[direction]	;

[condition-name-1]		['print	 label']	IF	[re]	value-entry-1;
	 	 	 	 		:
[condition-name-2]		['print	 label']	IF	[re]	value-entry-2;
		 	 	 	 		:
 . .
 . .
[condition-name-n]		['print	 label']	IF	[re]	value-entry-n;
																																											 	 	 	 	 		:

The optional COLUMN c specifies the number of the column on which
ranking occurs. If no column is specified, column 1 is assumed. There
are no restrictions on what can be in the column. For example, it can con-
tain counts, post computed values or percents.

The optional KEEP n specifies the number of rows that will be kept in
each group. If no value is provided, all of the rows are kept.

The optional direction can be ascending or descending. Ascending order
can be specified with UP or ASCENDING. Descending order can be
specified with DOWN or DESCENDING. The direction is used to specify
whether the first value in a group is the largest and the values from there
go DOWN or whether the first value in a group is the smallest and the
values go UP. The default is DOWN.

	 Ranking 248

A value-entry can be any of the following:

 value
 condition name (if old variable is CONTROL)
 value1 : value2
 OTHER
 ALL
 NULL

If a value-entry does not have a name or label assigned to it, it is grouped
into the first category above it that does have a name or label.

The optional re stands for any relation symbol or the equivalent English as
shown below. A relation symbol can precede any value. If no relation is
provided, "equal" is assumed.

 Symbol	 English expression

	 <	 [IS]	 LESS	THAN
	 >	 [IS]	 GREATER	THAN
	 =	 [IS]	 EQUAL	[TO]
	 	 	 EQUALS
	 ^<	 [IS]	 NOT	LESS	THAN
	 ^>	 [IS]	 NOT	GREATER	THAN
	 ^=	 [IS]	 NOT	EQUAL	[TO]
	 <=	 [IS]	 LESS	THAN	OR	EQUAL	[TO]
	 >=	 [IS]	 GREATER	THAN	OR	EQUAL	[TO]

NULL value-entries
If your ranked-on variable contains NULL values, you need to reference
NULL specifically to include these values in a RANK category. ALL and
OTHER will not include NULL's.

OTHER value-entries
OTHER includes any values, except NULL, that do not fall into any other
rank category. If you have limited the number of values to be displayed
in a grouping, then the excluded values (residuals) will also fall into this
category.

ALL value-entries
ALL includes all values except NULL.

	 Ranking 249

Examples Following is a simple table request that selects only states in the Northeast
region and creates a table with rows ranked by mean income.

USE	CPS	Codebook;

SELECT	IF	STATE_CODE	IN	(CONNECTICUT,		MAINE,	
	 MASSACHUSETTS,	NEW_HAMPSHIRE,	RHODE_ISLAND,
	 VERMONT,	NEW_JERSEY,	NEW_YORK,	PENNSYLVANIA);

MEAN	MEAN_INCOME	"Mean	Income"	ON	INCOME;

MEAN	WT_MEAN_INCOME	"Weighted	Mean	Income"	ON	INCOME	
	 WEIGHTED	BY	WEIGHT;

RANK	NE_RANK	ON	STATE_CODE	COLUMN 1;
"Connecticut"	 IF	CONNECTICUT;
"Maine"		 IF	MAINE;
"Massachusetts"	IF	MASSACHUSETTS;
"New	Hampshire"	IF	NEW_HAMPSHIRE;
"Rhode	Island"	 IF	RHODE_ISLAND;
"Vermont"	 IF	VERMONT;
"New	Jersey"	 IF	NEW_JERSEY;
"New	York"	 IF	NEW_YORK;
"Pennsylvania"	 IF	PENNSYLVANIA;

TABLE	RANK_1	"Northeast	States	Ranked	on	Mean	Income":
STUB	NE_RANK;
HEADING	MEAN_INCOME	THEN	WT_MEAN_INCOME
	 THEN	COUNT;

Northeast States Ranked on Mean Income

Mean
Income

Weighted
Mean

Income
Count

Connecticut 38,872 38,721 599
New Jersey 38,858 39,195 2,243
Massachusetts 38,631 38,842 2,262
New Hampshire 36,676 36,454 515
New York 33,513 34,010 4,095
Rhode Island 32,827 32,769 517
Vermont 31,306 31,162 531
Pennsylvania 30,310 30,340 2,453
Maine 27,810 27,648 612

	 Ranking 250

Next, we change the ranked-on column from 1 to 2 so the ranking is done
on weighted mean income. Note that for the first 3 rows, the rank order is
different from the rank order for (unweighted) mean income in the preced-
ing example.

RANK	NE_RANK_ON_2	on	STATE_CODE	COLUMN 2;
"Connecticut"	 IF	CONNECTICUT;
"Maine"		 IF	MAINE;
"Massachusetts"	IF	MASSACHUSETTS;
"New	Hampshire"	IF	NEW_HAMPSHIRE;
"Rhode	Island"	 IF	RHODE_ISLAND;
"Vermont"	 IF	VERMONT;
"New	Jersey"	 IF	NEW_JERSEY;
"New	York"	 IF	NEW_YORK;
"Pennsylvania"	 IF	PENNSYLVANIA;

TABLE	RANK_2	"Northeast	States	Ranked	on	Weighted	"
	 "Mean	Income":
STUB	NE_RANK_ON_2;
HEADING	MEAN_INCOME	THEN	WT_MEAN_INCOME
	 THEN	COUNT;

Northeast States Ranked on Weighted Mean
Income

Mean
Income

Weighted
Mean

Income
Count

New Jersey 38,858 39,195 2,243
Massachusetts 38,631 38,842 2,262
Connecticut 38,872 38,721 599
New Hampshire 36,676 36,454 515
New York 33,513 34,010 4,095
Rhode Island 32,827 32,769 517
Vermont 31,306 31,162 531
Pennsylvania 30,310 30,340 2,453
Maine 27,810 27,648 612

	 Ranking 251

Nested RANK Variables

RANK variables can can be nested with other variables in the stub but they
must be at the bottom level of the nest.

Example In this example, we nest our rank variable below the control variable
HOUSEHOLD_TYPE. This gives us multiple groups of rows to be
ranked. For each HOUSEHOLD_TYPE, the rows are ranked on column 2.
Notice that the ranking varies from group to group.

TABLE	RANK_3	"Household	Type	by	Northeast	States	Ranked	on	"
	 "Mean	Income"	:
STUB	HOUSEHOLD_TYPE BY NE_RANK_ON_2;
HEADING	MEAN_INCOME	THEN	WT_MEAN_INCOME	THEN
	 COUNT;

Household Type by Northeast States Ranked
on Mean Income

Mean
Income

Weighted
Mean

Income
Count

Type of Household
Married couple

New Jersey 49,863 50,484 1,284
Connecticut 49,995 50,387 313
Massachusetts 49,672 49,826 1,218
New York 44,574 45,223 2,075
New Hampshire 42,695 42,359 305
Rhode Island 41,042 40,957 297
Vermont 38,642 38,543 287
Pennsylvania 38,062 38,133 1,432
Maine 34,024 34,235 360

Other family
New Hampshire 36,549 35,955 61
Connecticut 30,992 31,414 96
New Jersey 28,890 29,682 321
Massachusetts 26,906 27,291 367
Vermont 24,691 25,122 73
Rhode Island 24,566 24,322 61
Pennsylvania 24,211 24,289 332
New York 23,391 24,024 767
Maine 22,026 22,315 77

Nonfamily household
Massachusetts 25,121 25,377 677
New Hampshire 24,407 24,981 149
Connecticut 24,531 23,913 190
New Jersey 21,725 21,835 638
Vermont 21,816 21,738 171
New York 21,390 21,388 1,253
Rhode Island 20,652 20,421 159
Pennsylvania 17,135 17,176 689
Maine 17,573 17,000 175

	 Ranking 252

COPY as a Shortcut for Ranking on Codebook Variables

In some cases, you may be ranking on a control variable that has many
values listed in the codebook and labels that you would like to use for the
entries in a RANK statement. In this case, you can use COPY as a short-
cut to simplify your RANK statement and take advantage of the labels you
already have in the codebook.

Examples Assume that the following variable is in the codebook for data about fire
reports.

SITUATION	CONTROL	2
('Fire	--	No	Other	Info'	 =	10
	 'Structure	Fires'		 =	11
	 'Outside	Str	Fires'	 =	12
	 'Vehicle	Fires'	 	 =	13
	 'Trees,	Brush	Fires	'	 =	14
	 'Refuse	Fires'	 	 =	15
	 'Explosions,	No	Fire'	 =	16
	 'Other	Fires'	 	 =	19
)

We could rank all fire situations, taking advantage of all the codebook
labels, with this simple RANK statement:

RANK	FIRES	ON	SITUATION	COLUMN	1;
COPY	IF	10:19;

Note As in the DEFINE statement, COPY cannot be used with ALL, OTHER or
NULL. To copy all values, enter a range with the first and last condition
values as shown above.

In the next RANK example, COPY is combined with some specific group-
ing of values.

RANK	FIRES	ON	SITUATION	COLUMN	1;
COPY	 	 	 IF	11:16;
'Type	Not	Known'	 IF	10;
	 	 	 IF	19;

	 Ranking 253

TABLE	F1	'Fires	Ranked	byType':
HEADING	COUNT;
STUB	TOTAL	THEN	FIRES,

Fires Ranked by Type

Count

Total 2,665

Vehicle Fires 886
Structure Fires 818
Refuse Fires 456
Trees, Brush Fires 354
Outside Str Fires 107
Type Not Known 33
Explosions, No Fire 11

Keeping the Top or Bottom Ranked Rows

The optional KEEP can be used in the RANK statement to specify the
number of rows that will be kept in each group of ranked rows. If there is
no KEEP in the statement, all of the rows are kept.

Example In this example, we rank on column 1 and limit the number of included
categories to the top 4 rows in each ranking. As in the previous example,
ranking is done for each of 3 groups, so the top 4 rows are kept for each
group.

RANK	NE_RANK_LIMIT	ON	STATE_CODE	COLUMN	1	KEEP 4;
"Connecticut"	IF	CONNECTICUT;
"Maine"	IF	MAINE;
"Massachusetts"	IF	MASSACHUSETTS;
"New	Hampshire"	IF	NEW_HAMPSHIRE;
"Rhode	Island"	IF	RHODE_ISLAND;
"Vermont"	IF	VERMONT;
"New	Jersey"	IF	NEW_JERSEY;
"New	York"	IF	NEW_YORK;
"Pennsylvania"	IF	PENNSYLVANIA;

	 Ranking 254

Table	RANK_4		"Household	Type	by	Top	4	Northeast	States	"
	 "Ranked	on	Mean	Income":
STUB	HOUSEHOLD_TYPE	BY	NE_RANK_LIMIT;
HEADING	MEAN_INCOME	THEN	WT_MEAN_INCOME	THEN
	 COUNT;

Household Type by Top 4 Northeast States
Ranked on Mean Income

Mean
Income

Weighted
Mean

Income
Count

Type of Household
Married couple

Connecticut 49,995 50,387 313
New Jersey 49,863 50,484 1,284
Massachusetts 49,672 49,826 1,218
New York 44,574 45,223 2,075

Other family
New Hampshire 36,549 35,955 61
Connecticut 30,992 31,414 96
New Jersey 28,890 29,682 321
Massachusetts 26,906 27,291 367

Nonfamily household
Massachusetts 25,121 25,377 677
Connecticut 24,531 23,913 190
New Hampshire 24,407 24,981 149
Vermont 21,816 21,738 171

	 Ranking 255

Treatment of Ties
Sometimes you may have two or more rows that are tied in the ranking,
having the same value in the ranked-on column. If there is a tie between
the last row and one or more rows above it, all of these rows will be re-
tained.

Example In the following table, tied values are shown in bold type. The rank state-
ment had KEEP 30, but since the last two rows are tied, the actual number
of rows kept is 31.

Top 30 counties ranked by number of plural
births

Total Single
Births

Plural
Births

Lincoln 12,296 11,860 436
Taylor 10,924 10,501 423
Eisenhower 5,831 5,638 193
Comanche 4,517 4,341 176
Cheyenne 5,433 5,270 163
Clinton 3,900 3,762 138
Coral 2,586 2,494 92
Bannock 2,564 2,474 90
Massachusett 3,114 3,025 89
Maricopa 2,039 1,956 83
Harrison 1,809 1,732 77
Cameron 2,079 2,004 75
Blackfoot 2,190 2,117 73
Mohawk 1,987 1,917 70
Chippewa 1,903 1,833 70
Norfolk 2,032 1,970 62
Vermillion 1,659 1,602 57
Adams 1,814 1,759 55
Holland 2,116 2,062 54
McKinley 1,356 1,303 53
Manhattan 1,200 1,149 51
Sky 2,312 2,262 50
Gramblin 1,075 1,027 48
Cherokee 1,519 1,474 45
Cayuse 1,202 1,158 44
Wilson 1,079 1,035 44
Paris 1,690 1,649 41
Oxford 1,140 1,104 36
Ford 1,423 1,387 36
Niagra 1,757 1,722 35
Benton 1,047 1,012 35

Note If you are ranking on decimal values rather than integers, you may have
values that look like ties in the table but are actually different values be-
cause of additional decimal places not shown in the table.

	 Ranking 256

Using OTHER to Get Residuals

An OTHER category can be entered on any row of the RANK statement.
OTHER includes all values, except NULL, that do not fall into any other
rank category. When you use KEEP to limit the number of values to be
displayed in a grouping, then the excluded values (residuals) will also fall
into this category. The row for the OTHER category will always follow
the ranked rows, regardless of where it is entered in the RANK statement.

Example In this table, we add an OTHER category to our RANK statement. Note
that each grouping has a new "Lower Income States" category which is the
sum of all of the excluded categories.

RANK	NE_RANK_LIMIT_OTHER	ON	STATE_CODE	COLUMN	1
	 KEEP	4;
"Connecticut"	IF	CONNECTICUT;
"Maine"	IF	MAINE;
"Massachusetts"	IF	MASSACHUSETTS;
"New	Hampshire"	IF	NEW_HAMPSHIRE;
"Rhode	Island"	IF	RHODE_ISLAND;
"Vermont"	IF	VERMONT;
"New	Jersey"	IF	NEW_JERSEY;
"New	York"	IF	NEW_YORK;
"Lower Income States" IF OTHER;
"Pennsylvania"	IF	PENNSYLVANIA;

TABLE	RANK_5	"Household	Type	by	Top	4	Plus	OTHER	Northeast	"
	 "States	Ranked	on	Mean	Income":
STUB	HOUSEHOLD_TYPE	BY	NE_RANK_LIMIT_OTHER;
HEADING	MEAN_INCOME	THEN	WT_MEAN_INCOME	THEN
	 COUNT;

	 Ranking 257

Household Type by Top 4 Plus OTHER
Northeast States Ranked on Mean Income

Mean
Income

Weighted
Mean

Income
Count

Type of Household
Married couple

Connecticut 49,995 50,387 313
New Jersey 49,863 50,484 1,284
Massachusetts 49,672 49,826 1,218
New York 44,574 45,223 2,075
Lower Income States 38,439 38,311 2,681

Other family
New Hampshire 36,549 35,955 61
Connecticut 30,992 31,414 96
New Jersey 28,890 29,682 321
Massachusetts 26,906 27,291 367
Lower Income States 23,646 24,078 1,310

Nonfamily household
Massachusetts 25,121 25,377 677
Connecticut 24,531 23,913 190
New Hampshire 24,407 24,981 149
Vermont 21,816 21,738 171
Lower Income States 20,188 20,101 2,914

Using ALL and OTHER
The OTHER category includes both residuals and any values which do not
appear in other categories. If ALL is added to the list of categories, then
OTHER will include only residuals. If the RANK statement does not have
a KEEP clause, then OTHER will be empty.

Note that if you have ALL in a RANK statement, the ALL category will
be included in the ranking. Thus, if you have requested the top 5 rows, for
example, and the ALL row has a value in the top 5, it will be one of the 5
rows kept. If you do not want the ALL row to be ranked, create a separate
variable for ALL and add it to the TABLE statement.

Example	 DEFINE	ALL_STATES	ON	STATE_CODE;
"All	New	England	States"	IF	ALL;

RANK	NE_RANK_LIMIT	ON	STATE_CODE	COLUMN	1	KEEP 4;
"Connecticut"	IF	CONNECTICUT;
"Maine"	IF	MAINE;
"Massachusetts"	IF	MASSACHUSETTS;
"New	Hampshire"	IF	NEW_HAMPSHIRE;
"Rhode	Island"	IF	RHODE_ISLAND;
"Vermont"	IF	VERMONT;
"New	Jersey"	IF	NEW_JERSEY;
"New	York"	IF	NEW_YORK;
"Pennsylvania"	IF	PENNSYLVANIA;

	 Ranking 258

Table	RANK_6		"Household	Type	by	Top	4	Northeast	States	"
	 "Ranked	on	Mean	Income":
STUB	HOUSEHOLD_TYPE	BY
	 (ALL_STATES THEN NE_RANK_LIMIT);
HEADING	MEAN_INCOME	THEN	WT_MEAN_INCOME	THEN
	 COUNT;

Displaying the Rank Number with RANK DISPLAY

RANK DISPLAY is a simple statement that lets you add a column to your
table to display rank numbers. This column contains the rank number for
each row. For rows that are not included in the ranking, blanks can be dis-
played or you can use the built-in NORANK footnote to choose something
other than blank.

Format	 RANK	DISPLAY	display-variable-name	['var	label']	[mask]	;

If you do not provide a label, the display-variable-name will be used as
the label. If you do not provide a mask, the rank numbers will be right-
aligned in the column.

Place the RANK DISPLAY variable in the heading of your table.

Example In the following example, the RANK DISPLAY variable named
COUNTY_RANK is at the end of the heading, so the rank number will be
displayed in the last column.

DEFINE	SINGLE_PLURAL	ON	PLURAL;
"Single	Births"	if	"1";
"Plural	Births"	if	"2":	"5";

RANK	COUNTY_RANK	ON	RCOUNTY	COLUMN	3	KEEP	30;
COPY	IF	1:100;

RANK DISPLAY RANK_NUM "Rank";

	 Ranking 259

TABLE	TABLE_2	"Top	30	counties	ranked	by	number	of	plural	"
	 "births	with	rank	numbers	in	last	column":
HEADING	 TOTAL	THEN	SINGLE_PLURAL	THEN	RANK_NUM;
STUB		 	 COUNTY_RANK;

Top 30 counties ranked by number of plural births with
rank numbers in last column

Total Single
Births

Plural
Births Rank

Lincoln 12,296 11,860 436 1
Taylor 10,924 10,501 423 2
Eisenhower 5,831 5,638 193 3
Comanche 4,517 4,341 176 4
Cheyenne 5,433 5,270 163 5
Clinton 3,900 3,762 138 6
Coral 2,586 2,494 92 7
Bannock 2,564 2,474 90 8
Massachusett 3,114 3,025 89 9
Maricopa 2,039 1,956 83 10
Harrison 1,809 1,732 77 11
Cameron 2,079 2,004 75 12
Blackfoot 2,190 2,117 73 13
Mohawk 1,987 1,917 70 14
Chippewa 1,903 1,833 70 14
Norfolk 2,032 1,970 62 16
Vermillion 1,659 1,602 57 17
Adams 1,814 1,759 55 18
Holland 2,116 2,062 54 19
McKinley 1,356 1,303 53 20
Manhattan 1,200 1,149 51 21
Sky 2,312 2,262 50 22
Gramblin 1,075 1,027 48 23
Cherokee 1,519 1,474 45 24
Cayuse 1,202 1,158 44 25
Wilson 1,079 1,035 44 25
Paris 1,690 1,649 41 27
Oxford 1,140 1,104 36 28
Ford 1,423 1,387 36 28
Niagra 1,757 1,722 35 30
Benton 1,047 1,012 35 30

Treatment of Ties in the RANK DISPLAY Column
Sometimes you may have two or more rows that are tied in the ranking,
having the same value in the ranked-on column. When two or more values
are tied, they will have the same rank number and the rank number follow-
ing will be adjusted upward to account for the ties. In the table above, the
ties are shown in bold type. Note, for example, that the two rows with the
value 70 have the same rank number of 14 and the next rank number is 16.

	 Ranking 260

Troubleshooting the RANK DISPLAY Column
If you get a table with 1's in the RANK DISPLAY column where you
would expect to see meaningful rank numbers, the likely cause is that you
accidentally used the column number of your RANK DISPLAY column in
the RANK statement. This is easy to do, for example, if you are ranking
on a Total column at the beginning of the table and then add a RANK DIS-
PLAY column to the left of it without remembering to change the RANK
column to COLUMN 2.

If you put a RANK DISPLAY column in a table that does not have a
RANK variable, you will get a column of 0's.

The NORANK Footnote

Sometimes you may have rows in your table for which there is no rank
number. This will happen if not all rows of the table are ranked. The
symbol for the built-in footnote named NORANK will appear in the
RANK DISPLAY column for these rows. Blank is the default for the
symbol and text. To change the symbol or text, use a SET FOOTNOTE
statement.

In the following table, there is ranking by age but also a total row above
the ranked rows and unranked month rows below. Column 1 is the RANK
DISPLAY column. There is no rank number for the rows not included in
the ranking, so the NORANK symbol appears for these rows. In this case,
a SET FOOTNOTE statement has been used to replace the default blank
with ... and add a footnote text to be displayed at the bottom of the table.

RANK	M_AGE_GROUPS	"Mother's	Age"	on	MAGE	COLUMN	2;
"<15"	if	<	"15";
"15-19"	if	"15":	"19";
"20-24"	if	"20":	"24";
"25-29"	if	"25":	"29";
"30-34"	if	"30":	"34";
"35-39"	if	"35":	"39";
"40-44"	if	"40":	"44";
"45+"	if	"45":	<	"99";
"N.S."	 if	"99";

RANK	DISPLAY	RNUM	"Rank"	MASK	9;

SET	FOOTNOTE	NORANK	SYMBOL	"..."
	 TEXT	"Rank	number	not	applicable.";

	 Ranking 261

TABLE	TABLE_NR	"Total	Births,	Births	Ranked	by	Mothers	Age,	"
	 "and	Births	by	Birth	Month":
HEADING	 RNUM	then	TOTAL	then	PLURAL;
STUB	 	 TOTAL	then	M_AGE_GROUPS	then	BMONTH;

Total Births, Births Ranked by Mothers Age, and Births by Birth Month

Rank Total

Plurality

Single Twins Triplets Quadru-
plets

Quintu-
plets or
more

Total 119,349 115,365 3,761 206 12 5
Mother’s Age
20-24 1 32,605 31,764 826 15 – –
25-29 2 31,666 30,611 1,006 40 4 5
30-34 3 27,287 26,116 1,078 85 8 –
15-19 4 13,895 13,645 241 9 – –
35-39 5 11,376 10,845 489 42 – –
40-44 6 2,119 2,007 97 15 – –
<15 7 303 299 4 – – –
45+ 8 96 76 20 – – –
N.S. 9 2 2 – – – –
January 10,123 9,811 304 8 – –
February 9,281 8,975 304 – 2 –
March 9,914 9,569 315 30 – –
April 9,508 9,184 309 15 – –
May 9,866 9,502 349 15 – –
June 9,723 9,385 311 27 – –
July 10,575 10,198 354 21 2 –
August 10,704 10,364 328 12 – –
September 10,155 9,866 260 20 4 5
October 10,205 9,890 297 14 4 –
November 9,321 9,011 296 14 – –
December 9,974 9,610 334 30 – –

... Rank number not applicable.
– Data not available.

Referencing Ranked Rows in Format Statements

If you are using Format statements to reference ranked rows, you cannot
determine row numbers by counting data rows in the printed table. The
row numbers are assigned before the ranking, so they will not match the
order in the table after the ranking. You can find the row numbers for
PRINTED ROWS in the OUTPUT file.

If you have ranked rows and reference an empty row, the statements
EJECT AFTER ROW and BANK AFTER ROW will have no effect. For
ranked rows, you need to reference a row that has data.

	 Weighting 262

C h a p t e r 1 6

Weighting

CreATing muLTiPLierS wiTh The weighTing
STATemenT

The WEIGHTING statement lets you create a variable that contains multi-
pliers for use in a TABLE statement. It is especially useful in tables where
there are many observation variables that need to be multiplied by one or
more weights or other variables within the same table.

Format	 WEIGHTING	new-variable	['print	 label']	:
	 	 	 	 	 ON	
	 	 	 	 	
'label-1'		 =	 obs-var-1;
['label-2'	 =	 obs-var-2;
.
.
.
['label-n'	 =	 obs-var-n;

where new-variable is the name of the WEIGHTING variable that can be
used in a TABLE statement. If you assign a print label to the WEIGHT-
ING variable, it will be used in the table; otherwise it will have no label
in the table.

Listed under the WEIGHTING variable are one or more observation vari-
ables, obs-var-1, obs-var-2,obs-var-n, that will be used as multipliers
for the values in the table cells. You must assign a print label to each of
these variables.

	 Weighting 263

There are many options associated with print labels such as upper and
lower case letters, special characters and footnotes. Any of these options,
as described in the "Labels" chapter, can be used in this statement.

When the WEIGHTING variable is used in a TABLE statement, a set of
table cells is created for each of the multiplier variables listed beneath it.
Each set of cells will be multiplied by its corresponding multiplier variable.

The multiplier variables can be codebook observation variables or obser-
vation variables created with a COMPUTE statement. You can use the
built-in variable COUNT or a record name as a multiplier if you want to
multiply by 1 to get the equivalent of no multiplication.

A constant cannot be used directly as a multiplier. If you want to use a
contstant as a multiplier, create one with a COMPUTE statement using
COUNT. For example:

COMPUTE	three	=	COUNT	*	3;

Only one WEIGHTING variable can be used per table request, but the
WEIGHTING variable does not need to be used in all tables. Within a
table, it can be nested with only part of the table.

Example	 Weighting	MULTIPLIERS:
'Weighted'	=	WEIGHT;
'Unweighted'	=	COUNT;

If we nest the variable called MULTIPLIERS in a TABLE statement, then
we will get two sets of cells. One set will be labeled 'Weighted'. For
this set, the observation values will be multiplied by WEIGHT as they are
aggregated. The other set will be labeled 'Unweighted'. For this set, all
observation values will be multiplied by COUNT as they are aggregated.

Note that since COUNT is a built-in variable with the value 1, multiplica-
tion by COUNT is the same as multiplication by 1; it will have no effect
on its set of cells. Thus, the resulting table will have a set of weighted
cells and a set of unweighted cells.

	 Weighting 264

In the following TABLE statement, the columns contain values for the
observation variables, ASSETS, CASH, BAD_DEBTS, INVENTORY and
DEPRECIATION. By nesting MULTIPLIERS in the stub of the table with
the BY operator, we get alternating rows of weighted and unweighted val-
ues for each of these observation variables.

table	W1		font	hb	11	’Table	W1—Weighted	and	unweighted	financial	 ’
	 	 								 ’information	for	corporations	in	the	mining	industry.’;
						stub	MINING	BY	MULTIPLIERS;
						heading	ASSETS	
											 then	CASH_	
											 then	BAD_DEBTS	
											 then	INVENTORY	
											 then	DEPRECIATION;

Table W1--Weighted and unweighted financial information for corporations in the
mining industry.

Assets Cash Bad debt Inventory Depreciation

Total
Weighted $39,712,367 $3,863,969 $4,999 $348,220 $33,804,634
Unweighted 2,056,827 117,527 2,287 121,858 1,021,388

Metal mining
Weighted 5,083,702 390,324 – 57,496 946,775
Unweighted 207,935 11,438 – 7,379 40,277

Coal mining
Weighted 6,489,075 538,630 1,156 169,496 11,579,667
Unweighted 579,445 27,832 1,156 65,241 435,290

Oil and gas extraction
Weighted 10,500,000 672,444 3,843 111,560 12,326,483
Unweighted 709,059 24,865 1,132 47,651 335,446

Nonmetalic minerals,
except fuels

Weighted 17,639,591 2,262,571 – 9,668 8,951,710
Unweighted 560,389 53,391 – 1,587 210,375

– Data not available.

If we reversed the stub and heading in the table statement, we would get
alternating columns of weighted and unweighted values.

If we used the WEIGHTING variable in a wafer expression, we would get
a wafer of weighted values and a wafer of unweighted values.

	 Weighting 265

Example Suppose our data has three different weights, WT_A, WT_B and WT_C.
We would like to apply each weight in a different wafer of a table and then
compare the results. To do this, we list the three weights in a WEIGHT-
ING statement and then use the WEIGHTING variable as the wafer vari-
able in a TABLE statement.

weighting	WGT:
'Weighted	by	A'	=	WT_A;
'Weighted	by	B'	=	WT_B;
'Weighted	by	C'	=	WT_C;

table	WAFER_EXAMPLE:	 WAFER	WGT,
	 	 	 	 STUB	stub	expression;
	 	 	 	 HEADING	heading	expression;

Weighted by C

Weighted by B

Weighted by A

	 Weighting 266

Effect of WEIGHTING on Variables Created with other
Statements

Percents
If the base and numerator of a percent have the same WEIGHTING vari-
able, the percent value will not change.

Medians and other Quantiles
Only the weight variable is weighted, if present. The rank variable is not.

Max, Min, Union (U) and Intersection (I)
These functions are not affected by nesting with a WEIGHTING variable.

COMPUTE
Constants are not weighted, but each variable within a COMPUTE state-
ment is weighted individually.

POST COMPUTE
If a POST COMPUTE variable is nested with a WEIGHTING variable,
then each variable within the POST COMPUTE will be weighted separate-
ly. Thus, for example, an average will become a weighted average.

Constants are not weighted. For example, suppose that we wish to create
a table similar to the one in our earlier example, but we want to show the
data in thousands of dollars. We can do this by dividing each value by
1000 in a POST COMPUTE statement. Each variable used in the POST
COMPUTE is multiplied by the WEIGHTING multipliers, but the constant
1000 is not affected.

	 Weighting 267

Example	 post	compute	ASSETS_T	’Assets’	mask	$99,999,999		=
	 	 ASSETS/1000;

post	compute	CASH_T	’Cash’	mask	$99,999,999	=	CASH/1000;
post	compute	BAD_DEBTS_T	’Bad	debt’	mask	$99,999,999	=
	 BAD_DEBTS/1000;
post	compute	INVENTORY_T	’Inventory’	mask	$99,999,999	=
	 INVENTORY/1000;
post	compute	DEPRECIATION_T	’Depreciation’	mask	$99,999,999	=
	 DEPRECIATION/1000;

Weighting	MULTIPLIERS:
'Weighted'	=	WEIGHT;
'Unweighted'	=	COUNT;

table	W2		font	hb	11	’Table	W2—Weighted	and	unweighted	financial	 ’
	 	 								 ’information	for	corporations	in	the	mining	industry.’/
										 font	h	9	’(Money	amounts	are	in	thousands	of	dollars.)’:
						stub	MINING	BY	MULTIPLIERS;
						heading	ASSETS_T	
											 then	CASH_T	
											 then	BAD_DEBTS_T	
											 then	INVENTORY_T	
											 then	DEPRECIATION_T;

Table W2--Weighted and unweighted financial information for corporations in the
mining industry.
(Money amounts are in thousands of dollars.)

Assets Cash Bad debt Inventory Depreciation

Total
Weighted $39,712 $3,864 $5 $348 $33,805
Unweighted 2,057 118 2 122 1,021

Metal mining
Weighted 5,084 390 – 57 947
Unweighted 208 11 – 7 40

Coal mining
Weighted 6,489 539 1 169 11,580
Unweighted 579 28 1 65 435

Oil and gas extraction
Weighted 10,500 672 4 112 12,326
Unweighted 709 25 1 48 335

Nonmetalic minerals,
except fuels

Weighted 17,640 2,263 – 10 8,952
Unweighted 560 53 – 2 210

– Data not available.

	 Weighting 268

A Note of Caution on Multiplication in Post Compute
Multiplication is rarely used in Post Compute statements. However, if you
do have a Post Compute in which one variable is multiplied with another,
please note that nesting with a WEIGHTING variable is likely to produce a
different result from what is desired or expected.

For example:

post	compute	X		=	A	*	B;

Since each variable in the Post Compute is weighted separately, the result
will be a tabulation of W * A multiplied by a tabulation of W * B. In
other words, the weight will be factored in twice.

Masks for Output Formatting

WEIGHTING statements cannot contain masks. When a WEIGHTING
variable is nested in a table, the masks, if present, are taken from the ob-
servations variables that are being weighted.

 269 Char

C h a p t e r 1 7

Char

CreATing A new ChArACTer vAriABLe

The CHAR statement creates a new character variable by combining all
or part of other character variables and text. Its primary use is in creating
variables for use in TPL reports. It also may be used in TPL TABLES to
create variables for use in SELECT statements.

Format	 CHAR	new-variable	['print-label']	=	construction	;

where new-variable is a character variable and construction is made up
of one or more of 'character-string', substr(character-variable, start) and
substr(character-variable, start, length) concatenated together using '+' or '||'.

Example In our first example we wish to select all items which begin with 'A';

CHAR	SELECT_VAR	=	SUBSTR(ITEM,1,1);
SELECT	IF	SELECT_VAR	=	'A';

In our next example we wish to create a TPL report which includes the full
names of people in a data file. The data is stored with first name, FNAME,
in one field and last name, LNAME, in another. If we just use FNAME
and LNAME in the report, then the fields will be in separate columns with
varying numbers of blanks between them. Instead we use:

CHAR	FULL_NAME	'Name'	=	FNAME	+	'	 '	+	LNAME;

Note that we have included a blank between FNAME and LNAME since
otherwise the fields would be run together.

 270 Char

ChAr SPLiT: divide A ChArACTer vAriABLe

The SUBSTR function can be used to split a fixed-format data field into
parts. If the data is not fixed-format, then CHAR SPLIT must be used.

Format	 CHAR	SPLIT	old-variable:	variable1	"divider1"	variable2	"divider2"	...
CHAR	SPLIT	old-variable:	"divider1"	variable1	"divider2"		variable2	...

where old-variable is the variable which is to be divided into two or more
new variables. The dividers, which are a list of characters, are entered in
quotes. They separate the subfields in the data.

Example Suppose your CSV data file has a DATE field. The field on different re-
cords are:
 1/23/45 and
 12/22/46

	

You wish to split the DATE field into three new observation variables,
MONTH, DAY, and YEAR. You can do this with:

CHAR	SPLIT	DATE:	CMONTH	"/"	CDAY	"/"	CYEAR;	
COMPUTE	MONTH	=	OBS(CMONTH);	
COMPUTE	DAY	=	OBS(CDAY);	
COMPUTE	YEAR	=	OBS(CYEAR)	+	1900;

Note Dividers need not be the same from subfield to subfield. All characters in
the divider list between two subfields are discarded. regardless of order.

Example Suppose you have a data field VALUES which is: [+ 34 +A 23] and
you wish to extract just the two numbers. You can use
 CHAR SPLIT VALUES: " +" VALUE1 "A+ " VALUE2;
VALUE1 will get the value 34 while VALUE2 will get 23.

	 Hierarchies 271

C h a p t e r 1 8

Hierarchies

PrOCeSSing hierArChiCAL fiLeS

Introduction

A hierarchical file consists of multiple record types, each related to the
other but describing a different level of detail. The records are sequenced
so that for records at any level of detail, a variable number of more de-
tailed records may follow.

TPL TABLES can tabulate at different levels of a hierarchical file as will
be described in this chapter. A repeating group is another type of data
structure that has many of the attributes of a hierarchical file. Repeating
groups are described in a separate chapter. Note that the level at which
tabulation occurs can change for a hierarchical file if repeating groups are
added to its codebook. The interaction is described in the TABLE state-
ment section of this chapter and in the repeating group chapter.

The following diagram illustrates the concept of hierarchically related
records. Lower level records are shown indented to suggest subordination
within the hierarchy. Records containing the greatest detail are depen-
dent on the next higher level of the hierarchy and so on back up to the
Master level. The master record has a level number of zero indicated by
LEVEL 0. The record type immediately subordinate to the Master record
is LEVEL 1. Level numbers increase in increments of one to the level
number of the lowest order of subordination in the hierarchy. The structure
of the three-level FAMILY hierarchical file is shown next, followed by the
codebook description. Note that some unique value (e.g., A,B,C) within
each record must uniquely identify each level of the hierarchy.

	 Hierarchies 272

A Family (Level 0)

B Member (Level 1)

C Purchase (Level 2)

C Purchase (Level 2)

B Member (Level 1)

.

.

.

.

.

.
A Family (Level 0)

Each level of the hierarchy is identified in the codebook by a record marker
and a level number. For example, each family record may be identified by
a marker of 1 in record position 1 and each member record may be identi-
fied by a marker of 2 in record position 1.

Let us assume that each family record in a data file has one or more family
members, and each member record has at least one purchase record associ-
ated with it. When processing this file, TPL TABLES will read the first
family record, the first member record, and the first purchase record. These
three levels will form a hierarchical unit for TPL TABLES to act on. Next,
the second purchase record (if any) will replace the first to form another
hierarchical unit.

After all purchase records have been combined individually with the first
family and member record, the second member record is read, if any. The
first family record is paired with the second member record and each
purchase record of that member in turn. After all member records for the
first family and their purchase records have been processed, the next family
record is read and the cycle is repeated.

Each record or collection of records is assigned a level number whose
value depends on its hierarchical relationship to other records. The record
type which identifies a major new processing unit in the file, and which
is not subordinate to other records, is known as a master record or level 0
type record. In our example, the family record is a level zero record and is
identified as such in the codebook. The first record subordinate to the fam-
ily record is the member record which is identified as a level 1 type record
in the codebook.

	 Hierarchies 273

Since the purchase record occurs one or more times for each occurrence
of the member record, it has a level number of 2. Each member record
must be followed by at least one purchase record. Two successive mem-
ber records without at least one purchase record in between means that the
hierarchy is incomplete.

Each level of the hierarchy can consist of more than one record type, but
there must be only one of each type in succession at that level. In the fol-
lowing illustration member information spans over two records and family
information spans over three records.

.

.

.

Family # 1 Level 0

Family # 1 (cont.)

Family # 1 (cont.)

Level 1

Level 2

Member # 1

Member # 1 (cont.)

Expenditure # 1

Expenditure # 1 (cont.)

Level 1Member # 2

Member # 2 (cont.)

.

.

.

The first record type of each hierarchical level must be uniquely identified
to TPL TABLES by specifying a unique record value, of any length, in the
codebook. In this way missing levels can be detected when the data file is
read. If a level is skipped (e.g., LEVEL 0 to LEVEL 2), an error message
will indicate that there are records that are not in the expected sequence.
When the next record of the highest level (e.g. LEVEL 0) is found, pro-
cessing will resume.

	 Hierarchies 274

Below is a flowchart showing the tests made for a three-level hierarchical
file.

General Processing for a Three-Level Hierarchical File

Read

Level 0?

Yes

Yes

Yes

No

No

No

Start New
Hierarchy

Read

Level 1?

Move or Replace
in Hierarchy

Read

Level 2?
Move or

Replace in
Hierarchy

Process
Hierarchical

Unit

Start

Error

Codebook Entries

The first record of each level of a hierarchical file must contain a record
identifier by which the record can be uniquely identified. This record
identifier follows the key word MARKER in the codebook RECORD
clause and is a data name which must be described somewhere within the
record description. The data name must be the name of a control variable,
and the value following the equal sign must be within quote marks. The
record MARKER must be accompanied by a record LEVEL number. (For
additional details, see the Record Name Clause section of the chapter on
"Describing a TPL TABLES Input Data File".)

	 Hierarchies 275

BEGIN	HIERARCHY	CODEBOOK

FAMILIES	RECORD	MARKER	FMID	='A'	LEVEL	0
					FMID	CON	1			(=	 'A')
					REG	CON	1
								(
	 'Northeast'	 =		1
	 'Midwest'	 =		2
)
					JOB	CON	1	(1:9)
					AGE	CON	2
					CONDITION	LABEL	IS	VALUE
								(16:99)
					PERSONS	OBS	2
					 INCOME	OBS	5

MEMBER	RECORD	MARKER	MBID='B'	LEVEL	1
					MBID	CON	1	(='B')
					AGE_M	OBS	2
					SEX	CON	1
								(
	 'Male'	 =		1
	 'Female'	 =		2
)
					OCCUPATION	OBS	3
					FILLER	5

PURCHASES	RECORD	MARKER	PRID	='C'	LEVEL	2
					PRID	CON	1	(='C')
					 ITEM	CON	1	
								(
	 'Bread'	 =		1
	 'Fish'	 =		2
	 'Milk'	 =		3
	 'Eggs'	 =		4
)
					COST	OBS	3
					DAY		CON	1
								(
	 'Day	1'	 =		1
	 'Day	2'	 =		2
	 'Day	3'	 =		3
)
					PKG_T	CON	1	(1:2)
					FILLER	5

END	HIERARCHY	CODEBOOK

	 Hierarchies 276

Using Incomplete Hierarchies

Default Treatment

Normally, a hierarchical unit processed by TPL TABLES must be com-
plete. For example, a three level hierarchy cannot consist of only Level 0
records and Level 2 records. Before any processing is done on a hierar-
chical unit, at least one record must be present at each level. Incomplete
hierarchies are reported as errors. If any level is missing, all subsequent
records are discarded until a new record is found at the highest level (i.e.
the lowest level number).

The following sequence of records showing a complete hierarchy will be
used as the basis for two examples of incomplete hierarchies.

Complete Hierarchy

Level 0

Level 0

Level 1

Level 2

Level 2

Level 2

etc.

	 Hierarchies 277

Examples of Incomplete Hierarcies

1. Missing Level 1

Level 0

Level 0

Level 2

Level 2

Level 2

etc.

2. Missing Level 2

Level 0

Level 0

Level 1

etc.

Incomplete hierarchy messages show where the problem occurred in the
data file and where processing was resumed. For example:

*** ERROR: Records out of sequence. Level 2 expected for record 6

*** ERROR: Recovered from level error on record 8

Forcing Tabulation of Incomplete Hierarchies

The statements

TABULATE	INCOMPLETE	HIERARCHIES	=	YES;	(NO	is	the	default)				

and

REPORT	INCOMPLETE	HIERARCHIES	=	NO;	(YES	is	the	default)

can be used to control the treatment of incomplete hierarchies. By choos-
ing TABULATE INCOMPLETE HIERARCHIES = YES; you can tabulate

	 Hierarchies 278

data from higher level records even though records are missing at the low-
est levels, as long as information from the missing records is not required
to do the tabulation.

Note that records cannot be missing from middle levels. For example, a
Level 1 record cannot be tabulated if it is followed by a Level 3 record.

The INCOMPLETE HIERARCHIES statements can be entered either in
the codebook after the BEGIN CODEBOOK statement or in the table
request after the USE statement. A statement in the table request will over-
ride any conflicting statement entered in the codebook.

Example of Statements in Codebook

BEGIN	hierarchy	CODEBOOK

TABULATE	INCOMPLETE	HIERARCHIES	=	YES;

families	RECORD	MARKER	achar	=	‘A’	LEVEL	0

		FILLER	4

		achar	CON	1	 	 /*	The	marker	field.		 'A'	 is	the	only	 */
									(=	‘A’)	 	 /*	valid	value	for	this	type	of	record.	 */

		month	OBS	2		 /*	The	month	of	the	survey.	 	 */
 .
 .
 .

Example of Statements in Table Request

USE	hierarchy	CODEBOOK;

TABULATE	INCOMPLETE	HIERARCHIES	=	YES;
REPORT	INCOMPLETE	HIERARCHIES	=	NO;

DEFINE	quarter	ON	month;
	 ‘1st	Quarter’	 if	1:3;
	 ‘2nd	Quarter’	 if	4:6;

TABLE	toplevel:	 HEADING	TOTAL	THEN	quarter;
	 STUB	 .
 .
 .

	 Hierarchies 279

If variables referenced in a SELECT statement or used in a TABLE state-
ment are located in a missing level, no tabulation will take place for that
hierarchical unit.

If a request combines tabulations requiring the missing level with tabu-
lations that do not depend on the missing level, each will be evaluated
independently.

If a tabulation depends on a lower level record, such as when only control
variables are used, then all records which make up the hierarchical unit
down to that record must be present for processing to take place.

For example, consider a three level hierarchical file consisting of fam-
ily (Level 0), member (Level 1), and expenditure records (level 2). If
a crosstabulation consists of control variables and an observation from
the family record, including record name, then member and expenditure
records do not contribute to the tabulation, so they can be missing if you
have specified TABULATE INCOMPLETE HIERARCHIES = YES; in
your codebook or table request. However, if a tabulation involves only
control variables from the family record, then the lowest level expenditure
records need to be counted and both member and expenditure records must
be present.

Message Suppression

By default, incomplete hierarchies will be reported even if they are tabu-
lated. To suppress incomplete hierarchy messages, use the statement

REPORT	INCOMPLETE	HIERARCHIES	=	NO;

How Hierarchies Interact with TPL TABLES Statements

The following sections explain how each TPL statement reacts with a
hierarchical file. First, you should think of all records which make up a
hierarchical unit (level 0 through a single occurrence of the lowest level)
as being read into one contiguous area. The result may be thought of as
one long record representing a processing unit. After this unit is processed,
another record will be read. If this record belongs to the lowest level of
the hierarchy it will replace the preceding record having the same level
number, and the resulting new hierarchical unit will be processed again.

If a record is read which belongs to a higher level of the hierarchy (lower
level number), that level will be replaced, and successive reads will replace

	 Hierarchies 280

all lower level records until another hierarchical unit is formed. Incomplete
hierarchical units will be recognized and an appropriate diagnostic message
issued. Normally, only complete hierarchical units will be processed. (See
the section on Using Incomplete Hierarchies if you need to tabulate data
from incomplete units.)

TABLE Statement

To aid in understanding what tabulations result when accessing variables
from different hierarchical levels, we will use a sample data file of six re-
cords, with the variable name and value appearing in each field for conve-
nient reference, followed by a codebook description for this file.

FAMILIES			REG=1			JOB=2			AGE=18			PERSONS=3			INCOME=11000			A	

		PURCHASES	 BREAD	 COST=70	 DAY=1	 PKG_T=1	 C	

		PURCHASES	 FISH		 COST=80	 DAY=2	 PKG_T=1	 C	

		PURCHASES	 BREAD	 COST=25	 DAY=1	 PKG_T=2	 C

FAMILIES			REG=2			JOB=1			AGE=20			PERSONS=4			INCOME=13000			A	

		PURHASES	 FISH	 COST=100	 DAY=3	 PKG_T=2	 	C

	

BEGIN	TWO	LEVEL	CODEBOOK

FAMILIES	RECORD	MARKER	FMID='A'	LEVEL	0
			REG	CON	1
	 (
	 			 'REG=1'	 =	1
	 			 'REG=2'	 =	2
)
			JOB	CON	1	(1:2)
			AGE	CON	2	
	 (
	 			 'AGE=18'	 =	18
	 			 'AGE=20'	 =	20
)
			PERSONS	OBS	2
			INCOME	OBS	5
			FMID		CON	1	(='A')

	 Hierarchies 281

PURCHASES	RECORD	MARKER	PRID='C'	LEVEL	1
			ITEM	CON	1	
	 (
	 			BREAD	 =	1
	 			FISH		 	 =	2
	 			MILK	=	3
	 			EGGS		 =	4
)
			COST	OBS	3
			DAY		CON	1	
	 (
	 			 'DAY=1'	 =	1
	 			 'DAY=3'	 =	3
)
			PKG_T	CON	1	(1:2)
			PRID	CON	1	(='C')
END	TWOLEVEL	CODEBOOK

This section will show the actual tabulations that will result when various
TABLE statements are processed against the above data file and codebook.
The results of a tabulation depend on the hierarchical levels at which the
variables are located, according to three rules. Each TABLE statement is
followed by a brief explanation of the table content.

Rule 1
When only control variables are crossed or nested in a TABLE statement,
the default observation variable is the lowest level (highest level number)
record name, having an assumed value of 1.

Note that there is one exception to this rule. If one or more repeating
groups are included in the codebook for a hierarchical file, the default
observation variable is the top (level 0) record name. Thus, the addition
or deletion of a repeating group in a codebook can affect the results of
tabulations that do not have explicit observation variables specified. See
the chapter on repeating groups for additional information. This chapter
assumes that no repeating group variables are in the codebook.

	 Hierarchies 282

Examples TABLE	H1:	ITEM,	DAY;

Counts purchases made of each item on each day of the week.

DAY=1 DAY=2 DAY=3

BREAD 2 – –
FISH – 1 1

TPL1588 1 12/1/93 12:21:08 PM

TABLE	H2:		REG	BY	ITEM,	DAY;

Same as above except purchases summarized by each region.

DAY=1 DAY=2 DAY=3

REG=1
BREAD 2 – –
FISH – 1 –

REG=2
FISH – – 1

TPL1588 2 12/1/93 12:21:08 PM

TABLE	H3:	REG,	AGE;

Counts purchases according to region and age of household head.

AGE=18 AGE=20

REG=1 3 –
REG=2 – 1

TPL1588 3 12/1/93 12:21:08 PM

Rule 2
When an observation variable is crossed or nested with a control variable at
the same or higher level (lower level number), that observation variable is
aggregated from each occurrence of the record in which it is located.

	 Hierarchies 283

Examples TABLE	H4:	 WAFER		FAMILIES,
	 	 STUB			REG,
	 	 HEADING		AGE;

Counts families according to region and age categories. Lower level pur-
chase records are not tabulated.

TABLE	H5:	ITEM,	COST;

Cost for each item is aggregated from the purchase record.

COST

BREAD 70+25
FISH 80+100

TPL1588 4 12/1/93 12:21:08 PM

TABLE	H6:	REG,	ITEM	THEN	COST;

Counts purchases of each item and overall cost of each item for each re-
gion.

BREAD FISH COST

REG=1 1+1 1 70+80+25
REG=2 – 1 100

TPL1588 5 12/1/93 12:21:08 PM

TABLE	H7:	TOTAL	THEN	REG,	ITEM	THEN	COST;

Same as above, except also summarized over all regions.

BREAD FISH COST

Total 1+1 1+1 70+80+25+100
REG=1 1+1 1 70+80+25
REG=2 – 1 100

TPL1588 6 12/1/93 12:21:08 PM

	 Hierarchies 284

TABLE	H8:	AGE	THEN	PKG_T,	COST;

Total cost of all purchases summarized by age of household head and pack-
age type.

COST

AGE=18 70+80+25
AGE=20 100
1 PKG T 70+80
2 PKG T 25+100

TPL1588 7 12/1/93 12:21:08 PM

TABLE	H9:	REG,	PERSONS	THEN	INCOME;

Total number of persons and total family income summarized by region.

PERSONS INCOME

REG=1 3 11,000
REG=2 4 13,000

TPL1588 8 12/1/93 12:21:08 PM

Rule 3
When an observation variable is crossed or nested with a control variable at
a lower level, that observation variable (including the record name, having
a value of 1) is aggregated once for each unique value of that control vari-
able. The control variable TOTAL can be thought of as belonging to any
level of the hierarchy since the results are the same.

Examples This third rule is extremely useful in the situations where you want, for
example, to count families that made purchases of a particular item or col-
lection of items, no matter how many of those items appeared at the lower
level. For example, you can count families who bought bread, no matter
how many purchases of bread were made.

	 Hierarchies 285

In another application involving Establishment records at level 0 and Em-
ployee records at level 1, it may be desired, for example, to count Estab-
lishments having at least one bookkeeper.

TABLE	H10:	ITEM,	FAMILIES;

Counts the families who bought each item at least once.

FAMILIES

BREAD 1
FISH 2

TPL1588 9 12/1/93 12:21:08 PM

TABLE	H11:	ITEM,	PERSONS;

Counts persons in families who bought each item at least once.

PERSONS

BREAD 3
FISH 3+4

TPL1588 10 12/1/93 12:21:08 PM

TABLE	H12:		 WAFER		FAMILIES,
	 	 STUB		REG,
	 	 HEADING		DAY;

Counts families in each region who bought something on each day.

FAMILIES

DAY=1 DAY=2 DAY=3

REG=1 1 1 –
REG=2 – – 1

TPL1588 11 12/1/93 12:21:08 PM

	 Hierarchies 286

TABLE	H13:	REG,	FAMILIES	BY	ITEM	THEN	COST;

For each region, the number of families who purchased each item and the
total cost of the purchases (combines Rule 2 and Rule 3).

FAMILIES
COST

BREAD FISH

REG=1 1 1 70+80+25
REG=2 – 1 100

TPL1588 12 12/1/93 12:21:08 PM

TABLE	H14:	ITEM,	FAMILIES	BY	(TOTAL	THEN	REG);

Total families who purchased each item and the total purchases for each
region.

FAMILIES

Total REG=1 REG=2

BREAD 1 1 –
FISH 1+1 1 1

TPL1588 13 12/1/93 12:21:08 PM

TABLE	H15:	ITEM,	TOTAL	THEN	FAMILIES	BY	REG;

Total number of purchases of each item, and the number of families in
each region making at least one purchase. Note that there were two pur-
chases of bread, all made by one family in REG=1.

Total
FAMILIES

REG=1 REG=2

BREAD 1+1 1 –
FISH 1+1 1 1

TPL1588 14 12/1/93 12:21:08 PM

	 Hierarchies 287

TABLE	H16:	ITEM,	FAMILIES	BY	AGE	THEN	PERSONS;

Counts families who bought each item according to the age of the head
of the household, plus the total number of persons in families who bought
each item.

FAMILIES
PERSONS

AGE=18 AGE=20

BREAD 1 – 3
FISH 1 1 3+4

TPL1588 15 12/1/93 12:21:08 PM

TABLE	H17:	 WAFER		INCOME,
	 	 STUB			REG	THEN	DAY,
	 	 HEADING		ITEM	THEN	PKG_T;

Aggregates income by region and day of week, according to items bought
and package type. Income is aggregated once for each unique item code
and package type.

INCOME

BREAD FISH MILK EGGS 1 PKG T 2 PKG T

REG=1 11,000 11,000 – – 11,000 11,000
REG=2 – 13,000 – – – 13,000
DAY=1 11,000 – – – 11,000 11,000
DAY=2 – 11,000 – – 11,000 –
DAY=3 – 13,000 – – – 13,000

TPL1588 16 12/1/93 12:21:08 PM

The observation variable COUNT is equivalent to the record name at the
lowest hierarchical level and when used in a TABLE statement will count
the units at the lowest hierarchical level. Thus a TABLE statement con-
taining only control variables will count the very lowest hierarchical units
no matter at which level the control variables are located.

	 Hierarchies 288

SELECT Statement

The result of a SELECT statement is that either the entire hierarchical unit
is selected for processing by following TPL statements, or the next hierar-
chical unit is formed and tested again. Individual records of a hierarchi-
cal unit are never selected for processing alone, even though all variables
tested may belong to an individual record.

Assume that a hierarchical file has the following structure.

A Level 0

B Level 1

C Level 1

D Level 2

If a variable is tested in record D and does not meet the SELECT condi-
tion, a new hierarchical unit is formed by replacing D with the next D, if
one exists. This new hierarchical unit is tested again.

If a variable is tested in record B or C (both at level 1) and does not meet
the SELECT condition, a new hierarchical unit is formed by reading past
all following D records until a new pair of B and C records plus a new D
record is found. This new hierarchical unit is tested again.

If a variable is tested in record A and does not meet the SELECT con-
dition, a new hierarchical unit is formed from the next A, B, C, and D
records. This new hierarchical unit is tested again.

COMPUTE Statement

A computed variable is assumed to belong to the lowest level record of the
hierarchy which contains a referenced variable in the COMPUTE state-
ment. For example, if a COMPUTE statement references only variables in

	 Hierarchies 289

level 0 of a hierarchical file, then the computed variable will be assumed to
belong to level 0. If a COMPUTE statement references variables in levels
0 and 1 of a three level hierarchy, then the computed variable will be as-
sumed to belong to level 1. If variables in levels 0 and 2 are referenced,
the computed value will become part of level 2. If the computation con-
sists only of a literal value, the computed variable will be associated with
level 0.

Example Assume a hierarchical file consists of a family characteristics record at
level 0 followed by one or more member characteristics records at level 1.
If the family record contains number of rooms in the household (ROOMS)
and family size (PERSONS), the statement:

COMPUTE		ROOMS_PER_PERSON	=	ROOMS	/	PERSONS;

will associate ROOMS_PER_PERSON with the family record. A table can
then be produced showing the sum of the average rooms per person for all
families.

Conditional Compute Statement

Like the COMPUTE Statement, the conditionally computed variable is
assumed to belong to the lowest level record which contains a referenced
variable (control or observation) in the Conditional Compute statement.
For example, if we have the statement:

COMPUTE	NEW_WEIGHT	=
	 1		 	 	 IF	WEIGHT=4;
	 PERSON_WEIGHT	 IF	OTHER;

If WEIGHT were at level 0 and PERSON_WEIGHT were at level 1,
NEW_WEIGHT would always be assigned to level 1.

POST COMPUTE Statement

Assume that a hierarchical file of two levels consists of a family charac-
teristics record at level 0 containing control variables region (REG) and
occupation, and observation variables, number of persons in the household
(PERSONS), and number of rooms in the household (ROOMS). The level
1 record contains a code for an item purchased and its cost.

	 Hierarchies 290

Level 1 ITEM COST Purchases

Level 0 REG PERSONS OCCUPATION ROOMS Families

Level 1 ITEM COST Purchases

Suppose it is desired to calculate the average rooms per person for each
region and occupation. We can use the POST COMPUTE statement:

POST	COMPUTE	ROOMS_PER_PERSON	=	ROOMS	/	PERSONS;

Since only variables from the level 0 records are referenced in the POST
COMPUTE statement, ROOMS and PERSONS will each be aggregated
once for each family characteristics record. For each category of region
and occupation, the final aggregated value of ROOMS will be divided by
the final aggregated value of PERSONS, to get the average by using the
Post Computed variable in the TABLE statement:

TABLE	AVG:		REG,	ROOMS_PER_PERSON	BY	OCCUPATION;

If we wish to know the average cost of each item classified by region, we
need separate aggregations of COST and PURCHASE records containing
the cost. The POST COMPUTE statement,

POST	COMPUTE	COST_PER_ITEM	=	COST/PURCHASE;

where PURCHASE is the name of the LEVEL 1 record, calculates the av-
erage. By using the Post Computed variable in the following TABLE state-
ment, separate totals of COST and PURCHASE records will be obtained
for each item code and each region over the entire file. The final count of
PURCHASE records will be divided into the final aggregation of COST
amounts for each item and region.

TABLE	AVG_COST:		ITEM,	COST_PER_ITEM	BY	REGION;

In general, the variables within a POST COMPUTE statement may be
thought of as being aggregated separately as sub-cells and then replaced by
a single amount according to the arithmetic expression of the POST COM-
PUTE statement.

As a final example we wish to produce a table showing the average cost
per family member for each type of item purchased and occupation of head
of household. For each family the number of persons in the family is to be

	 Hierarchies 291

aggregated once for each unique item code. Cost is to be aggregated for
each item code. We first use the POST COMPUTE statement:

POST	COMPUTE	COST_PER_PERSON	=	COST/PERSONS;

The Post Computed variable is then put into the TABLE statement:

TABLE	AVG_PERSON_COST:		
	 ITEM,	COST_PER_PERSON	BY	OCCUPATION;

Since COST_PER_PERSON is derived from COST (level 1) and PER-
SONS (level 0), each is aggregated according to its hierarchical relation-
ships with control variables appearing in the TABLE statement. PERSONS
will be aggregated once from each family for each unique value of item
code, since PERSONS is at a higher level within the hierarchy than ITEM.
COST will be aggregated for each ITEM code since they are both at level
1. Each final cell value may then be thought of as containing sub-cell val-
ues of total cost and total persons values which are then replaced with the
average cost for display in the table.

DEFINE Statement

The defined variable may be assumed to apply to the record containing the
old variable value, whether the old variable is in the codebook or comput-
ed. Using the TWOLEVEL codebook shown earlier, suppose that we want
to count families in each region who made at least one purchase of either
bread or eggs and the total cost of both.

DEFINE	EGGS_BREAD	ON	ITEM;
	 'Bread	&	Eggs'	 IF	1;
	 	 	 IF	4;

TABLE	DEF_EXAMPLE:	
	 REGION,	EGGS_BREAD	BY	(FAMILIES	THEN	COST);

MEDIAN and QUANTILE Statement

The observation variables created by these statements are associated with
the hierarchical level containing the rank and weight variables. The rank
variable must be at the same level as the weight variable. Note that if no
weight variable is specified, the record name variable at the level of the
rank variable is assumed to be the weight variable. This record variable has
a value of 1 so the quantile is unweighted. See the discussion of weight-
ing in the chapter on "Statistics" for more details.

	 Repeating Groups 292

C h a p t e r 1 9

Repeating Groups

TABuLATing vAriABLeS ThAT rePeAT
wiThin reCOrdS

Introduction

When one variable or a collection of variables repeat within a record, they
can be described as a repeating group. Repeating groups can greatly sim-
plify tabulation with this type of data. They also allow table structures to
be produced that would be awkward or impossible otherwise.

One example of a repeating group is a time series in which each data
record contains a sequence of 12 values, one for each month of the year.
Another example would be a survey questionnaire that contains a series of
questions where each question has the same set of possible responses.

The repeating group feature lets you describe the repeating unit only once
in the codebook and assign a name to it. You can also assign a name and/
or label to each repetition so that the repeating group variable looks like a
control variable with the same number of values as the number of repeti-
tions in the group.

A repeating group can be viewed as a lower hierarchical level within a
record and behaves in much the same way as a hierarchical level repre-
sented on separate records. The one exception occurs in a cross tabulation
that does not have an explicit observation variable. In this case, the default
observation variable is the record name at the highest level of the data file.
Group repetitions are not counted unless a group-level observation variable
is added to the tabulation. When a repeating group is described in a co-
debook, TPL TABLES automatically provides an observation variable that
can be used for this purpose.

	 Repeating Groups 293

If you want to use a section of a data record both as individual items and
as a repeating group, you can use the REDEFINE feature in the codebook
to describe that section of data both ways. Then you can use either or both
ways of looking at the data in your table requests.

Effect in Hierarchical Files

Note that the inclusion of one or more repeating groups in a codebook that
describes a hierarchical data file causes the default observation variable
COUNT to be transferred from the lowest level of the hierarchy to the top
level (level 0) with the result that COUNT is the same as the record name
at the top level.

A Time Series Example

In a single EMPLOYEE data record there could be a CITY field and an
INCOME field followed by 12 successive months of employment and
hours data arranged as follows:

CITY	 |	INCOME	|	January	 data	 |	|	December	 data

	 |		 |	(EMPLOYMENT)(HOURS)	|		 |	(EMPLOYMENT)(HOURS)

Rather than assigning a unique name to each of 12 employment and hours
fields within the record, a repeating group name can be assigned for the
monthly data and each field within the group can be described only once.
A REPEATS clause on the group variable says that the monthly data
repeats 12 times. During tabulations of the repeating data, each monthly
occurrence is processed in turn. This is similar to the treatment of a lower
level record in a hierarchical data file.

Following are codebook entries that describe the record containing the 12
months of employment and hours data:

EMPLOYEE	RECORD
			CITY	CON	1
						(
	 'Concordia'		 =	1
	 'Frostburg'		 =	2
	 'Silver	Spring'		 =	3
)
			 INCOME	OBS	5

	 Repeating Groups 294

			BEGIN	GROUP	MONTHLY_E_AND_H	REPEATS	12
						(
	 'January',	 'February',	 'March',	 'April',
	 'May',	 'June',	 'July',	 'August',
	 'September',	 'October'	,'November',	 'December'
)
	 EMPLOYMENT	CON	1
												(
	 	 'Employed'		 =	1
			 	 'Unemployed'		 =	2
)
	 HOURS	OBS	5
			END	GROUP	MONTHLY_E_AND_H

The name following the phrase "BEGIN GROUP" is called the GROUP
variable. It is an implied control variable with 12 values as specified in the
REPEATS clause. A list of labels for each of the 12 values is shown in
parentheses following the REPEATS clause. If the GROUP variable name
is used in a TABLE statement, each of the repetitions will be displayed as
a separate control variable condition in the table.

Each of the 12 repetitions of EMPLOYMENT and HOURS is associated
with one of the group values and labels. The subordinate control and
observation variables, EMPLOYMENT and HOURS, occur within each
repetition of month. Any number of subordinate control or observation
entries can be included within the repeating group.

The effect of repeating group usage will be illustrated using the variables
from the above time series codebook in various TABLE statements.

TABLE	G1:		STUB	CITY,		HEADING	HOURS;

Within each record, the HOURS value for each month will be aggregated
into one of the CITY categories.

TABLE	G2:		STUB	EMPLOYMENT,		HEADING	HOURS;

Within each record, the HOURS value for each month will be aggregated
according to its employment code.

TABLE	G3:		STUB	EMPLOYMENT,
	 HEADING	HOURS	BY	MONTHLY_E_AND_H;

Since the group variable MONTHLY_E_AND_H has been used, hours will
be aggregated by month for each employment code.

	 Repeating Groups 295

TABLE	G4:		STUB	EMPLOYMENT,		HEADING	INCOME;

Income will be aggregated just once for each unique employment code in
the record. This is because the repeating group is treated as a sub-record
hierarchical level which is subordinate to the record entries outside the
group. This follows the rule for hierarchical processing.

TABLE	G5:		STUB	EMPLOYMENT,
	 HEADING	INCOME	BY	MONTHLY_E_AND_H;

INCOME will be aggregated for each month according to the employ-
ment code. An aggregation will take place for each month regardless of
employment code because each repetition is a unique condition. This table
displays the total employee income for each month.

A Survey Questionnaire Example

For another application of repeating groups, suppose that an evaluation of
county services is taken in which three successive character positions rate
the quality of police protection, library services, and street maintenance,
respectively. Each repetition of the quality variable rates a separate service
and has a value of poor = 1, fair = 2 or good = 3.

Without using the repeating group feature, we would need to describe each
question as a separate field with the same set of answers repeated for each
one as follows:

POLICE	'Police'	CON	1
			(
	 'Poor'		 =	1
	 'Fair'	 	 =	2
	 'Good'	 =	3
)
LIBRARY	‘Library’	CON	1
			(
	 'Poor'		 =	1
	 'Fair'	 	 =	2
	 'Good'		 =	3
)
STREETS	‘Streets’	CON	1
			(
	 'Poor'		 =	1
	 'Fair'	 	 =	2
	 'Good'		 =	3
)

	 Repeating Groups 296

This data description could become quite lengthy with additional questions
all having the same set of answers. In addition, it is impossible to create a
table structure that shows the questions in one dimension and the answers
in another, because there is no code to identify the data for the different
questions. Instead, we only know which question we are looking at by
its location in the record. We can solve these problems by describing the
questions as a repeating group in the codebook:

BEGIN	GROUP		SERVICES		REPEATS		3
			('Police',	 'Library',	 'Streets')
	 QUALITY	CON	1
	 			(
	 	 'Poor'		 =	1
	 	 'Fair'	 	 =	2
	 	 'Good'		 =	3
)
END	GROUP		SERVICES

The repeating group SERVICES repeats 3 times. The control variable
QUALITY within the group describes the possible answers for all of the 3
questions about services. Additional control or observation entries could
have been included within the repeating group if required.

To show the table formatting flexibility, we will use the variables in three
TABLE statements:

TABLE	G6:		HEADING	SERVICES	BY	QUALITY,		STUB	TOTAL;

Police Library Streets

Poor Fair Good Poor Fair Good Poor Fair Good

Total X X X X X X X X X

TPL10029 date = 8/25/92 time = 5:38:03 PM

TABLE	G7:		HEADING	QUALITY	BY	SERVICES,		STUB	TOTAL;

Poor Fair Good

Police Library Streets Police Library Streets Police Library Streets

Total X X X X X X X X X

TPL10029 date = 8/25/92 time = 5:38:03 PM

	 Repeating Groups 297

TABLE	G8:		HEADING	QUALITY,		STUB	SERVICES;

Poor Fair Good

Police X X X
Library X X X
Streets X X X

TPL10029 date = 8/25/92 time = 5:38:03 PM

Nesting or crossing the repeating group variable SERVICES with the vari-
able QUALITY within the group has caused each type of service to be
evaluated and cross tabulated.

The CONTINUE Option

Repeating groups can also be organized so that instead of groups of two or
more adjacent data items being repeated, they may be repeated in parallel;
that is, some items of the group are exhausted before the other items of the
group are continued. In the case of twelve months of Hours and Employ-
ment data, the twelve months of Hours data may appear in succession,
followed by the twelve months of Employment data.

	 January		 December	 January		 December
(EMPLOYMENT)	 (EMPLOYMENT)	 (HOURS)	 (HOURS)

The processing of the repeating group is identical regardless of whether the
two data items repeat in pairs or the repetitions of one are followed by the
repetitions of the other. The codebook language for indicating a continued
group is:

BEGIN	GROUP	MONTHLY_E_AND_H	REPEATS	12
			(
	 'January','February','March','April','May','June','July',
	 'August','September','October','November','December'
)
			EMPLOYMENT	OBS	5
END	GROUP	MONTHLY_E_AND_H
 .
 .
 .
CONTINUE	GROUP	MONTHLY_E_AND_H
			HOURS	OBS	5
END	GROUP	MONTHLY_E_AND_H

	 Repeating Groups 298

All of the items within the first appearance of the group name will be re-
peated, then the items within the group continuation will be repeated. The
group continuation need not immediately follow the first part of the group.

Continued repeating groups cannot bridge record types. If you have re-
peating groups that continue across multiple records at the same hierarchi-
cal level, you can change the codebook to describe the multiple records as
a single record. Unless your codebook has the attribute BINARY at the
beginning, you will need to account for characters between records. If you
are running under Windows, use FILLER 2 in the codebook to account for
the end-of-record characters between records at the same level. If you are
running under UNIX, use FILLER 1.

Describing Repeating Groups in the Codebook

Format	 BEGIN	GROUP		group-name	['print	 label']
	 [REDEFINES	var-name]		REPEATS	n

[(Name1	and/or	Label1,	Name2	and/or	Label2,	...	
	 Name-n	and/or	Label-n)]

						elementary-item	description(s)	follow

END	GROUP		group-name

The commas are required between group repetition names, labels, or name/
label pairs. The repetition value, n, must have a value of 1 or more.

To describe a repeating group continuation, use:

Format	 CONTINUE	GROUP		group-name

						elementary-item	description(s)	follow

END	GROUP		group-name

The following rules and comments apply to the description of repeating
group variables in the codebook.

	 Repeating Groups 299

1. The REPEATS clause must have a value of 1 or more.

2. Within a repeating group there must be at least one elementary item.
The elementary items can be control, observation, char or filler. In ad-
dition, groups can be contained within groups. We refer to this situa-
tion as "nested" repeating groups.

3. The repeating group name is a control variable which takes the
values of 1 through n, where n is the repetition value. Each repetition
can have an optional name and/or print label. If a name is provided
for a repetition, but no label is provided, the name will be used as a
print label. If no name or label is provided for a repetition, the label
"n group-name" will be assigned to that occurrence.

4. Repeating groups can appear anywhere in codebooks, except that they
cannot span across data records of different types.

5. Group variables can be redefined and group variables can redefine other
variables.

6. The CONTINUE GROUP clause describes the situation where all fields
of the group are not stored side by side. Instead, the repetitions of one
or more fields follow after all of the repetitions of the field(s) in the
location where the group is first defined.

The Special Repeating Group Observation Variable

For each repeating group, TPL TABLES automatically creates a cor-
responding observation variable and adds it to the codebook. If you
look at the codebook abstract created during codebook processing (the
codebookname.L file), you will see the variable included in the variable
list. This observation variable has the same name as the repeating group
variable but with _OBS appended to the name. It can be used to tabulate
at the repeating group level and has a value of 1 for each repetition of the
repeating group. Its label is (''), so if you use the variable in a table, no
label will print for it.

If you want to add a label for the special _OBS variable, you can assign it
to a new computed variable and use the new variable instead. For exam-
ple:

COMPUTE	MONTH_OBS_LABEL	'Months'	=	MONTH_OBS;

	 Repeating Groups 300

Or, you can replace the label with a FORMAT statement. For example:

FOR	VARIABLE	MONTH_OBS:		REPLACE	LABEL	WITH	'Months';

How Repeating Groups Affect Tabulations

In describing how the use of repeating group variables affects tables, we
will reference the following data record and the codebook which describes
it. Only the first and last months are shown. The sample values shown
under each data field will be used in the tabulation examples.

WithheldOccupation

Leave

Hour_Type

Regular

Hours_Worked

Overtime

Hours_Worked

January

WORKER Record

Earnings

Taxes

Category

1 800 1 4200 160

Withheld

Leave

Hour_Type

Regular Overtime

Hours_WorkedEarnings

Taxes

Category

900 2 8225 160

Sex

1

December

..... Hours_Worked

BEGIN	EMPLOYEE	CODEBOOK

	 Repeating Groups 301

WORKER	RECORD

OCCUPATION	CON	1	
			(
	 'White	Collar'		 =	1
	 'Blue	Collar'		 	 =	2
	 'Farm	Worker'			=	3
)

BEGIN	GROUP	MONTH	REPEATS	12	
			(
	 'January',
	 'February',
 .
 .
 .
	 'December'													
)
						EARNINGS	'Earnings'		OBS	8
						TAXES_WITHHELD	'Taxes	Withheld'	OBS	8
						LEAVE_CATEGORY	CON	1	
									(
	 			 '4	Hours/Pay	Period'		=	1
	 			 '6	Hours/Pay	Period'		=	2
	 			 '8	Hours/Pay	Period'		=	3
)

						BEGIN	GROUP	HOUR_TYPE	REPEATS	2	
									(
	 			 'Regular',
	 			 'Overtime'
)
												HOURS_WORKED	'Hours	Worked'	OBS	3
						END	GROUP	HOUR_TYPE

END	GROUP	MONTH

SEX	CON	1
			(
							 'Male'		 =	1
							 'Female'		 =	2
)

END	EMPLOYEE	CODEBOOK

MONTH is a group item containing several elementary items. Follow-
ing the group name MONTH is the number of repetitions of monthly
data within the record, in this case 12. Next, within parentheses, is a

	 Repeating Groups 302

list of labels to be used for each of the 12 repetitions of MONTH. The
variables EARNINGS, TAXES_WITHHELD, LEAVE_CATEGORY and
HOUR_TYPE all repeat 12 times within each data record.

HOUR_TYPE is itself a group that repeats 2 times for each occurrence of
MONTH.

The notion of hierarchical level can be applied to repeating groups if
we view the repeating groups as sub-records or records within a record.
For example, in the sample codebook, WORKER and OCCUPATION
can be thought of as level 0; MONTH, EARNINGS, TAXES_WITH-
HELD and LEAVE_CATEGORY as level 1; and HOUR_TYPE and
HOURS_WORKED as level 2.

The sub-record structure may be viewed as:

level	0		WORKER|OCCUPATION

level	1	 JANUARY	|EARNINGS|TAXES_WITHHELD|LEAVE_CATEGORY

level	2	 REGULAR	|HOURS_WORKED	
	 	 OVERTIME|HOURS_WORKED

level	1	 FEBRUARY|EARNINGS|TAXES_WITHHELD|LEAVE_CATEGORY

level	2	 REGULAR	|HOURS_WORKED	
	 	 OVERTIME|HOURS_WORKED

	 		 	 .
	 		 	 .
	 		 	 .

In general, you will get the results you expect when using repeating
groups. If you do not, you may wish to consult the following rules regard-
ing certain specific uses in a TABLE statement.

RULE 1 The use of an observation variable within a repeating group
without nesting it with the group variable(s) above it causes it to be ag-
gregated over all occurrences of the group. For example, consider the next
TABLE statement.

TABLE	G9:	 HEADING	EARNINGS	THEN	HOURS_WORKED,
	 STUB	TOTAL;

	 Repeating Groups 303

Since neither of the repeating group control variables, MONTH or
HOUR_TYPE, is used in the TABLE statement, EARNINGS will be ag-
gregated over 12 months, and HOURS_WORKED will be aggregated over
both regular and overtime for the 12 months.

Using the sample WORKER record values shown with the codebook de-
scription, the resulting table would be,

Earnings Hours
Worked

Total 1700 332

TPL7235 date = 2/22/93 time = 12:45:13 PM

RULE 2 Nesting observation variables with control variables within a
group, including the group name itself, will result in one or more cross
tabulations from each repetition of the group. For example, the TABLE
statement:

TABLE	G10:		HEADING		EARNINGS	THEN	TAXES_WITHHELD,
												STUB		LEAVE_CATEGORY;

will cause EARNINGS and TAXES_WITHHELD to be aggregated from
each of the 12 months according to the LEAVE_CATEGORY value for
each month, producing the table:

Earnings Taxes
Withheld

4 Hours/Pay Period 800 200
6 Hours/Pay Period 900 225

TPL7235 date = 2/22/93 time = 12:45:13 PM

Adding the control variables MONTH and HOUR_TYPE in the next
TABLE statement results in HOURS_WORKED being aggregated from
REGULAR and OVERTIME for each occurrence of MONTH.

TABLE	G11:		HEADING	EARNINGS	THEN	HOURS_WORKED	BY	
	 (HOUR_TYPE	THEN	TOTAL),		STUB	MONTH	THEN	TOTAL;

	 Repeating Groups 304

Earnings
Hours Worked

Regular Overtime Total

January 800 160 4 164
February
March

December 900 160 8 168
Total 1700 320 12 332

TPL7235 date = 2/22/93 time = 12:45:13 PM

The next table illustrates both rules 1 and 2. The variable HOURS_
WORKED will be summed over both Regular and Overtime since it is
not nested with its group variable, HOUR_TYPE (rule 1). Since variables
within the group are nested with the group name MONTH, aggregations
will occur for each month according to leave category (rule 2).

TABLE	G12:		HEADING	LEAVE_CATEGORY	BY	(EARNINGS	THEN
HOURS_WORKED),		STUB	MONTH	THEN	TOTAL;

4 Hours/Pay Period 6 Hours/Pay Period 8 Hours/Pay Period

Earnings Hours
Worked Earnings Hours

Worked Earnings Hours
Worked

January 800 164
February
March

December . . 900 168
Total 800 164 900 168

TPL7235 date = 2/22/93 time = 12:45:13 PM

RULE 3 A repeating group variable should not be nested only with
variables that are outside of the repeating group and, therefore, at a higher

	 Repeating Groups 305

level in the record. The results are always meaningless and, in some cases,
unpredictable.

RULE 4 If no observation variable is used in a cross tabulation involving
variables within a repeating group, the default observation variable is the
record name at the highest level in the data file. In the case of a flat (non-
hierarchical) file, this is the record containing the repeating group. In other
words, only the records will be counted.

For example, suppose we have the TABLE statement,

TABLE	G13:		HEADING	LEAVE_CATEGORY,		STUB	OCCUPATION;

Since no observation variable has been used, the default observation vari-
able is the record name WORKER (the same as COUNT). Each worker
will be counted once for each unique leave category the worker was in
during the 12 months. If a white collar worker was earning 4 hours/pay
period from January through September, and then earned 6 hours/pay pe-
riod in October through December, the table values would appear as:

4
Hours/Pay

Period

6
Hours/Pay

Period

8
Hours/Pay

Period

White Collar 1 1
Blue Collar
Farm Worker

TPL7235 date = 2/22/93 time = 12:45:13 PM

If we wanted a count of all months for which a worker was in each leave
category, we would need an observation variable that could count at the
MONTH level in the record. For this purpose, we could use the special
observation variable that is created by TPL TABLES for each repeat-
ing group. This observation variable has the same name as the repeating
group variable but with "_OBS" appended to the name. For our sample
codebook, TPL TABLES would have created observation variables called
MONTH_OBS and HOUR_TYPE_OBS. These observation variables have
a value of 1 for each repetition in their respective repeating groups. They
have null labels (''), so if you use them in TABLE statements, no labels
will print.

Nesting the special observation variable MONTH_OBS into the above table
gives a count of all months for which a worker was in each leave category.

	 Repeating Groups 306

Note that since MONTH_OBS has a null label, no label is printed for it,
although it does affect the contents of the data cells.

TABLE	G14:		HEADING	MONTH_OBS	BY	LEAVE_CATEGORY,
	 STUB	OCCUPATION;

4
Hours/Pay

Period

6
Hours/Pay

Period

8
Hours/Pay

Period

White Collar 9 3
Blue Collar
Farm Worker

TPL7235 date = 2/22/93 time = 12:45:13 PM

RULE 5 The inclusion of one or more repeating groups in a codebook
that describes a hierarchical data file will cause the default observation
variable COUNT to be transferred from the lowest level of the hierarchy
to the top level. Thus, in cross tabulations that contain only control
variables, records will be counted at the top level of the hierarchy rather
than at the lowest level.

If you are using repeating groups in hierarchical data files, we recommend
that you add explicit record names to cross tabulations that contain only
control variables so that you can be sure of getting counts at the correct
level. This can be done by nesting (with BY) the record name for the ap-
propriate level into any cross tabulations that contain only control variables.
If you do not want the record name or label to show in the table, assign a
null '' label to the record.

Limits on the Use of Repeating Groups in Tables

1. More than one independent repeating group cannot be used within a
single table request, even if they are used in separate TABLE state-
ments. For example, if each record contains a repeating group of
MONTHS and a repeating group of INDUSTRIES, only one of the two
can be referenced in the same table request. Nested repeating groups
(groups within groups) are not considered independent and can be used
together.

	 Repeating Groups 307

2. In a hierarchical data file, a repeating group can appear at any hier-
archical level; however, the group cannot be referenced together with
any variable which is contained in a record below that of the record
containing the group. This is because there is no clear interpretation of
an intra-record hierarchy (the repeating group) working together with
lower level hierarchical records.

Repeating Group Variables in Computations

The repeating group name (control) and any control variables within
the group can be used in Conditional Compute statements. Observation
variables within the group can be used everywhere that other observation
variables can be used. If a repeating group variable or variables within a
group are used in COMPUTE statements, the result is a new variable in
the group with a sub-record hierarchical level number equal to the lowest
(highest numerical) of any variable used. For example,

COMPUTE	NET_INCOME	=	EARNINGS	-	TAXES_WITHHELD;

Since both EARNINGS and TAXES are in the repeating group called
MONTH, the computation will be done for each repetition of MONTH.
The computed variable NET_INCOME will be treated like the other vari-
ables in the MONTH group and will be associated with the same level as
EARNINGS and TAXES_WITHHELD so that the use of NET_INCOME
in a TABLE statement will follow the same rules as using EARNINGS or
TAXES_WITHHELD.

Limiting Tabulations to Certain Occurrences with DEFINE
Statements

Tabulations can be limited to one or any combination of occurrences of a
repeating group variable.

For example, if tabulations are to be limited to the January and December
occurrences of a repeating group called MONTH, then a DEFINE such as
the following can be used:

DEFINE	JAN_AND_DEC	ON	MONTH;
	 'January	and	December'		 IF			1;
																					 	 	 	 IF		12;

Nesting JAN_AND_DEC into the table will cause all totals of the same
classification within MONTH to be combined for January and December.
The second through the eleventh months in each record will be ignored.

	 Repeating Groups 308

To get separate totals for January and December, the DEFINE would then
appear as:

DEFINE	JAN_AND_DEC	ON	MONTH;
	 'January'	 IF			1;
	 'December'	 IF		12;

Using Dummy Repeating Groups to Associate Repeti-
tions

The fields within a repeating group do not need to be contiguous, because
they can be joined with the CONTINUED option. However, the repeti-
tions for repeating groups must be contiguous within a record. If you have
fields that you would like to use together as a repeating group, but they are
separated by other fields, even on different levels of a hierarchy, dummy
repeating groups can sometimes be used to effectively pull the repetitions
together as if they were side by side. A specific example will be used to
illustrate this.

Note that the technique is easiest to use with observation variables. For
control variables with numeric values, redefines can be used to create
equivalent observation variables. For control variables with non-numeric
values, corresponding observation variables with numeric values must be
created using conditional computes.

Let us assume that our data file is hierarchical, with records for families at
level 0, and records for persons at level 1. We will suppose that each fam-
ily record contains a variable indicating the state within which the family
resides and another variable with the family income. Each person record
contains a variable indicating the state within which that person was born.
We will assume that both state variables are observation and have the same
coding structure.

We want to produce a table in which the stub has one row for each state.
The heading has two columns to count persons, one for persons residing in
each state, the other for persons born in each state. A third column con-
tains the total family income for families either residing in each state or
containing members born in that state.

Assuming that the names of the two records are "FAMILIES" and "PER-
SONS", we add the following information within the codebook description
of the PERSONS record:

	 Repeating Groups 309

BEGIN	GROUP	DUMMY_GROUP	'State	of'	REPEATS	2
	 ('Birth',	 'Residence')
	 FILLER	1
END	GROUP	DUMMY_GROUP

This group can be added to the codebook even though there is really no
group structure within the actual data record. The "dummy" repeating
group must replace one byte of FILLER, or it can overlay the space of
another variable if an appropriate REDEFINE is used. For example, the
"dummy" group could be inserted in front of the variable AGE, and the
AGE entry could then begin with:

AGE	REDEFINES	DUMMY_GROUP

In the table request, a conditional compute statement will be used to asso-
ciate each state variable with a repeating group occurrence. The technique
is as follows:

	COMPUTE	COMBINED_STATES	=
	 STATE_OF_BIRTH	 	 IF		DUMMY_GROUP	=	1;
	 STATE_OF_RESIDENCE	 IF		DUMMY_GROUP	=	2;

A DEFINE statement will then create the desired state labels common to
both occurrences. The proper values of state code for each state must be
used on the right-hand side of the ‘IF’ as shown in the next DEFINE state-
ment.

DEFINE	STATE_LABELS	ON	COMBINED_STATES;
	 ILLINOIS	 IF	1;
	 OHIO	 	 IF	2;
	 FLORIDA	 IF	3;
	 .
 .
 .

The TABLE statement will then be:

TABLE	G15:		HEADING	PERSONS	BY	DUMMY_GROUP
	 THEN	INCOME,
	 STUB	TOTAL	THEN	STATE_LABELS;

The table would appear as:

	 Repeating Groups 310

Persons

IncomeState of

Birth Residence

Total 7 7 115,054
ILLINOIS 2 3 72,130
OHIO 3 1 42,924
FLORIDA 2 3 84,424

TPL5659 date = 2/23/93 time = 6:47:10 PM

Note that if other variables (such as INCOME in the above example) are
concatenated with the "dummy" repeating group, the tabulations for these
other variables will be correct, but the meaning of the numbers may be
obscure.

Additional Sample Tables Using Repeating Groups

To provide more examples of how repeating groups work, we show a small
codebook followed by sample data records and two table requests which
reference the codebook and data. It is important to note that two separate
table requests are required to produce all of the tables because only one
repeating group (not counting nested groups) can be accessed in one table
request. The table contents are explained in the table titles.

BEGIN	HH	CODEBOOK

HOUSEHOLDS	MASK	999	RECORD

CITY	CON	2
			(
							 'Concordia'		=		1
							 'Frostburg'		=		2
							 'Silver	Spring'		=		3
)
BEGIN	GROUP	SERVICES	REPEATS	3
			(
							 'Police	Protection',
							 'Library	Services',
							 'Street	Maintenance'
)

	 Repeating Groups 311

						EVALUATION	CON	1
									(
	 				 'Good'		=			 ‘G’
	 				 'Fair'	 	=		 ‘F’
	 				 'Poor'		=			 ‘P’
	 				 'No	Response'		=		 '	 '
)
END	GROUP	SERVICES

BEGIN	GROUP	MEMBERS	'Family	Members'	REPEATS	5
			YEARS_OLD	CON	2
			CONDITION	LABEL	IS	VALUE	'	Years	Old'	(10:45)
			SEX	'Sex	of	Respondent'	CON	1
						(
	 'Male'		=			 ‘M’
	 'Female'		=			 ‘F’
	 'Not	Reported'		=		 '	 '
)
			VIEWING_HOURS	'Weekly	Hours	of	TV	Viewing'	CON	1
						(
	 'Less	than	5'			 =		 'A'
	 '6	to	10'		 =		 'B'
	 'More	than	10'		=		 'C'
	 'No	Response'		=		 '	 '
)
			 INCOME	'Income'		MASK	$99,999	DATA	ERROR	=	NULL		OBS	5
END	GROUP	MEMBERS

END	HH	CODEBOOK

In the above MEMBERS repeating group, no names or labels have been
assigned to the repetitions because it is assumed that the family members
may be stored in the record in any order. If tabulations are to be done
based on age, sex, income, and viewing hours and not on whether the
members are listed in order by husband, wife, etc., then names or labels for
each repetition are not necessary.

	 Repeating Groups 312

The following four data records were used in producing the tables shown
on following pages.

CITY		 	 	 	 End	of	record
|	 	 	 	 	 |
|	 SERVICES	REPEATING	GROUP	(3)	 |
	MEMBERS REPEATING GROUP (5)	
01	 GFP	37MC25000	 32FC15000	 11M	 |
01	 GFP	37MC25000	 32FC15000	 11M	 |
02	 PFG	25MA15000	 24FB10000	 	 |
03	 FF			45M		40000	 45FB	 20FA15000	18MC08000	16FA	 |

First Table Request

USE	HH	CODEBOOK;

TABLE	T1	'TOTAL	THEN	SERVICES,	SERVICES_OBS	BY	EVALUATION;'//
	 'Summary	of	ratings	for	each	type	of	municipal	service.':
	 	 STUB	TOTAL	THEN	SERVICES,
	 	 HEADING		SERVICES_OBS	BY	EVALUATION;

TABLE	T2	'CITY,	EVALUATION;'//		 'Count	of	households	in	each	city	 '
	 'which	rated	at	 least	one	evaluation	category,	without	reference	'
	 'to	type	of	municipal	service.		The	default	observation	variable	is	 '
	 'the	record	name	HOUSEHOLDS.		To	count	total	occurrences	of	 '
	 'all	evaluations,	the	group	observation	variable	SERVICES_OBS,	'
	 'generated	by	TPL	TABLES,	would	need	to	be	nested	'
	 'into	the	table.':
	 	 STUB	CITY,		HEADING	EVALUATION;

TABLE	T3	'SERVICES	BY	EVALUATION,	TOTAL	THEN	CITY;'//
	 'Ratings	of	each	municipal	service	by	city.':
	 	 STUB	SERVICES	BY	EVALUATION,
	 	 HEADING	TOTAL	THEN	CITY;

TABLE	T4	'EVALUATION	BY	SERVICES,	TOTAL	THEN	CITY;'//
	 'Ratings	of	each	municipal	service	within	the	major	 '
	 'category	of	evaluation	for	each	city.':
	 	 STUB	EVALUATION	BY	SERVICES,
	 	 HEADING	TOTAL	THEN	CITY;

	 Repeating Groups 313

TABLE	T5	'TOTAL	THEN	EVALUATION,	TOTAL	THEN	HOUSEHOLDS	'
	 'BY	CITY;'//		 'Counts	households	which	made	at	 least	one	of	each	'
	 'type	of	evaluation	in	each	city.		If	a	particular	household	has	more	'
	 'than	one	of	the	same	type	of		evaluation,	the	household	will	be	'
	 'counted	only	once	for	that	type.':

	 	 STUB	TOTAL	THEN	EVALUATION,
	 	 HEADING	TOTAL	THEN	HOUSEHOLDS	BY	CITY;

TOTAL THEN SERVICES, SERVICES_OBS BY
EVALUATION;

Summary of ratings for each type of municipal service.

Good Fair Poor No
Response

Total 3 5 3 1
Police Protection 2 1 1 –
Library Services – 4 – –
Street Maintenance 1 – 2 1

– Data not available.

CITY, EVALUATION;

Count of households in each city which rated at least one
evaluation category, without reference to type of municipal
service. The default observation variable is the record name
HOUSEHOLDS. To count total occurrences of all
evaluations, the group observation variable
SERVICES_OBS, generated by TPL TABLES, would need to
be nested into the table.

Good Fair Poor No
Response

Concordia 2 2 2 –
Frostburg 1 1 1 –
Silver Spring – 1 – 1

– Data not available.

	 Repeating Groups 314

SERVICES BY EVALUATION, TOTAL THEN CITY;

Ratings of each municipal service by city.

Total Concordia Frostburg Silver
Spring

Police Protection
Good 2 2 – –
Fair 1 – – 1
Poor 1 – 1 –

Library Services
Fair 4 2 1 1

Street Maintenance
Good 1 – 1 –
Poor 2 2 – –
No Response 1 – – 1

– Data not available.

EVALUATION BY SERVICES, TOTAL THEN CITY;

Ratings of each municipal service within the major category
of evaluation for each city.

Total Concordia Frostburg Silver
Spring

Good
Police Protection 2 2 – –
Street Maintenance .. 1 – 1 –

Fair
Police Protection 1 – – 1
Library Services 4 2 1 1

Poor
Police Protection 1 – 1 –
Street Maintenance .. 2 2 – –

No Response
Street Maintenance .. 1 – – 1

– Data not available.

	 Repeating Groups 315

TOTAL THEN EVALUATION, TOTAL THEN
HOUSEHOLDS BY CITY;

Counts households which made at least one of each type of
evaluation in each city. If a particular household has more
than one of the same type of evaluation, the household will
be counted only once for that type.

Total

HOUSEHOLDS

Concordia Frostburg Silver
Spring

Total 4 2 1 1
Good 3 2 1 –
Fair 4 2 1 1
Poor 3 2 1 –
No Response 1 – – 1

– Data not available.

Second Table Request

USE	HH	CODEBOOK;

SELECT	IF	SEX	=	'M'	OR	SEX	=	'F';

POST	COMPUTE	AVG_HH_INCOME	'Average	Household	Income'
	 MASK	$99,999	=	INCOME	/	MEMBERS_OBS;

TABLE	RG1	'CITY	BY	SEX,	MEMBERS_OBS	BY	VIEWING_HOURS;'//
	 'Count	of	family	members	in	each	city	by	sex	and	category	'
	 'of	TV	viewing.':
	 	 STUB	CITY	BY	SEX,
	 	 HEADING	MEMBERS_OBS	BY	VIEWING_HOURS;

TABLE	RG2	'VIEWING	HOURS	BY	(MEMBERS_OBS	THEN	INCOME),	 '
	 'CITY;'//		 'Counts	members	and	aggregates	income	according	to	TV	'
	 'viewing	pattern.		Note	that	since	MEMBERS_OBS	has	a	null	 label,	 '
	 'its	data	rows	"collapse	up"	and	are	labelled	by	VIEWING_HOURS	'
	 'categories.':
	 	 STUB	VIEWING	HOURS	BY	(MEMBERS_OBS	THEN	
	 	 	 INCOME),		
	 	 HEADING	CITY;

	 Repeating Groups 316

TABLE	RG3	'CITY,	INCOME;'//	 'Income	aggregation	for	all	members	by	city.':
	 	 STUB	CITY,		HEADING	INCOME;

TABLE	RG4	'TOTAL	THEN	CITY,	MEMBERS_OBS	BY	(TOTAL	THEN	'
	 'SEX);'//		 'Counts	members	according	to	city	and	sex.':
	 	 STUB	TOTAL	THEN	CITY,
	 	 HEADING	MEMBERS_OBS	BY	(TOTAL	THEN	SEX);

TABLE	RG5	'(INCOME	THEN	MEMBERS_OBS	THEN	AVG_HH_INCOME)'
	 '	BY	(TOTAL	THEN	SEX),		TOTAL	THEN	VIEWING_HOURS;'//
	 'Member	income,	member	count	and	average	household'
	 '	 income	classified	by	sex	and	hours	of	TV	viewing.':
	 	 STUB	(INCOME	THEN	MEMBERS_OBS	THEN
	 	 	 AVG_HH_INCOME)	BY	(TOTAL	THEN	SEX),
	 	 HEADING	TOTAL	THEN	VIEWING_HOURS;

TABLE	RG6	'(TOTAL	THEN	SEX)	BY	YEARS_OLD,	MEMBERS_OBS	'
	 'THEN	VIEWING_HOURS	BY	(MEMBERS_OBS	THEN	INCOME);'//
	 'Counts	members	and	aggregates	member	income	according	to	 '
	 'hours	of	TV	viewing,	age	and	sex.		Note	that	a	FORMAT	'
	 'statement	has	been	used	to	replace	the	null	 label	originally	 '
	 'generated	for	the	special	repeating	group	observation	variable	'
	 'called	MEMBERS_OBS.':
	 	 STUB	(TOTAL	THEN	SEX)	BY	YEARS_OLD,
	 	 HEADING	MEMBERS_OBS	THEN	VIEWING_HOURS	BY
		 	 	 (MEMBERS_OBS	THEN	INCOME);

	 Repeating Groups 317

CITY BY SEX, MEMBERS_OBS BY VIEWING_HOURS;

Count of family members in each city by sex and category of
TV viewing.

Weekly Hours of TV Viewing

Less than
5 6 to 10 More than

10
No

Response

Concordia
Sex of Respondent
Male – – 2 2
Female – – 2 –

Frostburg
Sex of Respondent
Male 1 – – –
Female – 1 – –

Silver Spring
Sex of Respondent
Male – – 1 1
Female 2 1 – –

– Data not available.

TPL10575 date = 2/23/93 time = 11:42:14 AM

VIEWING_HOURS BY (MEMBERS_OBS THEN
INCOME), CITY;

Counts members and aggregates income
according to TV viewing pattern. Note that since
MEMBERS_OBS has a null label, its data rows
"collapse up" and are labelled by
VIEWING_HOURS categories.

Concordia Frostburg Silver
Spring

Weekly Hours of TV
Viewing

Less than 5 – 1 2
Income – $15,000 $15,000

6 to 10 – 1 1
Income – $10,000 –

More than 10 4 – 1
Income $80,000 – $8,000

No Response 2 – 1
Income – – $40,000

– Data not available.

TPL10575 date = 2/23/93 time = 11:42:14 AM

	 Repeating Groups 318

CITY, INCOME;

Income aggregation for all
members by city.

Income

Concordia $80,000
Frostburg 25,000
Silver Spring 63,000

TPL10575 date = 2/23/93 time = 11:42:14 AM

TOTAL THEN CITY, MEMBERS_OBS BY (TOTAL THEN
SEX);

Counts members according to city and sex.

Total

Sex of Respondent

Male Female Not
Reported

Total 13 7 6 –
Concordia 6 4 2 –
Frostburg 2 1 1 –
Silver Spring 5 2 3 –

– Data not available.

TPL10575 date = 2/23/93 time = 11:42:14 AM

	 Repeating Groups 319

(INCOME THEN MEMBERS_OBS THEN AVG_HH_INCOME) BY
(TOTAL THEN SEX), TOTAL THEN VIEWING_HOURS;

Member income, member count and average household income
classified by sex and hours of TV viewing.

Total

Weekly Hours of TV Viewing

Less than
5 6 to 10 More than

10
No

Response

Income
Total $168,000 $30,000 $10,000 $88,000 $40,000
Sex of Respondent
Male 113,000 15,000 – 58,000 40,000
Female 55,000 15,000 10,000 30,000 –
Total 13 3 2 5 3
Sex of Respondent
Male 7 1 – 3 3
Female 6 2 2 2 –

Average Household
Income

Total $12,923 $10,000 $5,000 $17,600 $13,333
Sex of Respondent
Male 16,143 15,000 – 19,333 13,333
Female 9,167 7,500 5,000 15,000 –

– Data not available.

TPL10575 date = 2/23/93 time = 11:42:14 AM

	 Repeating Groups 320

(T
O

T
A

L
 T

H
E

N
 S

E
X

)
B

Y
 Y

E
A

R
S

_O
L

D
, M

E
M

B
E

R
S

_O
B

S
 T

H
E

N
 V

IE
W

IN
G

_H
O

U
R

S
 B

Y
 (

M
E

M
B

E
R

S
_O

B
S

T
H

E
N

 IN
C

O
M

E
);

C
ou

nt
s

m
em

be
rs

 a
nd

 a
gg

re
ga

te
s

m
em

be
r

in
co

m
e

ac
co

rd
in

g
to

 h
ou

rs
 o

f T
V

 v
ie

w
in

g,
 a

ge
 a

nd
 s

ex
.

N
ot

e
th

at
 a

F
O

R
M

A
T

 s
ta

te
m

en
t h

as
 b

ee
n

us
ed

 to
 r

ep
la

ce
 th

e
nu

ll
la

be
l o

rig
in

al
ly

 g
en

er
at

ed
 fo

r
th

e
sp

ec
ia

l r
ep

ea
tin

g
gr

ou
p

ob
se

rv
at

io
n

va
ria

bl
e

ca
lle

d
M

E
M

B
E

R
S

_O
B

S
.

M
em

be
r

C
ou

nt

W
ee

kl
y

H
ou

rs
 o

f T
V

 V
ie

w
in

g

Le
ss

 th
an

 5
6

to
 1

0
M

or
e

th
an

 1
0

N
o

R
es

po
ns

e

M
em

be
r

C
ou

nt
In

co
m

e
M

em
be

r
C

ou
nt

In
co

m
e

M
em

be
r

C
ou

nt
In

co
m

e
M

em
be

r
C

ou
nt

In
co

m
e

T
ot

al 11
 Y

ea
rs

 O
ld

...
...

...
...

.
2

–
–

–
–

–
–

2
–

16
 Y

ea
rs

 O
ld

...
...

...
...

.
1

1
–

–
–

–
–

–
–

18
 Y

ea
rs

 O
ld

...
...

...
...

.
1

–
–

–
–

1
$8

,0
00

–
–

20
 Y

ea
rs

 O
ld

...
...

...
...

.
1

1
$1

5,
00

0
–

–
–

–
–

–
24

 Y
ea

rs
 O

ld
...

...
...

...
.

1
–

–
1

$1
0,

00
0

–
–

–
–

25
 Y

ea
rs

 O
ld

...
...

...
...

.
1

1
 1

5,
00

0
–

–
–

–
–

–
32

 Y
ea

rs
 O

ld
...

...
...

...
.

2
–

–
–

–
2

 3
0,

00
0

–
–

37
 Y

ea
rs

 O
ld

...
...

...
...

.
2

–
–

–
–

2
 5

0,
00

0
–

–
45

 Y
ea

rs
 O

ld
...

...
...

...
.

2
–

–
1

–
–

–
1

$4
0,

00
0

S
ex

 o
f R

es
po

nd
en

t
M

al
e 11

 Y
ea

rs
 O

ld
...

...
...

...
.

2
–

–
–

–
–

–
2

–
18

 Y
ea

rs
 O

ld
...

...
...

...
.

1
–

–
–

–
1

 8
,0

00
–

–
25

 Y
ea

rs
 O

ld
...

...
...

...
.

1
1

 1
5,

00
0

–
–

–
–

–
–

37
 Y

ea
rs

 O
ld

...
...

...
...

.
2

–
–

–
–

2
 5

0,
00

0
–

–
45

 Y
ea

rs
 O

ld
...

...
...

...
.

1
–

–
–

–
–

–
1

 4
0,

00
0

F
em

al
e

16
 Y

ea
rs

 O
ld

...
...

...
...

.
1

1
–

–
–

–
–

–
–

20
 Y

ea
rs

 O
ld

...
...

...
...

.
1

1
 1

5,
00

0
–

–
–

–
–

–
24

 Y
ea

rs
 O

ld
...

...
...

...
.

1
–

–
1

 1
0,

00
0

–
–

–
–

32
 Y

ea
rs

 O
ld

...
...

...
...

.
2

–
–

–
–

2
 3

0,
00

0
–

–
45

 Y
ea

rs
 O

ld
...

...
...

...
.

1
–

–
1

–
–

–
–

–

–
D

at
a

no
t a

va
ila

bl
e.

T
P

L1
05

75
 d

at
e

=
 2

/2
3/

93
 ti

m
e

=
 1

1:
42

:1
4

A
M

	 Labels 321

C h a p t e r 2 0

Labels

CreATing And fOrmATTing PrinT LABeLS

Any variable can have a print label associated with it. The print label fol-
lows the variable name when the variable is described in the codebook or
created in a table request. When the variable is used in a table, this label
will print in place of the original variable name. Other table elements that
can have print labels are listed below. Three important table elements,
table titles, footnote texts and TEXT masks, are print labels and can con-
tain any of the formatting elements described in this chapter.

If you do not specify print labels, default labels will be created for tables.
Default labels are satisfactory for identifying the contents of a table, but
you may wish to specify your own labels to make them more informative
or to take advantage of some of the label formatting options.

This chapter describes all of the formatting options you can use in individ-
ual labels. For a description of default treatments, such as default align-
ment of stub labels or table titles, see the chapter on "Automatic Format-
ting".

A typical label consists of text that is bounded by single or double quote
marks. The text can include spaces, upper and lower case letters, and
special characters. Many formatting options are available for print labels.
Break points can be chosen for multiline labels, and alignment can be
specified. Labels can also contain references to footnotes. You can vary
the type styles within labels by inserting font specifications.

	 Labels 322

Print label options apply to all of the following table elements:

1. Records described in the Codebook
2. Control variables
3. Control variable values
4. Observation variables
5. Character variables
6. Condition values
7. Table titles
8. New variables created with statements such

as DEFINE and COMPUTE
9. Footnote texts
10. TEXT masks

Automatic Print Labels

When print labels are not specified, they are automatically created accord-
ing to the following rules:

Observation Variables

If no label is assigned to an observation variable, the variable name is
used as the print label. This rule applies to variables that are described as
RECORD or OBS in the codebook and to variables that are computed in a
table request.

Control Variables and Their Values

If no label is assigned to a control variable, no label is printed for the vari-
able. If no labels are assigned to the values, labels are generated from the
condition names, if present, or from the values themselves. These rules ap-
ply to variables described as CONTROL in the codebook and to variables
created by DEFINE statements in a table request.

Table Titles

If no table title is assigned in the TABLE statement, the table name is used
as the title.

Whenever a name is used as a label, any letters used in the name are
printed in upper case. For example, if the observation variable called
Income is not followed by a print label, the name INCOME will be used
as the default print label. If the name contains underscore (_) characters,

	 Labels 323

they will be replaced with blanks when the name is printed. For example,
the name Average_Income will print as AVERAGE INCOME.

Creating Your Own Print Labels

Labels can be created in the codebook or table request. They can also be
created or replaced using REPLACE statements in a FORMAT request.

A simple label consists of a text string surrounded by single or double
quotes. An example of a simple label assigned in a codebook is:

INCOME	'Annual	Income	in	Thousands'	OBS	5

When the variable INCOME is used in a TABLE statement the label An-
nual Income in Thousands will be used to identify INCOME values in
the table.

In the codebook, print labels can optionally be included following variable
names and can be assigned to control variable values. Examples of print
labels assigned in a codebook are:

FAMILIES	'Family	Count'		RECORD
AMT_WK	'Dollars	spent	per	week'	OBS	7
AUTO	'Automobile	owned?'		CON	1
			(
	 YES	'Yes'		=	1
	 NO	'No'			=	2
)
HEADS_WORK		'Class	of	work	of	family	head'	CON	1
			(
	 '	White	Collar'		=	1
	 '	Blue	Collar'		=	2
	 '	Other'		=	3
)

Within a table request, any of the TPL statements that create new variables
can optionally include print labels. A print label can also follow the table
name in a TABLE statement, in which case that print label will be used as
the table title. The following examples show uses of print labels within a
table request.

	 Labels 324

COMPUTE	INCOME	'Total	Family	Income'	=	
	 	HEAD_INCOME	+	OTHER_INCOME;

DEFINE	INC_CL	'Income	Classifications'	ON	INCOME;
	 'Less	than	$5,000'	 IF	<	5000;
	 'Less	than	$10,000'	 IF	<10000;
	 'At	 least	$15,000'	 IF	>=15000;

POSTCOMPUTE	AVG_INC	'Average	Income'	=	
	 INCOME	/	FAMILIES;

TABLE	FAM_DAT	'Family	Income	Classifications'	:
	 STUB	 INC_CL,	HEADING	INCOME	THEN	AVG_INC;

If an observation variable does not have a print label, the variable name
will be used as the label.

If a control variable has a print label, the label spans over the condition la-
bels for that variable. If a control variable does not have a label, then only
the condition labels will print.

Characters Allowed in Label Strings

With only a few exceptions, label strings can contain any character that is
available on your keyboard. The quote and backslash (\) characters must
be entered in a special way as described in the next section.

We recommend that you not enter tabs or carriage returns (typed with the
<Enter> key) in label strings. Tabs will be printed as blanks, and carriage
returns will be removed before printing. You can get the effect of a tab at
the beginning of a label by using the INDENT option described later in
this chapter. If you are entering a label string that is longer than one line,
you can break it into multiple segments by ending each line with a quote,
typing <Enter>, and continuing on the next line beginning with another
quote. The segments will be joined when the label is printed.

If there are characters available on your printer that are not on your key-
board, you can enter them in label strings either by using a character name
or code. A character name is preceded by & and followed by ; . For
examples É represents an E with an acute accent above it. Charac-
ter names are case sensitive. é represents e with an accute accent
above it.

	 Labels 325

Character codes are entered by typing \nnn where nnn is the 3 digit
decimal code for the character. Three digits are always required. If the
character can be represented by fewer than 3 digits, add leading zeros. For
example, for a character represented by the code 65, enter \065.

The value nnn must be the DECIMAL code for the character. The char-
acter code tables in some software manuals show the octal or hexidecimal
codes for the characters. If you are referring to such a table, you must
convert the code to its decimal equivalent. Character set tables showing
decimal codes and character names are included at the end of this manual
in an appendix.

Quotes and Back slashes in Labels

Since quotes are used to show the beginning and end of a label string, they
must be entered in a special way if they are to be used inside a label string.
If single quotes are used at the beginning and end of the label string, two
successive single quotes are required to print one single quote within the
label. If double quotes are used at the beginning and end of the label
string, two successive double quotes are required to print a double quote
within the label.

String expression	 Will print as

'''FIRST	EXAMPLE'''	 'FIRST	EXAMPLE'
'USER''S	CHOICE'	 USER'S	CHOICE
"User's	Choice"	 User's	Choice
'BUT	''LESS	THAN''	100'	 BUT	'LESS	THAN'	100
"40	BUT	LESS	THAN	60"""	 40	BUT	LESS	THAN	60"
"'"	 	 '	 (a	single	quote	inside	double	quotes)
'"'	 	 "	 (a	double	quote	inside	single	quotes)
'	 '	 	 	 (a	blank	inside	single	quotes)

The backslash (\) character has a special use for entering characters that
are not on the keyboard. If you want to include a backslash charac-
ter in a label, enter a double backslash. For example, the label string
'\\In Thousands\\' will print as:

	 \In	Thousands\

Label Length

Label length is virtually unlimited. The practical limit on the length of a
label is imposed by the requirement that there must be room for at least
one line of data on each page of a table. In other words, if a label is so
long that it takes up a whole page, there will be no space left for the data.

	 Labels 326

The Null Label

The null label consists of two consecutive quote marks with nothing be-
tween them. When a variable with a null label is nested with another vari-
able, no label is printed for the variable with the null label. The difference
between a null label and a blank label is that the null label will effectively
disappear from the table, while the blank label will be printed just like any
other label.

Null labels can be especially useful in the case where you want to elimi-
nate certain values from a tabulation with a DEFINE statement, but you do
not want any extra labels printed for the defined variable. For example,

DEFINE	SELECTED_REGIONS	ON	REGION;
	 ''	 IF	1;
	 	 IF	3;

If SELECTED_REGIONS is nested into one of the table expressions, only
regions 1 and 3 will be included in the tabulation, but no identifying label
will be printed for the variable SELECTED_REGIONS.

The null label is also very useful where a label for an observation variable
would be redundant. For example, if the variable INCOME is to be used
in a table, but the table title includes all necessary information about what
is being tabulated, you could prevent an INCOME label from being printed
in the stub or heading with a POST COMPUTE that assigns a null label:

COMPUTE	NO_LABEL	''	=	INCOME;

Then use the variable NO_LABEL in the TABLE statement instead of
INCOME.

Note that if only a null label is provided for a table wafer, column or row,
it will be completely unidentified. If a wafer has only a null label, there
will be no label for the wafer. If a column has only a null label, the space
where a label would be will be completely blank. If a row, the stub entry
for the row will be blank all the way across. In other words, there will be
no label and no stub filler characters.

Labels with Multiple Segments

The print label can be expressed as a single label string or as two or more
segments separated by at least one space, as in:

'ALL	NONMANUFACTURING'		 '	 INDUSTRIES	FOR	1985-90'

	 Labels 327

When multiple segments are used, they will be interpreted as one label
combining the individual components. No space will be inserted to sepa-
rate the merged segments, so for each pair of segments, a space must be
included to separate words. One advantage of this format is that each
segment can be entered on a separate line, although the segments will be
merged as one continuous label. Another advantage is that label formatting
options can be inserted between label segments.

Creating Extra Labels

The LABEL Statement

The LABEL statement lets you create variables that can be used to add
labels to the wafer, stub or heading of a table. It can be especially useful
if you need to add a label that spans over two or more variables in the stub
or heading.

Format	 LABEL		label-variable		 'print	 label'	;

The label-variable behaves exactly the same as the built-in variable TO-
TAL but you can assign the label of your choice. The print label in a
LABEL statement can contain any of the elements that are allowed in other
types of TPL TABLES print labels, for example alignments, footnote refer-
ences or SPANNER attributes. Any number of label variables can be used
in a table and they can be nested or concatenated in any dimension.

An example of a label statement is:

LABEL			ALL_POP		’All	population	age	16	and	above’;

If the label called ALL_POP is used in the following table heading:

HEADING		ALL_POP		BY		(TOTAL	THEN	AVG_INCOME);

then the ALL_POP label will span across the top of the heading.

If you want to change the label in a format request, you can reference the
label variable the same way as you can any other variable. For example:

FOR	VARIABLE	ALL_POP:
	 REPLACE	LABEL	WITH	'New	label';

	 Labels 328

The following examples illustrate a few of the uses for label variables. We
begin with a simple table statement.

TABLE	SALARY	'Pay	information	by	sex':
HEADING		MIN_RATE	THEN	MED_RATE	THEN	MAX_RATE;
STUB		SEX;

Pay information by sex

Min Rate Median
Rate Max Rate

Female $5.33 $7.35 $24.19
Male 5.00 11.83 23.19

Assume that we want to add a label to the table heading that spans across
the observation variables for minimum, median and maximum pay and
says 'Hourly Wages'. We can do this easily by creating a label variable and
nesting it into the table heading.

LABEL			HOURLY			 'Hourly	Wages';

TABLE	SALARY	'Pay	information	by	sex':
HEADING		HOURLY	BY	(MIN_RATE	THEN	MED_RATE
	 THEN	MAX_RATE);
STUB		SEX;

Pay information by sex

Hourly Wages

Min Rate Median
Rate Max Rate

Female $5.33 $7.35 $24.19
Male 5.00 11.83 23.19

	 Labels 329

Similarly, we can nest the label variable in the stub.

TABLE	SALARY	'Pay	information	by	sex':
HEADING		MIN_RATE	THEN	MED_RATE	THEN	MAX_RATE;
STUB		HOURLY	BY	SEX;

Pay information by sex

Min Rate Median
Rate Max Rate

Hourly Wages
Female $5.33 $7.35 $24.19
Male 5.00 11.83 23.19

In both of the above uses of the label variable, the label variable adds noth-
ing to the table except the label. If we concatenate the label variable in
the table using THEN, it will add one or more rows, columns or wafers to
the table with the same values we would get by using the TOTAL variable.
The next example shows that if we concatenate the label variable at the be-
ginning of the table stub, we add a total row with the label 'Hourly Wages'.

TABLE	SALARY	'Pay	information	by	sex':
HEADING		MIN_RATE	THEN	MED_RATE	THEN	MAX_RATE;
STUB		HOURLY	THEN	SEX;

Pay information by sex

Min Rate Median
Rate Max Rate

Hourly Wages $5.00 $7.44 $24.19
Female 5.33 7.35 24.19
Male 5.00 11.83 23.19

Dummy Variables for Extra Labels

Dummy variables can be created with DEFINE statements and nested or
contatenated into tables to add extra labels. The LABEL statement, also
described in this chapter, provides a more simple, straight-forward way
of doing the exactly the same thing. In case you are modifying a table
request that was written before the LABEL statement was introduced, you
may need to know how "dummy" variables work.

	 Labels 330

A dummy variable with a label is created by a DEFINE statement that has
a single entry and ALL as the old variable value. The general format is:

DEFINE	dummy-var		ON		COUNT;
	 'Extra	Label'	IF		ALL;

If the variable dummy-var is nested into a table expression, as in:

dummy-var	BY	(variable1	THEN	variable2...)

the extra label will be printed in the table but will not affect the data values
in the tabulation.

Control of Label Breaks

If a print label is too long for its allotted space, it will be automatically di-
vided over two or more lines. If you want more precise control over label
break points, you can use two special formatting options.

Slashes

The first formatting option is provided by the use of the slash (/) symbol.
A slash inserted between two label segments will cause the second segment
to start on a new line. Each additional slash will cause the insertion of one
blank line. Each slash at the beginning or end of a label will cause one
blank line to be inserted.

Although slashes cause unconditional breaks, alignment of each segment is
according to whether the label is for a heading, stub, or table title. If the
labels are heading labels, each segment will be centered within the column
width. As a stub segment, the segment following the first slash will be in-
dented to the right. If there is a second slash followed by a third segment,
the third segment will be aligned under the second segment. Additional
slash/segment pairs will cause identical alignment.

Single slashes cause single spacing between segments. Multiple slashes
cause additional line spacing between segments. For example, three
slashes separating two print labels would cause triple spacing between
them. The expression,

'Row	One'/'Continue'/'Continue'//'Row	Two'

would print in a heading label as:

	 Labels 331

Row	One
Continue
Continue
(space)
Row	Two

and in a stub label as:

Row	One
			Continue
			Continue
			(space)
			Row	Two

If these segments were used in a table title, they would be treated simi-
larly to the heading label, except that each segment of the title would be
left justified within the table width unless an alignment keyword, such as
CENTER, is included in the title. In that case each segment would be
centered within the table width.

A codebook control variable entry might appear as follows:

INDUSTRY		/'Industry	Types'	CON	1	
			(
	 /'Manufacturing'		=		 'A'
	 /'Non-Manufacturing'		=		 'B'
	 /'Farming'		=		 'C'
)

The variable label, Industry Types, will begin one line below its normal
starting line. Each of the three condition names will be preceded by one
blank line.

If one or more slashes follow the last segment of stub text that is associ-
ated with a data line, the line of text will not be aligned with its data; that
is, the line spacing will be forced before the data line is printed. Place the
slashes before the text associated with the following stub entry to get the
spacing after the data line.

	 Labels 332

Conditional Hyphens

The second formatting option allows you to specify where the label should
break if it is too long for the available space. This conditional hyphenation
is best illustrated by an example.

'MANU'-'FAC'-'TUR'-'ING'

If there is enough space to print all of the components as one consecutive
string, they will appear as:

MANUFACTURING

If there is enough room for only the first seven characters plus a hyphen
they will appear as:

MANUFAC-

with TURING appearing on the next line. If only five spaces are avail-
able, MANU- will appear on one line. FACTURING will next be consid-
ered for the following line and segmented in the same way if necessary.

When a hyphen at the end of a label segment is followed by a conditional
hyphen and the label breaks at that point, only one hyphen will be dis-
played in the label.

Example For a column of width 10, the label 'Never-'-'Married' will be printed in the
heading as:

Never-
Married

Hierarchy of Label Break Points

Labels are divided into multiple lines according to the following priorities.

1. Unconditional Break ('segment' / 'segment')
2. Blank within label string ('segment segment')
3. Hyphen within label string ('segment-segment')
4. Conditional hyphen ('segment' - 'segment')

If none of the above break points are found, the label will be broken at
points that allow the segments to be printed with hyphens at the break
points.

	 Labels 333

Label Alignment

LEFT, RIGHT and CENTER

The words LEFT, RIGHT and CENTER can be used with a label to over-
ride the default alignment. Default alignment for different types of labels
can be changed with ALIGN statements as described in the FORMAT
chapter, but a specification of LEFT, RIGHT or CENTER in an individual
label will always override the default alignment.

Note that the word CENTER can also be spelled CENTRE.

LEFT, RIGHT and CENTER are called alignment markers. They can be
inserted at the beginning of a label before the first quote, at the end after
the last quote, or between label segments if there is more than one seg-
ment. For example:

TABLE	ONE
		 LEFT	'ESTABLISHMENT	DATA'
	 RIGHT	'ESTABLISHMENT	DATA'	/	/	/
	 LEFT	'Table	B-1.	Employees	on	nonagricultural	 '
	 	 'payrolls	by	industry'	/	/
	 	 '[in	thousands]':
	 	stub,	heading;

In this example, the title will be formatted as:

ESTABLISHMENT	DATA	 	 	 				ESTABLISHMENT	DATA

Table	B-1.	Employees	on	nonagricultural	payrolls	by	industry

[in	thousands]

As illustrated above, a label can have one or more alignment markers.
They affect the label according to the following rules.

1. If you put only one alignment marker in a label, regardless of its loca-
tion in the label, all segments of the label will take on the specified
alignment. For example, the following label with a single marker of
RIGHT will be formatted as two lines with both aligned to the right,
even though the word RIGHT is placed in the middle of the label.

'All	Establishments'	/	RIGHT	'Reporting	this	Year'	

	 Labels 334

 will print as:

All	Establishments
Reporting	this	Year	

2. If there are multiple alignment markers in a label, any label section
that does not have an explicit alignment marker is assumed to be left-
aligned.

 For alignment purposes, the first section of a label begins at the begin-
ning of the label. A section ends with any of the following label ele-
ments: /, RIGHT, LEFT, CENTER, RIGHT IN SPACE, SPACE, and
SPACE TO.

 For example, the label

CENTER	'Workers	Compensation'	/	 'Mining'	/	RIGHT	'January'

 has the sections:

'Workers	Compensation'
'Mining'
'January'

 The section 'Workers Compensation' is centered, because it is preceded
by CENTER. It ends with /. The section 'Mining' is left-aligned, be-
cause it has no explicit alignment marker. It is ended by both a / and
the word RIGHT. The section 'January' is right-aligned, because it is
preceded by RIGHT. If this is the table title, it will be displayed as:

Workers	Compensation
Mining

January

3. If there are two alignment markers between slashes, or between the
beginning and end of the label if there are no slashes, then the sections
will be placed on the same line with the specified alignments if there is
enough space on the line to do so. If an aligned section doesn't fit, it
will be placed on the next line. Consider the following table title:

TABLE	TITLE_SAMPLE
LEFT	'Workers	Compensation	Report'	RIGHT	'January'

	 Labels 335

 If the table is wide enough for all of the title characters to fit on one
line without overlapping, the complete title will be placed on one line
with a left-aligned section and a right-aligned section:

Workers	Compensation	Report	 January	

 If RIGHT and LEFT were reversed in this title as follows:

RIGHT	'Workers	Compensation	Report'	LEFT	'January'

 then 'Workers Compensation' would be right-aligned on one line and
'January' would be left-aligned on the next, since there would never be
space for the 'January' following the right-aligned 'Workers Compensa-
tion' section.

 For another example, suppose a table is 50 characters wide. This
means that the title space is 50 characters. The first section of label
is left-aligned and takes up 15 characters. The second section is to be
centered and takes up 26 characters. The centered section should start
at position 25 (the center) - 13 (half the length of the centered seg-
ment) = 12. But the first section extends beyond 12, so there is no
room for the centered section. Consequently, the centered section ap-
pears on a new line.

4. If you use multiple alignments within the same label, we recommend
that you explicitly divide your label into sections that will fit for each
line of the label and precede each section with the alignment of your
choice. That way, you will always get the expected result.

Alignment in Page Markers
The FORMAT statement called PAGE MARKER can only have an align-
ment specified at the beginning (before any label segments, if present).
This alignment applies to the entire page marker.

If you want a page marker with part on the left and part on the right, try
aligning the page marker LEFT and inserting SPACE TO in front of parts
of the marker to "push" them over to the desired location. Some experi-
menting may be needed to get things in the position you want. An ex-
ample is:

PAGE	MARKER	=	LEFT		SPACE	TO	3	cm	'Page	'	NUMBER
	 	 SPACE	TO	12.5	cm		 'HOUSEHOLD	DATA';

	 Labels 336

Note that SPACE TO only applies to left-aligned labels, so this technique
can only be used with a left-aligned page marker. Note also that a left-
aligned page markers begins at the left margin of the page rather than the
left edge of the table below it.

See also RIGHT IN SPACE, described elsewhere in this chapter. This
is another option that can help you get a left and right section for a page
marker. For example:

PAGE	MARKER	LEFT	'Left	marker'
	 RIGHT	IN	SPACE	7.5	IN		NUMBER;

In this example, the page width is 8.5 inches. Aligning the page NUM-
BER right to a location of 7.5 inches puts it at the right margin of the page
if the default left and right margin widths of .5 inches are being used.

RIGHT with Spanning Stub Labels in Banked Tables
When a table has banks of unequal width, stub labels with the SPANNER
attribute are formatted for the width of the narrowest bank in the table.
This means that if a table has banks of different widths, a RIGHT label
segment will be all the way to the right only in the narrowest bank.

Effect of CENTER when Stub is on the Right
If you have used the FORMAT statement STUB RIGHT to display the
stub on the right side of the table and there is exactly one alignment mark-
er in a stub label and that alignment is CENTER, the label will be cen-
tered within the entire stub width. If there are multiple alignment markers,
centering is within the part of the stub following the standard dot leader.

The following example tables show the difference between STUB LEFT
(the default) and STUB RIGHT on a set of stub labels with alignment
markers. The special case of CENTER is shaded.

Example of alignments with stub on the left.

Stub on the left The stub label is:

Left ... LEFT ’Left’
Right RIGHT ’Right’

Center CENTER ’Center’
Left Center Right LEFT ’Left’ CENTER ’Center’ RIGHT ’Right’

	 Labels 337

Example of alignments with stub on the right.

Stub on the rightThe stub label is:

........ tfeLLEFT ’Left’
Right...RIGHT ’Right’

Center..................CENTER ’Center’
Left Center Right........LEFT ’Left’ CENTER ’Center’ RIGHT ’Right’

RIGHT IN SPACE for Right-Alignment to a Selected Point in a
Label

A specification of RIGHT in a label causes the following label section to
be aligned at the right edge of the label space. If you wish to right-align
to some other point within the label space, you can use RIGHT IN SPACE.

Format	 RIGHT	IN	SPACE		location		[unit]

The label section following RIGHT IN SPACE will be right-aligned to the
location. The optional unit of measure can be expressed as inches, cm, or
points. If no unit is specified, the unit is assumed to be characters.

The first section of a label begins at the beginning of the label. A label
section ends with any of the following label elements: /, RIGHT, LEFT,
CENTER, RIGHT IN SPACE, SPACE, and SPACE TO.

The location is measured from the beginning of the label space. For
example, in a table title, the label space begins at the left edge of the
table. For a stub, the label space begins at the left edge of the stub. Note,
however, that nested stub labels and continuation lines for multi-line stub
labels are automatically indented. In these cases, the location is measured
from the indented point. If you want a different result, see the section on
"Interaction of indent with automatic indentation" for ways of controlling
the indentation.

Note that RIGHT IN SPACE applies only to left-aligned label sections.
Certain types of labels, such as heading and stub head labels, are centered
by default. With these, you must use LEFT to left-align before specifying
RIGHT IN SPACE, as shown in the example below.

	 Labels 338

The location must be within the available space. For example, if you
specify the following for a heading label:

LEFT		RIGHT	IN	SPACE	2	INCHES	'Health	Insurance'

and the column width is only 1.5 inches, the label section can't be aligned
to a point 2 inches to the right.

If RIGHT IN SPACE is applied to a label section that cannot fit in the
space preceding the location, RIGHT IN SPACE is ignored. For example,
if the label section is 5 inches long, and you specify RIGHT IN SPACE 3
INCHES, the label section cannot fit in the 3 inch space.

Example In the following example, RIGHT IN SPACE is used to right-align two
sections of the table title 3 inches into the title space. A series of stub
labels is right-aligned to a location 1.5 inches into the stub space.

define	plan_stub	indent	2	’All	participants’/	on	plan_type;
		right	 in	space	1.5	inches	’Total’	 if	1;
		right	 in	space	1.5	in	’Single	employer’	 if	2;
		right	 in	space	1.5	in	’Multiemployer’	footnote	multi	 if	3;
		right	 in	space	1.5	in	’Mandated	benefits’	footnote	mandate	if	4;
		right	 in	space	1.5	in	’Employer	association’	footnote	assoc	if	5;

table	one	’Table	86.’
	 right	 in	space	3	in	’Plan’	footnote	planf	’	administration:’/
	 right	 in	space	3	in	’Percent	of	full-ime	participants.’	:
heading		total	then	health	then	life	then	other_ins,
stub		plan_stub;

	 Labels 339

Table 86. Plan1 administration:
Percent of full-time participants.

Plan sponsor Total
Health

insurance
Life

insurance

Sickness
and

accident
insurance

All participants

Total 1 100 100 100
Single employer 1 96 97 87
Multiemployer2 1 4 3 2

Mandated benefits3 1 – – 11
Employer association4 1 5() 5() –

1 Does not include supplemental plans.
2 Individual employers in the same or in a

related industry.
3 The majority of the participants with

mandated sickness and accident insurance
benefits were covered by State temporary
disability plans.

4 Band of small employers in a common

trade or business, for example, savings and
loan associations. The plan sponsored by the
association is not negotiated with the
employees.

5 Less than 0.5 percent.
NOTE: Because of rounding, sums of
individual items may not equal totals. Dash
indicates no employees in this category.

Using RIGHT IN SPACE to Align Footnote Symbols
For footnotes, the alignment at the bottom of a table is determined accord-
ing to built-in defaults. If you have footnote symbols of different widths,
they will be aligned independently, relative to their footnote text. If you
wish, you can right-align the symbols within a space of a specific width
using a combination of RIGHT IN SPACE, SPACE TO and SYM. The
technique is described with examples in the "Footnotes" chapter.

Footnote References in Labels

Any print label, created in the codebook, table request or FORMAT re-
quest, can contain a footnote reference. The footnote reference can be
at the beginning of the label, between label segments or at the end. The
footnote symbol and text are specified in the SET FOOTNOTE statement.
When the label is displayed, the footnote symbol will replace the footnote
reference, and the footnote text will be displayed at the end of the table.
Complete details on footnotes can be found in the footnote chapter.

	 Labels 340

In the examples that follow, the footnote reference is shown following vari-
ous print labels in the codebook and table request.

(codebook)

REGION	'Regions	of	U.S.'	FOOTNOTE	R		CON	1
			(
	 'Northeast'		=		1
	 'South'	FOOTNOTES		=		2
	 'East'		=		3
	 'West'		=		4
)

(table request)

COMPUTE	INCOME	'Non-farm	Income'	FOOTNOTE	NFI	=
	 AMOUNT/100;

TABLE	SAMPLE
	 'Expenditures'	FOOTNOTE	EXP	'For	Plant	Equipment':
	 STUB		Industry,
	 HEADING		Expenditures;

Continuation Labels for Table Titles

Table titles are the only print labels that have automatic continuation labels.
For example, suppose that we have a table title set up as:

TABLE	REG_TAB	'Region	Summaries	for	1981	-	91':	
	 stub,
	 heading;

If the table continues beyond a single page, a continuation label will follow
the title for pages after the first:

					Region	Summaries	for	1981	-	91	-	Continued

If the title contains the keyword CONTINUATION at some point before
the end of the title, the continuation indicator will be inserted at that point.

The continuation label ' - Continued' can be changed using the FORMAT
statement REPLACE TITLE CONTINUATION WITH 'new continua-
tion'.

	 Labels 341

SPANNER Labels

Spanning the Table with Wafer Labels

Normally wafer labels are displayed at the top left of each wafer between
the table title and the heading. You can move the wafer label down into
the body of the table if you convert it to a SPANNER label. This can only
be done in a format request. For complete details, see WAFER LABEL
SPANNER in the FORMAT chapter of the manual. A SPANNER specifi-
cation entered directly into a label will only produce a spanner if the label
is used in the stub as described in this chapter.

Spanning the Table with Stub Labels

A stub label will span across a table if either of the words SPAN or
SPANNER are included in the label. The spanner will have a horizontal
rule (line) above and below it and the label will be centered.

The spanner can be limited to the data area or it can span the entire width
of the table including the stub. You can choose the spanner style you want
using a FORMAT statement:

DATA	SPAN;

will cause all spanner labels to extend only across the data columns. The
label will be centered within the data columns. DATA SPAN is the system
default. If this is the spanner style you want, you will get it automatically.

ROW	SPAN;		

will cause all spanner labels to extend across the entire table, includ-
ing the stub. The label will be centered relative to the full width of the
table. To choose this spanner style, add the statement ROW SPAN to your
PROFILE.TPL file or FORMAT request.

You can override alignment defaults with the FORMAT statement ALIGN
STUB LABELS. If you put an alignment specification into a stub label, it
will take precedence over any other alignment specifications.

If the $ or % characters are used in masks that apply to the data columns,
then, for any column with these masks, the $ or % character will be re-
peated in the first non-empty cell following each spanner.

	 Labels 342

If a label with the SPANNER attribute is used anywhere in a table other
than in the stub, the SPANNER attribute will be ignored. See the FOR-
MAT statement WAFER LABEL SPANNER to span the table with wafer
labels.

Note If the stub is deleted or the stub width is set to 0 (zero) with FORMAT
statements, all stub entries, including SPANNER labels, will be deleted.

Table spanner example

Assume that we want to collect certain state codes into region categories
with a define statement, then tabulate persons by sex and occupation for
each region. We want region by occupation in the table stub with region
labels spanning across the data columns. We can do this by including the
spanner attribute in the region labels, then nesting region with occupation
in the table statement.

DEFINE	REGION		ON	STATE;
	 SPANNER	'Northeast'	 IF	1:7;
	 SPANNER	'North	Central'	 IF	8:11;
	 SPANNER	'Southeast'	 IF	12:16;

	 Labels 343

Table		one		 'Table	showing	how	spanner	labels	works':

	 HEADING		TOTAL	THEN	SEX;
	 STUB		REGION	BY	OCCUPATION;

Table showing how spanner labels work.

Total
Sex of Householder

Male Female

Northeast

White collar 294 172 122
Blue collar 308 197 111
Farm workers 949 625 324
Service workers 1,072 771 301

North Central

White collar 655 338 317
Blue collar 597 345 252
Farm workers 1,723 1,148 575
Service workers 1,654 1,196 458

Southeast

White collar 3,037 2,007 1,030
Blue collar 2,794 1,810 984
Farm workers 8,203 5,739 2,464
Service workers 8,714 6,473 2,241

Alignment of Spanning Stub Labels in Banked Tables
When a table has banks of unequal width, stub labels with the SPANNER
attribute are formatted and aligned for the width of the narrowest bank in
the table. This means that a centered label will be centered only in the
narrowest bank and a RIGHT label segment will be all the way to the right
only in the narrowest bank.

Inserting Spanners at the Lowest Level of Nest
Spanner labels cannot be used at the bottom level of label nesting, because
the same row of a table cannot contain both data and a spanner. If you
have spanner labels in the stub with nothing nested below, you will get a
message in the table stub that says "*** BAD SPANNER ***".

Following are two approaches to grouping sets of rows for a variable and
inserting spanner labels for the groups. Assume we have a variable called
state_code in the codebook with condition names and labels included for
each state. In each of the two examples, we are grouping states into re-

	 Labels 344

gions with a spanner for each region followed by individual rows for each
state. Condition labels for the states are copied from the codebook. The
resulting tables are identical.

1. Define region groups with a spanner label for each group. Then nest
the states within the region variable in the table stub.

define	region	on		state_code;
	 spanner	 'New	England'	 if	Connecticut;
	 	 	 	 if	 	Maine;
	 	 	 	 if	 	Massachusetts;
	 spanner	 'Mid	Atlantic'	 if	 	New_Jersey;
	 	 	 	 if	 	New_York;
	 	 	 	 if	 	Pennsylvania;

table	one:
	 heading		total	then	sex;
	 stub	region	by	state_code;

2. Do separate DEFINE statements for each region, use the variable labels
as the spanners, and concatenate the variables for each region in the
stub.

define	new_england	spanner	 'New	England'	on	state_code;
	 copy	 if		Connecticut;
	 copy	 if		Maine;
	 copy	 if		Massachusetts;

define	mid_atlantic	spanner	 'Mid	Atlantic'	on	state_code;
	 copy	 if		New_Jersey;
	 copy	 if		New_York;
	 copy	 if		Pennsylvania;

table	two:
	 heading		total	then	sex;
	 stub		new_england	then	mid_atlantic;

Spanners for Nested Variables
Since a particular spanner can only be associated with a single variable
or a single condition value, nesting of variables cannot produce a spanner
for the combination of the two variables. The following example shows a
technique for creating multi-variable spanners.

For each nesting of the upper level variable, prepare a DEFINE statement
with spanner labels that include the identifying information for the lower

	 Labels 345

level variable. Then create null labels for the lower level variable, so that
there will not be redundant labels outside of the spanners.

DEFINE	REGION_HOUSEHOLDS	ON	STATE_CODE;
			SPANNER	'Northeast	-	Number	of	Households'	 IF	1:7;
			SPANNER	'North	Central	-	Number	of	Households'	 IF	8:11;

DEFINE	REGION_AVG_INCOME	ON	STATE_CODE;
			SPANNER	'Average	Family	Income	in	the	Northeast'	 IF	1:7;
			SPANNER	'Average	Family	Income	in	North	Central'	 IF	8:11;

POST	COMPUTE	HH_LABEL	''	=	HOUSEHOLDS;
POST	COMPUTE	AVERAGE	''	MASK	RIGHT	$99,999	=	
	 INCOME	/	HOUSEHOLDS;

TABLE	ONE		'Table	showing	spanners	for	nested	variables':
	 HEADING		TOTAL	THEN	SEX;
	 STUB	(REGION_HOUSEHOLDS	BY	HH_LABEL	THEN
	 REGION_AVG_INCOME	BY	AVERAGE)	BY	STATE_CODE;

Table showing spanners for nested variables

Total
Sex of Householder

Male Female

Northeast - Number of Households

New York 2,112 1,283 829
Pennsylvania 1,375 980 395
New Jersey 1,142 764 378

North Central - Number of
Households

Michigan 1,138 812 326
Illinois 1,226 838 388
Indiana 439 307 132

Average Family Income in the
Northeast

New York $33,139 $39,971 $22,567
Pennsylvania 31,190 36,259 18,613
New Jersey 39,777 46,594 26,000

Average Family Income in North
Central

Michigan $33,623 $38,547 $21,356
Illinois 33,395 39,702 19,774
Indiana 26,280 30,480 16,511

	 Labels 346

Indentation and Spacing in Labels

Changing Label Alignment with INDENT

INDENT specifications are used in labels to assist in label alignment.

Format The	format	for	the	indent	specification	is:
INDENT	[+	or	-]		amount		[unit]

where amount is the size of the indent (decimal numbers are allowed).
The amount can be up to about 25 inches.

The optional unit specification can be expressed as inches, cm or points.

Example	 INDENT	.5	INCHES

A positive indent amount will shift the label right; a negative amount will
shift the label left.

If no unit is specified (as shown in the following example), the unit is as-
sumed to be characters.

Example define	selected_regions	on	state_code;
	 	 'Northeast'	 	 if	1:9;
							 indent	3	 'New	England'	 	 if	1:5;
							 indent	3	 'Mid	Atlantic'	 	 if	6:9;
	 	 'Midwest'	 	 if	10:21;
							 indent	3	 'East	North	Central'	 if	10:15;
							 indent	3	 'West	North	Central'	 if	16:21;

If selected_regions is used in the table stub and a text table is produced the
alignment of the labels will be:

Northeast

		New	England

		Mid	Atlantic

	 Midwest

		East	North	Central

		West	North	Central

With a regular proprtional type table, the table stub will be:

	 Labels 347

Northeast
			New	England
			Mid	Atlantic
Midwest
			East	North	Central
			West	North	Central

Note that this example assumes that STUB INDENT and STUB CONTIN-
UATION have been set at 0. For other uses of INDENT in the table stub,
see the section below on "Interaction of INDENT with Automatic Stub
Indentation".

INDENT works properly only with left-justified labels.

INDENT applies to all lines of a label that follow it. If you begin a label
with INDENT, then add another INDENT specification in the middle of the
label, the second INDENT will take effect at the beginning of the next line.
For example:

indent	1	cm	'label	 line	1'	 indent	.5	cm	/	 'label	 line	2'

will give the result:

	 			 label	 line	1
	 label	 line	2

If slashes are included in the label to show where the label should break to
go to a new line, an INDENT specification for the new line can be inserted
either before or after the slash. The label

indent	1	cm	'label	 line	1'	/	 indent	.5	cm	'label	 line	2'

will give the same result as the label shown above. It is identical except
that the INDENT for the second line follows the slash rather than preced-
ing it.

If you have not inserted slashes to show the break point for a long label
but wish to control the indentation following the break, you must insert an
INDENT somewhere in the label before the break point. For example,

INDENT	3	'This	is'	INDENT	6	'	a	long	multi-line	label.'

The first line of the label will be indented 3 characters. Continuation lines
will be indented 6 characters.

	 Labels 348

Interaction of Indent with Automatic Indentation
When an INDENT specification is used in the table stub, the specified in-
dentation is added to (or subtracted from) any other indentation in effect.

Example A nested stub label will, by default, be indented 2 more spaces than the la-
bel above it. To "cancel" this indentation, you can use a negative INDENT.
The default indentation for the following table

COMPUTE	INCOME	'Income	in	Thousands'	=	FULL_INCOME	/	1000;

TABLE	ONE:		HEADING	TOTAL,	STUB	TOTAL	BY	INCOME;

would result in a stub of

Total
		Income	in	Thousands

If we insert a negative INDENT at the beginning of the INCOME label, it
will be shifted left and aligned with the Total label.

COMPUTE	INCOME	INDENT	-2	'Income	in	Thousands'	=	
	 FULL_INCOME	/	1000;

will result in a stub of

Total
Income	in	Thousands

If you want to replace all automatic stub indentation with your own specifi-
cations, you can use the FORMAT statements

STUB	INCREMENT	=	0; and
STUB	CONTINUATION	=	0;

to turn off the automatic indentations.

Indent Restrictions
There must to be space on the current line for at least two characters of
label in addition to the indentation.

Indent with Proportional Fonts
In a table without proportional font, all characters, including blanks, are
the same width. If you are working with a proportional font, the character
width depends on the character. Numbers will all have the same width,
but for other characters the width will vary. For example, the letter o will

	 Labels 349

be wider than the letter i. In particular, a blank will take up about half the
space of the average character width or the width of a number. If you have
specified INDENT in characters, the width used for each unit of indenta-
tion will be the same as the width of a number in the font you are using.

If you are producing a text table or a table without proportional fonts, you
can often easily align labels by simply adding blanks to move parts of the
label left or right. If you are working with proportional fonts, use of IN-
DENT rather than blanks will produce better results.

Spacing within Labels Using SPACE and SPACE TO

You can use the words SPACE and SPACE TO to add a specific amount
of space within a label or to space over to a particular location.

Format The formats for the 2 space options are:

SPACE	amount		[unit]
SPACE	TO	amount		[unit]

where amount is the size of the space or the location to "space to". The
amounts can contain decimal points for fractional amounts such as 3.5 .
The amount can be up to about 25 inches.

The optional unit can be expressed as inches, cm or points. If no unit is
specified, the unit is assumed to be characters.

The spacing options should only be used with left-aligned label segments.
If used in centered or right-aligned segments, they will either be ignored
or give results other than what you expect. When SPACE TO is used, the
location is always calculated from the start position of the label without
regard to indents or blanks that may be included at the beginning of the
label.

If a label segment is too long for the current line after space is added, it
will be continued to another line with no space at the beginning of the next
line.

Examples 'Total'	SPACE	10	CM	'All	Universities'
'Total'	SPACE	TO	10	CM	'All	Universities'

In the first example, there will be a space of 10 centimeters between 'Total'
and 'All Universities'. In the second example, space will be added between

	 Labels 350

'Total' and 'All Universities' so that the distance from the start of the label
to 'All Universities' is 10 centimeters.

Using SPACE TO and INDENT Together

SPACE TO and INDENT can be combined as shown in the following
example where SPACE TO is used to move a portion of the first line of
a table title to 1 inch from the beginning and INDENT is used to indent
additional lines to the same location. For an example of SPACE TO and
INDENT in footnote text, see the FORMAT statement FOOTNOTE
COLUMNS.

Example TABLE	S1	LEFT	'Table	3.3e’
SPACE	TO	1	INCH	INDENT	1	INCH
'Petrolum	Imports:	Angola,	Australia,	Bahama	Islands,	Brazil,	 '
'Canada,	and	China.'	/
FONT	H	10	’(Thousand	Barrels	per	Day)’:		;

Table 3.3e Petroleum Imports: Angola, Australia,
Bahama Islands, Brazil, Canada, and China
(Thousand Barrels per Day)

Both INDENT and SPACE options are designed to work with left-aligned
label segments. All segments of the table title are left-aligned by default,
but it is possible to get different alignments for independent segments. The
next title is the same as above but the last line is centered. We can make
the centering work correctly by setting INDENT back to 0 for the last line
so that no indentation is in effect for that line.

Example TABLE	S2	LEFT	'Table	3.3e’
SPACE	TO	1	INCH	INDENT	1	INCH
'Petroleum	Imports:	Angola	Australia,	Bahama	Islands,	Brazil,	 '
'Canada,	and	China.'	/
INDENT	0		CENTER		FONT	H	10		’(Thousand	Barrels	per	Day)’:	;

Table 3.3e Petroleum Imports: Angola, Australia,
Bahama Islands, Brazil, Canada, and China

(Thousand Barrels per Day)

	 Labels 351

Links and Anchors in HTML Export

HTML provides a way for page viewers to jump between web pages or
different locations within a web page. This is accomplished by inserting
Links and Anchors within the web pages. An Anchor is a destination. A
Link is an instruction to jump to an anchor or web address when the link is
clicked by the viewer. Links are displayed to web page viewers by under-
lining. Anchors are not visible in the displayed web page. Neither Links
nor Anchors affect the appearance or behavior of tables which have not
been exported to HTML.

Links can be used in tables for such things as providing a way to move
from a footnote symbol in the body of a table to its footnote text or even to
link to explanatory text not produced in TPL Tables.

Anchor An Anchor is inserted into a label between text segments using the code

HTML		ANCHOR	anchor-name

where anchor-name is any string of characters including internal blanks but
excluding special characters such as #, ", ', etc. The names are case sensi-
tive. If an anchor name includes a blank, it should be enclosed in quotes.

Example	 Set	Footnote	Revised	symbol	R	text	HTML	ANCHOR	"REVISED	FN"	
"Data	has	been	revised.";

Anchors should be unique for any given web page. Special care should be
used if an anchor is attached to a variable or condition label which may be
repeated on an output page.

Link A Link is inserted into a label between text segments using the code

HTML	LINK	link-name

where link-name is a path to a file or anchor.

The path should be relative. If the target file will be in the same directory
as the file you are linking from, you should just enter the target file. If
you must follow a path it should begin with something like ..\ rather than
something like C:\. This is because web pages will typically be moved
from a local disk to a web site. Note that you may use forward or back-
ward slashes.

	 Labels 352

The link should include the full name of the target file; e.g., table2.htm
not just table2. You must know what the target file name will be even if
you haven't exported it yet. You may find it easier to do an export, figure
out file names, add links, and then export again.

If you wish to jump to a specific location on the target page, you must put
an anchor at that point and add the anchor name to your link path. You
specify this by writing your link path followed by # followed by the anchor
name; e.g "table2.htm#start of footnotes". If the target is on the same
page as the link, you can just include the anchor; e.g. "#start of foot-
notes".

Links, unlike anchors, are displayed on the web page. So the location of
the link matters. The link causes the label segment following the link to be
underlined. If the link is placed after the last segment of the label, nothing
is displayed with underline and the link does not work. If you want the
underline to span more than one table segment, you must repeat the link
for each segment.

Example Assume we have a two page table with the state of Illinois on the first page
and footnotes on the second page. We export the HTML with a base name
of PAGE.

Set	footnote	r	symbol	 'R'	text	html	anchor	"revised	footnote"	"revised";

For	Table	1	Condition	State(Illinois):	replace	label	with	"Illinois"	HTML	
LINK	"./page2.htm#revised	footnote"	footnote(r);

If the first page of the resulting HTML is looked at in a browser, the foot-
note symbol R will be underlined. If a user clicks on it, the browser will
jump to the footnote text for footnote r on page 2.

Font Control in Labels

Fonts can be set for different types of labels, including titles and footnote
texts, using FONT statements in the FORMAT language. This method of
font selection works well if you want all labels of a certain type to have
the same font. Sometimes, however, you may need to use a different type
style or size for particular labels or for different sections within the same
label. You can do this by including fonts in individual labels. These font
specifications have no effect on text tables. For a complete list of available

	 Labels 353

fonts, including bold, italic and underline fonts, see the FONT statement
in the FORMAT section of the manual.

A font specification within a label takes the same form as in the FORMAT
language FONT statement. To change the font for an entire label, simply
insert the FONT specification at the beginning. For example, the following
label will be printed in Times Bold Italic:

FONT	TBI	 'Revised'.

Fonts can change more than once within a label. For instance, a label
could begin with a section of bold-underlined type, change to italic and
end with bold-italic. To change fonts within a label, insert the font specifi-
cations anywhere between strings.

The expression FONT RESET can be used at any point to restore the
default label font for a later section of the label. The following example
shows how FONT and RESET can be used in a footnote text:

SET	FOOTNOTE	A	TEXT	=	'As	published	in	 '
	 FONT	HI	 'Three	Little	Pigs'
	 FONT	RESET	'	by	Anon.';

The font size is optional. If the font specification is in the middle of a
label and does not include a size, the size is the same as for the previous
part of the label. If the font specification is at the beginning of the label
and does not include a size, the size is the same as the default size for that
type of label.

A font remains in effect until another new font is specified or the end
of the label is encountered. The special font RESET is the same as the
default font for that type of label. Thus, for instance, if we have set the
default of FOOTNOTE TEXT FONT = H 8, the example shown above
would give the same result as:

SET	FOOTNOTE	A	TEXT	=	'As	published	in	 '
	 FONT	HI	8	'Three	Little	Pigs'
	 FONT	H	8	'	by	Anon.';

	 Labels 354

In either case, the footnote would print as:

As	published	in	Three Little Pigs	by	Anon.

The advantage of using the RESET font is that if you change the default
font for a particular type of label, you will not need to adjust individual
labels to match the new default.

For another example, assume that the default title font has been set with:

TITLE	FONT	H	10;

If we want all parts of the title to have the default size, but different styles
for some sections, we can add FONT specifications to the title without
including sizes. For example,

CENTER	'Table	B-4.		 '
	 FONT	HBU	'Median	and	Average	Sales	Prices'
	 FONT	HB	'	of	New	Houses	Sold	in	the	United	States,	 '
	 'by	Region.'	/
	 FONT	RESET	'[Rounded	to	hundreds	of	dollars]'

This title would print as:

Table	B-4.	 Median and Average Sales Prices of New Houses Sold
in the United States, by Region.
[Rounded	to	hundreds	of	dollars]

If we later find that we need to increase or decrease the size of the title
font for all tables, we can do so by changing only the TITLE FONT state-
ment. Size adjustments in the individual titles will be automatic. Assum-
ing that we change the default title font to TITLE FONT H 8, the title
shown above will print as:

Table	B-4. Median and average Sales Prices of New Houses Sold in the United States, by Region.

[Rounded	to	hundreds	of	dollars]

Font Defaults

When TPL TABLES is installed, default fonts are set in the profile. You
can change the defaults in the profile, or you can change them in a format
request for an individual job.

If a default font is not specified for some type of label, the font is deter-
mined by other font defaults. For example, if CONDITION LABELS IN

	 Labels 355

HEADING FONT is not specified, the condition labels in the heading get
the CONDITION LABELS FONT. Ultimately everything defaults to DE-
FAULT FONT. See the FONT statement in the Format chapter for more
details.

Vertical Spacing

TPL TABLES will determine appropriate vertical spacing of labels and
data according to the fonts being used. If you are satisfied with the spac-
ing, you do not need to be concerned with the following details.

If fonts of different sizes are used in a label, the vertical spacing for the
label is determined by the largest font specified in the label or the default
font size for the type of label, whichever is larger. For data rows, if the
DEFAULT FONT is larger than the stub label fonts, the vertical spacing for
data rows will be determined by the DEFAULT FONT.

Example	 TITLE	FONT	=	HB	10;

The title is specified as:

FONT	HB	8	'Table	4.		Civilian	employment	in	occupations	with	 '
'25,000	workers	or	more,	under	low,	medium,	and	high	scenarios	'
'for	economic	growth'	/	FONT	H	7	'[Numbers	in	thousands]'

This multiline title will have the vertical spacing specified by the default
TITLE FONT size of 10, because the default title font size is larger than
any font size explicitly included in the title. If you want to reduce the
space between the label lines, set a smaller default TITLE FONT size.

Superscripts and Subscripts

Superscripts and subscripts can be used in labels, including footnote texts.
For text tables, the superscript and subscript notations are ignored.

Enter the superscript or subscript notation in the label in front of the appro-
priate label segments. For superscript, use SUP or SUPER; for subscript,
use SUB. The superscript or subscript specification will apply from that
point in the label, either to the end of the label or to the next occurrence
of the notation NORMAL. These notations can be mixed with other label
features such as font, spacing and line break specifications.

Superscript characters are raised by the same amount as superscripted foot-
note symbols; subscripts are lowered to the base line of the label.

	 Labels 356

Example	 'Regular	label	part	 '	 	SUP		 'Superscript	part	 '	 	NORMAL	'End'

The label text 'Regular label part ' will be printed at the normal level, the
label text 'Superscript part ' will be raised, and the label text 'End' will be
at the normal level.

	 Masks 357

C h a p t e r 2 1

Masks

fOrmATTing The dATA CeLLS wiTh mASkS

Table cell values that do not have masks are rounded to the nearest whole
integer and displayed with no special symbols except commas. The values
are right-adjusted in the table columns. If you want a different format for
values, you can specify the format using a print mask.

With a mask, you can format data with decimal points, commas, and spe-
cial characters such as dollar signs and percent symbols. A mask can also
reference footnotes. When a mask is used, data is centered in the table
columns based on the size of the mask, or right-alignment can be specified.
You can choose the type style for table cells by inserting font specifications
in masks.

A mask can be assigned to any observation variable described in the co-
debook or computed in a table request. Whenever the variable is used in
a table, the mask determines the format for the variable's tabulated values.
The REPLACE MASK statement can also be used in a FORMAT request
to assign or replace a mask either by variable or by table location. To
replace an entire cell value with a different value, see the FORMAT state-
ment REPLACE VALUE.

The mask functions as a pattern for formatting the cell values. In its sim-
plest form, it consists of a succession of 9's, one for each digit position of
the largest expected cell value. For example, a mask of:

MASK		9999

would indicate that the largest expected final cell value has four digits.
The values would be centered based on the size of a four digit number and
would be printed without commas or other special characters.

	 Masks 358

Adding Decimal Points, Commas, $ and %

When decimal points, commas and other special symbols are to be dis-
played with the cell values, the symbols are indicated in positions relative
to the 9’s. The following mask will format the values with a comma and
two decimal places; a dollar sign will precede the values:

MASK		$9,999.99

Only one of $ and % can be used in the same mask. If a mask with a $
or % symbol is used with a heading or wafer variable, the symbol normally
will be displayed only in the first non-empty cell of each column for that
variable. An exception to this rule occurs if you have SPANNER labels or
if you use FORMAT statements to insert horizontal rules (lines) in the data
section of the tables. In these cases, the $ or % characters will be repeated
for each column in the first non-empty cell following each spanner or hori-
zontal rule. Another exception occurs if a cell in the column has a mask
assigned to it which does not contain the $ or % character.

Tip Built-in footnotes, such as the EMPTY footnote that appears in cells for
which there is no data, override the mask rather than change it. Thus, they
do not cause a new $ to be printed on the next line. Footnote-only cells
coming from conditional post computes or replace mask statements do
result in new masks and so may cause a new $ to be printed. If you wish
to suppress the new $, put a $ on the footnote-only mask. For example:

REPLACE	MASK	WITH	$	FOOTNOTE	UNPUBLISHABLE;

No $ will appear on the line following this replacement mask. Also, $’s
are always suppressed for footnote-only cells so there is no danger of get-
ting a cell such as $(1).

If a value is to be printed with a dollar sign, the dollar sign will be dis-
played immediately to the left of the cell value, regardless of the number
of digits in the value. If a cell value is larger than the mask and the mask
contains one or more commas, additional commas will be inserted as re-
quired.

Decimal cell values are rounded to the number of decimal places shown by
the mask. If a decimal cell value is formatted without a mask, it is round-
ed to the nearest integer value.

	 Masks 359

Rounding Rule

By default, rounding is done according to the "round even" rule.

Note You can override the "round even" rule and choose to round up instead.
See the ROUND statement in the "Format" chapter for details.

With "round even", 5 is rounded up or down depending on the digit to the
left of the 5. If the digit to the left of the 5 is even, it rounds down. If the
digit to the left is odd, it rounds up. (A blank to the left is considered to
be a zero and thus even.)

For example, with a mask of 99.9:

5.8500 -> 5.8 (8 is even -> round down)
5.7500 -> 5.8 (7 is odd -> round up)

This rounding rule is part of the IEEE and ANSI standards for binary and
floating point arithmetic.

Note that detail cells in a tabulation may not add to totals because of
rounding. This is true regardless of the rounding rule being used. The fol-
lowing illustrates results with the “round even” rule. In this case, the sum
of the rounded detail cells is greater than the rounded sum.

2.5 -> 2 (2 is even -> round down)
4.5 -> 4 (4 is even -> round down)

7.0 ≠ 6

Creating Decimal Places

A cell value is assumed to be a whole number with no decimal places un-
less:

• it contains values described with a SHIFT LEFT
clause in the codebook;

• it contains values described as floating point in the
codebook; or

• it contains values resulting from computations that add
decimal places (for example, division in a Compute or
Post Compute statement).

	 Masks 360

If the cell value is assumed to be a whole number and is formatted with a
mask that contains a decimal point, the whole number will be printed to
the left of the decimal point with 0's to the right of the decimal point. For
example, if the mask $99,999.99 is used to display a cents aggregation of
47378, the displayed result will be $47,378.00, since the decimal point is
assumed after the 8.

To show values of this type with the correct number of decimal places,
the decimal places must be created by division in a COMPUTE or POST
COMPUTE statement. For the dollars and cents example, we can cre-
ate two decimal places by dividing the tabulated value by 100 in a POST
COMPUTE statement as in:

POST	COMPUTE	DOLLARS	USING	$99,999.99	=	CENTS	/	100;

The cell value of 473.78 used with the mask $99,999.99 will then be dis-
played correctly as $473.78.

Leading Zeros
When a decimal value less than zero is printed, it is always displayed with
a zero to the left of the decimal point. An example is 0.48. This is true
regardless of what mask is used for the value, even a mask such as MASK
.99. If you do not want to display these zeros, you can remove them by
using the FORMAT statement DELETE LEADING ZEROS; If this state-
ment is used, our example value will print as .48 instead of 0.48.

Character Strings in Masks

A mask can be preceded or followed by a character string bounded by
quote marks. In this case, the character string will be displayed with all
cell values to which the mask applies. For example, if an entire column is
to be printed with a trailing percent symbol, a mask such as 99.9'%' could
be used.

A mask can consist of only a character string bounded by quote marks. In
this case, the character string will be displayed alone without the cell value.
You can even make a cell blank by using MASK ' '.

See also the section called TEXT Masks for additional ways of putting
text in table cells.

	 Masks 361

Moving the Decimal Point before Display

You can add a DISPLAY DECIMAL clause to move the decimal point to
the left or right before values are formatted for output.

			 	 Example	 POST	COMPUTE	AVG_INCOME
	 MASK	999	DISPLAY	DECIMAL	LEFT	3	=	
	 INCOME	/	PERSONS;

Assume that AVG_INCOME values are in dollars. For each value of
AVG_INCOME, the decimal point will be shifted left three positions and
the value will be displayed as a whole number. The effect is to show the
average income values in thousands of dollars. For the value 75724.36, the
decimal point will be moved left three positions. The resulting value of
75.72436 will then be rounded to a whole number according to the mask of
999 and will be displayed as 76.

DISPLAY DECIMAL can be added to any mask, in the codebook, table
request or format request. The mask can be a regular mask or a TEXT
mask. Regardless of where it is entered, it is used only for display pur-
poses and does not affect tabulation or other computations.

Restriction
The DISPLAY DECIMAL clause will not be applied in any cell where you
have replaced the value using the FORMAT statement REPLACE VALUE.

Replacing Rounded Digits with Zeros

Data can be rounded and displayed with trailing zeros by inserting zeros in
the mask. For example, a mask of 999,000 causes data to be rounded to
the nearest thousand and displayed with three zeros in place of the rounded
digits. The value 876859 will be displayed as 877,000.

Zeros in masks are ignored if they are to the right of a decimal point or if
there are any 9's to the right of the zeros. A mask of 9909 is treated the
same as a mask of 9999; a mask of 9900.00 is treated the same as a mask
of 9999.99.

Alignment of Values

Cell data for which a mask is given will be centered within the column
width unless other alignment is specified. Cell data for which no mask
is given will be right justified within the column width. The number of
characters making up a mask will be used to control the centering of data

	 Masks 362

within the column. The mask may be thought of as being positioned at the
center of the column, with cell values being aligned with the mask from
right to left. For example, a mask of $99,999 used together with a col-
umn width of 10 (including the column divider) would give the following
results.

Value Will display as

23567		 |	$23,567	 |

146	 	 |			$146	 |

Restriction For text tables, if a mask cannot be perfectly centered because of an un-
even number of spaces, it is adjusted to the right one position. For exam-
ple, if there are 9 spaces available for a 6 character mask, the mask will be
positioned with 2 spaces to the left and 1 space to the right.

For data centered according to a mask that contains a footnote reference,
the footnote symbol will not be included in the centering but will be added
in the space to the left of the data.

The keywords RIGHT and CENTER can be used with a mask to force
alignment of values to the right side or center of the column. For example:

COMPUTE	MAX_SALARY	'Maximum	Salary'	
	 MASK	$999,999	RIGHT	=	MAX(INCOME);

Since the default alignment for masks is CENTER, you do not need to add
this word to a mask to specify centering.

The keyword RIGHT will have no effect on a mask containing only a
character string. The string will always be centered.

Alignment cannot be specified for a mask that contains only a footnote ref-
erence. With this type of mask, the data cell would contain only a footnote
symbol. To change the alignment of the symbol, include the alignment in
the SYMBOL part of the SET FOOTNOTE statement for the footnote.

Tip on Aligning Different Masks within Columns
If you have different masks from row to row in a table, the values from
rows with different masks may not be aligned the way you want them to
be. For example, if the values are to be centered, each will be centered
based on the length of its own mask, without regard to the mask above or
below it.

	 Masks 363

If you wish to make adjustments to align all values in a column, you can
sometimes do it simply by adding one or more 9's at the beginning of the
shorter mask. Another approach is to add character strings of blanks to
one or more of the masks to account for the differences. For example,
to align the last digit of values that have a mask of 999 with values that
have a mask of .999, you can add a blank to the shorter mask as follows:
MASK ' ' 999. A good way to experiment with the results is to reformat
the table output using FORMAT statements to replace the mask for one or
more of the variables.

Note that if you are using proportional fonts, the characters do not all have
the same width. Blanks and other characters such as decimal points and
commas are smaller (more narrow) than numbers. In our example masks
above, both have three 9's but one mask is longer by the width of a deci-
mal point, one of the small characters. In this case, adding a single blank
to the shorter mask will be sufficient to get alignment. To adjust for an
extra 9 in the mask, we would need to add two blanks, because a number
takes twice as much space as a blank in a proportional font.

Footnote References and Cell Markers in Masks

A footnote reference can be included in a mask. An example is:

MASK	$999,999	FOOTNOTE(SOURCE)

The symbol for the footnote called SOURCE will be inserted in front of
the cell value in all table cells affected by the mask. The footnote symbol
and text can be provided in a SET FOOTNOTE statement. See the chapter
on footnotes for complete details on the use of footnotes in masks.

A Cell Marker is like a footnote symbol without associated footnote text.
An example is:

REPLACE	MASK		WITH	999.99	MARKER	ab;

ab will be inserted in front of the cell value in all table cells affected by
the mask. See the REPLACE MASK MARKER statement in the Format
chapter for more detail.

	 Masks 364

Treatment of Large Cell Values

If a cell value has more digits than shown in its mask, column spaces to
the left of the mask space are used, if available. If there is not enough
space, the following steps are taken as required to print the value:

1. The value is aligned to the right regardless of the
alignment specified by the mask.

2. Leading and trailing mask strings and footnote sym-
bols are removed.

3. Digits to the right of a decimal point are deleted one at
a time.

4. If there is still not enough space to print the value, the
value is replaced with nf and footnoted.

Links and Anchors in HTML Export

HTML provides a way for page viewers to jump between web pages or
different locations within a web page. This is accomplished by inserting
Links and Anchors within the web pages. An Anchor is a destination. A
Link is an instruction to jump to an anchor or web address when the link is
clicked by the viewer. Links are displayed to web page viewers by under-
lining. Anchors are not visible in the displayed web page. Neither Links
nor Anchors affect the appearance or behavior of tables which have not
been exported to HTML.

Links can be used in tables for such things as providing a way to move
from a footnote symbol in the body of a table to its footnote text or even to
link to explanatory text not produced in TPL Tables.

An Anchor is inserted in a mask using the code

HTML		ANCHOR	anchor-name

where anchor-name is any string of characters including internal blanks
but excluding special characters such as #, ", ', etc. If an anchor name
includes a blank, it should be enclosed in quotes. The names are case
sensitive. Anchors should be unique for any given web page. So if you
attach an anchor to a mask, the mask must be for an individual cell, not a
row, column or variable.

Example	 For	table	1	row	1	column	1:	replace	mask	with	
HTML	ANCHOR	AA	99.9;

	 Masks 365

A Link is inserted into a mask using the code

HTML	LINK	 link-path

where link-path is a path to a web page or anchor. The path should be
relative. If the target file will be in the same directory as the file you are
linking from, you should just enter the target file. If you must follow a
path it should begin with something like ..\ rather than something like C:\.
This is because web pages will typically be moved from a local disk to a
web site. Note that you may use forward or backward slashes.

The link should include the full name of the target file; e.g. table2.htm not
just table2. Note that you must know what the target file name will be
even if you haven't exported it yet.

If you wish to jump to a specific location on the target page, you must put
an anchor at that point and add the anchor name to your link path. You
specify this by writing your link path followed by # followed by the anchor
name; e.g "table2.htm#start of footnote". If the target is on the same
page as the link, you can just include the anchor; e.g. "#start of foot-
notes".

TEXT Masks

You can replace table cell values with text by adding the word TEXT to
the mask following the word MASK. A TEXT mask gives you much more
flexibility than the simple character strings that can be part of a standard
mask. The text can include any of the options associated with other types
of labels, such as font specifications, indents and alignments.

You can also include the original numeric cell value in the text by using
the word VALUE, but note that the values are not aligned as they would be
with a standard mask. Rather, they are included in the text at the specified
place. If VALUE is used, you can add an optional decimal indicator in
parentheses to specify the number of decimal places for display.

Example	 POST	COMPUTE	AVG_AGE	'Age'
	 MASK	TEXT	'Average	'	VALUE	(2)	=	AGE_OBS	/	PERSONS;

If the value of AVG_AGE is 43.5135, it will be rounded to two decimal
places and printed in the table cell following the word 'Average' as follows:

Average	43.51

	 Masks 366

If the decimal indicator is preceded by a minus sign, the value is rounded
to an integer value and displayed with the specified number of trailing ze-
ros. For example, VALUE(-3) applied to the value 85734 rounds it to the
nearest thousand and displays it as 85,000.

The default alignment for TEXT masks is CENTER. For text tables, the
default is LEFT.

Long cell contents are broken into multiple lines in the same way that a
long label is broken into multiple lines. Text tables can contain only one
line of information in a cell. So if the line is too long, it is truncated.

TEXT masks can be used to get additional control of the format for cells
that contain only footnote symbols. For example, if you do not want the
symbol to be enclosed in parentheses as it would be by default, you can
put the footnote reference in a TEXT mask without the parentheses:

SET	FOOTNOTE	NP		 'NP	footnote	text';
POST	COMPUTE	ABC	=
	 MASK	TEXT	FOOTNOTE	NP		IF	PERSONS	<	5;
	 PERSONS		IF		OTHER;

In this example, the footnote symbol will be displayed without parentheses.
In addition, the symbol will not be raised unless you add superscript speci-
fications. Superscripts are described in the "Labels" chapter.

Font Control in Masks

The font for data cells is determined by the DEFAULT FONT that you
have chosen for table output. Sometimes, however, you may need to use
different type styles or sizes for particular variables or data cells. You can
do this by including fonts in individual masks. These font specifications
are ignored in text tables.

For a complete list of available fonts, see the FONT statement in the
FORMAT section of the manual.

A font specification in a mask takes the same form as in the FORMAT lan-
guage FONT statement for masks. To change the font for an entire mask,
simply insert the FONT specification at the end of the mask. For example,

	 Masks 367

MASK	99,999	FONT	TBI	8.

Note For a data mask the FONT specification must be at the end of the mask
and the FONT applies to the entire data mask.

If you want to use a variety of fonts within a mask, you may be able to
get the desired result by using a TEXT mask. Fonts can be varied within
TEXT masks. For example:

MASK	TEXT	FONT	TIU	'Average	'
	 FONT	RESET	'Age'	FONT	HB	VALUE;					

The font size specification is optional. If size is not specified, the size will
be determined by the DEFAULT FONT.

The vertical spacing of a data row is not adjusted for the font specifications
of individual mask fonts. The spacing is set according to either the largest
font in the stub label for the data row OR the DEFAULT FONT -- which-
ever is larger. If fonts of different sizes are used for different columns and
some of the mask font sizes are substantially larger than both the stub label
and the DEFAULT FONT sizes, it is possible that the data values with
large fonts could overlap those above or below.

Sample Tables Using Masks

The following tables show how various cell values would be displayed with
different masks. The variables with masks are first used in the heading,
then in the stub.

use	family	codebook;

compute	mask1	'No	Mask'	=	gross_income_of_head;

compute	mask2	'$999,999'	using	mask	$999,999	=		
	 gross_income_of_head;

compute	mask3	'99,000	right	footnote	t'
	 using	mask	99,000	right	footnote	t	=
	 gross_income_of_head;

set	footnote	t	text	 'Rounded	to	thousands';

Compute	mask4	'right	999999"	'"	using	mask	right	999999	''	 	=	
	 gross_income_of_head;

compute	mask5	'99.99'	using	mask	99.99	=	

	 Masks 368

	 gross_income_of_head	/	100;

compute	mask6	'99.9''%'''	using	mask	99.9'%'	=
	 gross_income_of_head	/	10000;

compute	mask7	'99.9%	right'	using	mask	99.9%	right	=
	 gross_income_of_head	/	10000;

compute	mask8	'99.99%'	using	mask	99.99%	=
	 gross_income_of_head	/	10000;

table	sample1	
	 'Table	showing	the	effects	of	various	masks	used	'
	 		 'in	heading.':
	 stub					heads_class_of_work;
	 heading		mask1	then	mask2	then	mask3	then	mask4
	 	 then	mask5	then	mask6	then	mask7	then	mask8;

table	sample2	
	 'Table	showing	the	effects	of	various	masks	used	in	stub':
	 stub					mask1	then	mask2	then	mask3	then	
	 	 mask4	then	mask5	then	mask6	then	mask7
	 	 then	mask8;
	 heading		heads_class_of_work;	

Table showing the effects of various masks used in heading.

No Mask $999,999 99,000 right
footnote t

right
999999’ ’ 99.99 99.9’%’ 99.9% right 99.99%

Head of Family Class
of Work

White collar worker 271,628 $271,628 1272,000 271628 2716.28 27.2% 27.2% 27.16%
Blue collar worker 290,948 290,948 1291,000 290948 2909.48 29.1% 29.1 29.09
Farm workers 0 0 10 0 0.00 0.0% 0.0 0.00
Service industry

workers 85,300 85,300 185,000 85300 853.00 8.5% 8.5 8.53
Armed Forces 0 0 10 0 0.00 0.0% 0.0 0.00
Worker type not

reported 0 0 10 0 0.00 0.0% 0.0 0.00

1 Rounded to thousands

	 Masks 369

Table showing the effects of various masks used in stub

Head of Family Class of Work

White collar
worker

Blue collar
worker

Farm
workers

Service
industry
workers

Armed
Forces

Worker type
not reported

No Mask 271,628 290,948 0 85,300 0 0
$999,999 $271,628 $290,948 $0 $85,300 $0 $0
99,000 right footnote t ... 1272,000 1291,000 10 185,000 10 10
right 999999’ ’ 271628 290948 0 85300 0 0
99.99 2716.28 2909.48 0.00 853.00 0.00 0.00
99.9’%’ 27.2% 29.1% 0.0% 8.5% 0.0% 0.0%
99.9% right 27.2% 29.1% 0.0% 8.5% 0.0% 0.0%
99.99% 27.16 29.09 0.00 8.53 0.00 0.00

1 Rounded to thousands

	 Footnotes 370

C h a p t e r 2 2

Footnotes

fOOTnOTeS And nOTeS fOr TABLeS

Introduction

The SET FOOTNOTE statement determines the text and symbol for a foot-
note. This statement can be entered in the codebook, table request, format
request or profile (PROFILE.TPL). When the footnote is used in a table,
the symbol is printed at the reference point and the footnote text is printed
at the end of the table.

You can use a SET NOTE statement anywhere that you can use a SET
FOOTNOTE statement. A note is a simple footnote without a symbol.
Notes are described later in this chapter.

Footnotes can be referenced in labels and masks. For example, to footnote
a table title, we can include the footnote reference in the title part of the
TABLE statement:

Example	 TABLE	F1	'Table	F1:	Population	by	City	 '	FOOTNOTE	PRELIM:
	 STUB		CITY,				HEADING		PERSONS	BY	SEX;

The footnote in this example is called PRELIM. We assign a symbol and
text using the statement:

SET	FOOTNOTE	PRELIM	SYMBOL	IS	'(P)'
	 TEXT	IS	'Preliminary	Data.';

	 Footnotes 371

The table title in a text table will print as:

Table	F1:	Population	 by	City(P)

The footnote will print at the end of the table as:

(P)	Preliminary	 Data.

Note that even though the footnote is referenced in the table request, the
SET FOOTNOTE statement does not need to be in the table request. The
text and symbol can be determined later, for example in a format request.
If there are footnotes that you use frequently, you may wish to put their
SET FOOTNOTE statements in your profile.

A particular footnote applies to all tables in a job. If the same footnote
name is used in more than one SET FOOTNOTE statement, the text and/
or symbol information from a later statement will replace those from an
earlier statement.

Normally, if a footnote is not referenced or used in a table, it will not be
printed. To keep this type of footnote in a table, see the section on "Forc-
ing Printing of Unused Footnotes" or the SET NOTE statement.

TPL TABLES has several built-in footnotes that are automatically included
in your tables, regardless of whether they are explicitly referenced in labels
or masks. They are described in the section called "Built-in Footnotes".

Entering and Referencing Footnotes

The SET FOOTNOTE Statement

Format	 SET	FOOTNOTE	(footnote-id)		TEXT	label		SYMBOL	string	;

where footnote-id is a name or number. The parentheses around the
footnote-id are optional.

The TEXT and SYMBOL are optional and can be in any order, but there
must be at least one of the two in the statement. The footnote TEXT
can be any valid TPL TABLES label except that it cannot itself contain a
reference to another footnote. The footnote SYMBOL is a character string
enclosed in quotes. If you wish, you can use IS or = following the words
TEXT and SYMBOL.

	 Footnotes 372

Example	 SET	FOOTNOTE	CONFIDENTIAL	SYMBOL	IS	'(C)'
	 TEXT	IS	'Confidential	Data';

If SET FOOTNOTE is used in a codebook, the ';' at the end of the state-
ment is optional. In the table request, format request or profile, the ';' is
required.

Although a number can be used as the footnote-id, we recommend that
you use names instead. This is especially true if you choose to let TPL
TABLES assign numbers as footnote symbols, since the number you give
as a footnote-id is unlikely to match the assigned footnote symbol.

Entering Footnote References

Footnotes can be referenced in labels and masks, in the codebook, table
request, format request or profile. The format for a footnote reference is:

FOOTNOTE	(footnote-id)

 where the footnote-id is the name or number that identifies the footnote.
The parentheses around the footnote-id are optional.

Examples are:

(codebook)
MONTH		CONTROL		2
		(
	 'January'	 	 	 	 =	1
	 'February'	 	 	 	 =	2
	 'March'	FOOTNOTE	(REVISED)	 =	3
)	

(table request)
COMPUTE	WEIGHTED_INCOME	
	 'Income'	FOOTNOTE	(WEIGHTED)	=		INCOME	*	WEIGHT;

(format request)
FOR	ROW	1	COLUMN	4:	
	 REPLACE	MASK	WITH	FOOTNOTE	CONFIDENTIAL;	

Note that you can have a label or mask, such as the one above, that con-
sists of nothing but a footnote. In this example, no data would be printed
in the table cell at row 1, column 4; only the symbol for the footnote
named CONFIDENTIAL would be printed in the cell.

	 Footnotes 373

You can have as many as 30,000 distinct footnotes (as specified in SET
FOOTNOTE statements) in one job. There is no limit on the number of
footnote references.

Choosing Footnote Symbols

You can assign a symbol to a footnote in the SET FOOTNOTE statement,
or you can let TPL TABLES assign a number as the footnote symbol.

User-Assigned Symbols
The footnote SYMBOL can be a character string of any length, but short
symbols (1 to 3 characters) are recommended. For example, if the foot-
note is inserted in the mask for a data cell of a table, the combination of
the data and a long footnote symbol may be too wide for the width of the
column. Note that, although a footnote text can include any of the options
described in the label chapter, a footnote symbol is only a simple character
string and cannot include label options such as / or INDENT. With the
exception of color specifications, the options explicitly described in this
chapter are the only ones that can be used with the footnote symbol.

Default Footnote Symbols
When footnotes are specified without symbols, the system assigns numbers
to the footnotes. In general, the numbering starts with 1 at the upper left
corner of the table and increases with each new footnote use from left to
right and top to bottom. Footnote numbering restarts at the beginning of
each table.

Note that in the table heading, the numbers are assigned left to right by
column, not by hierarchical heading level. This means, for example, that
a footnote in a low level heading label in column 1 could be assigned the
number 1, while a footnote in a higher level heading label in column 5
could be assigned the number 2.

Note also that the first footnote number assigned to a wafer label footnote
will be greater than the numbers assigned to title, headnote or heading
footnotes if these exist on the same page.

If you do not like the numbering that is assigned automatically, you can
assign your own numbers. For example:

SET	FOOTNOTE	WN		SYMBOL	'1'		TEXT	'Footnote	for	wafer';
SET	FOOTNOTE	HN		SYMBOL	'2'		TEXT	'Footnote	for	heading';	

	 Footnotes 374

Display of Footnote Symbols in Tables

Display of Footnote Symbols in Labels and Text Masks

When a footnote is referenced in a label, the footnote symbol is inserted
in the label in the specified location. The footnote symbol font is used,
and the footnote symbols are raised (displayed as superscripts). If multiple
footnotes occur at the same point in a label, they are displayed side by side
as superscripts separated by commas.

text3.4

In a text table, default footnote symbols (numbers) are displayed in paren-
theses. User-assigned footnote symbols are displayed without parentheses,
unless the parentheses are part of the symbol string. If multiple footnotes
occur at the same point in the label, the symbols will be displayed side by
side. An example of default footnotes symbols displayed side by side is:

text(3)(4)

Occasionally it is desirable to have the footnote symbol even with or even
below the text. This can be accomplished by placing NORMAL or SUB
immediately before the footnote reference in the label.

Note that if a footnote is referenced in a FORMAT statement following a
TITLE CONTINUATION, the footnote symbol will not be displayed on the
first page of the table but will follow the title continuation on subsequent
pages.

Display of Footnote Symbols in Masks

Table cells can be footnoted by including footnote references in masks.
There can be, at most, one footnote symbol displayed in a particular table
cell. Its location is fixed immediately to the right of any leading string in
the mask and to the left of a floating $ or data value. Note that in the spe-
cial case where a mask consists of only a character string (no value), this
rule will give the correct result of putting the footnote symbol at the end of
the string.

If there is data in a footnoted table cell and the data mask specifies center-
ing (centering is the default for masks), the centering is determined before
the footnote symbol is added.

	 Footnotes 375

If a table cell is footnoted, but there is no data for that cell, the footnote
symbol is displayed alone and centered within the cell. The footnote sym-
bol font is used and the symbol is raised. When the footnote symbol is
used alone in a data cell, it is enclosed in parentheses. The parentheses are
in the font that is in effect for the cell. This is the font that would be used
if data were displayed in the cell.

For text tables default footnote symbols (numbers) are enclosed in paren-
theses when displayed in table cells; user-assigned footnote symbols are
not.

Important Note User-assigned footnote symbols are displayed exactly as
specified, without the addition of blanks or other separators. Thus, if you
are specifying letters or numbers as footnote symbols, you will sometimes
need to include one or more separators in the symbols.

Consider the following text table example of a user-specified footnote sym-
bol that is referenced in a mask in a format request:

SET	FOOTNOTE	XXX	SYMBOL	'1'	TEXT	'Footnote	example';

FOR	TABLE	1	ROW	3	COLUMN	2:		
	 REPLACE	MASK	WITH	999	FOOTNOTE	XXX;

If the value in the data cell for row 3, column 2 is 453, the value displayed
with the XXX footnote symbol will be 1453. This is clearly an undesir-
able result.

If the footnote symbol is specified as '1 ', the value displayed with the
footnote symbol will be: 1 453.

If the footnote symbol is specified as '1/ ', the value displayed with the
footnote symbol will be: 1/ 453.

Adjusting Alignment for Footnote Symbols Used Alone in
Data Cells

You can control the alignment of a footnote symbol when it is used alone
in a table cell by adding RIGHT, LEFT or CENTER when the footnote
symbol is described in the SET FOOTNOTE statement. CENTER is the
default alignment for cells that contain only a footnote symbol. If you
specify RIGHT, the footnote symbol will be displayed at the far right of

	 Footnotes 376

the column. If you specify LEFT, it will be displayed at the far left of the
column.

RIGHT alignment of footnote symbols may be particularly desirable in
cases where the data in a column is right-adjusted.

RIGHT and LEFT specifications will only take effect when footnotes are
used in cells that have no data. In all other cases, the footnote symbol will
be displayed according to the normal rules: In cells with data, the symbol
will be placed to the left of the data; in labels, the footnote symbol will be
placed in the label at the point where it is referenced.

Examples	 SET	FOOTNOTE	FEW			SYMBOL	'(F)'	RIGHT
	 TEXT		 'Fewer	than	5	families	represented.';

SET	FOOTNOTE	FEW			SYMBOL	RIGHT	'(F)'
	 TEXT		 'Fewer	than	5	families	represented.';

The alignment specification can precede or follow the symbol, so the two
statements above will give the same result. The footnote symbol (F) will
be right-adjusted in any cell where the data value is replaced by the foot-
note.

SET	FOOTNOTE	FEW		SYMBOL	RIGHT
	 TEXT		 'Fewer	than	5	families	represented.';

TPL TABLES will generate a default numbered footnote symbol and right-
adjust it in any cell where the data value is replaced by a footnote.

SET	FOOTNOTE	EMPTY		SYMBOL	RIGHT;

This example uses a built-in footnote called EMPTY. Built-in footnotes are
described later in this chapter. The dash symbol for EMPTY will be right-
adjusted in empty data cells.

Note You cannot change the alignment of the footnote symbol by using LEFT or
RIGHT in the MASK. For example:

POST	COMPUTE	POPULATION	=
	 PERSON_COUNT		 	 	 IF		>=	5000;
	 MASK	RIGHT	FOOTNOTE	FEW	 IF		OTHER;

The use of RIGHT or LEFT in a mask that contains only a footnote will
either produce an error message or be ignored. To get the desired result
for this example, put RIGHT in the SET FOOTNOTE statement as shown
above.

	 Footnotes 377

Display of Footnotes at End of Table

Footnotes are listed at the end of the last page of each table, unless you use
the statement FOOTNOTES EACH PAGE; in a format request.

See also the FORMAT statement MAXIMUM FOOTNOTE SYMBOL
WIDTH for some ways to adjust indentation and alignment of symbols
and texts.

Order

The order of the footnotes in the list is determined by the footnote sym-
bols. Footnotes with numeric symbols are printed first, followed by
footnotes with alphabetic or special characters in the symbols. These are
sorted according to the footnote symbols. Footnotes without symbols are
printed last.

You can specify a different display order for the footnotes by using a
FOOTNOTE SEQUENCE statement in a FORMAT request.

Indentation

If there is a footnote symbol, the footnote text for the first line of the foot-
note is indented four spaces. The symbol precedes the text with one space
between the symbol and the text. If there is a long footnote symbol, the
first line of text may be indented further. The symbol will begin at the left
edge of the table, followed by one space, then the footnote text.

If there is no footnote symbol, the footnote text is not indented but begins
at the left edge of the table. In this case, you can force indentation by
adding blanks or an INDENT specification at the beginning of the footnote
text.

For multi-line footnote texts, lines after the first are not indented.

The symbols are printed as superscripts using the footnote symbol font.
You can also request that footnotes be printed in multiple columns. This
feature is described under the FORMAT statement called FOOTNOTE
COLUMNS.

	 Footnotes 378

Adjusting Alignment of Footnote Text

Although footnote text will usually look best if aligned according to the
defaults, you may occasionally want a different alignment. To specify
alignment, add the alignment specification such as RIGHT to the footnote
TEXT. For example:

SET	FOOTNOTE	R_NOTE	TEXT	RIGHT	'Source:		Census	Bureau';

A default footnote symbol will be generated and will print at the left. The
footnote text will be right-aligned.

In general, this type of alignment will look best for a footnote with no
symbol. See the FORMAT statement SET NOTE for the best way of add-
ing a simple note to a table.

Footnote Symbol Level

You can raise the symbols more or less than the default amount by using
the RAISE FOOTNOTE SYMBOL statement described in the FORMAT
chapter. You can also use this statement to prevent the footnote symbols
from being raised so that they will be printed at the same level as the adja-
cent numbers or text.

Built-in Footnotes

TPL TABLES has several built-in footnotes. All but one are automatically
included in your tables when their display conditions are met, regard-
less of whether they are explicitly referenced in labels or masks. You can
replace the default symbol and/or text for any of these footnotes with SET
FOOTNOTE statements in your codebook, table request, format request, or
profile (PROFILE.TPL). You can also turn them off (see section below on
Deleting Footnotes). The built-in footnotes are:

Footnote Symbol Text
name

SEE_END	 ''"	 "See	footnotes	at	end	of	table."
EMPTY	 "-"	 "Data	not	available."
ERROR	 "**"	 "Computation	error."
NO_FIT	 "nf"	 "Data	does	not	fit."
SMALL	 ">0"	 "Value	is	too	small	to	display."
SMALL_NEG	 "<0"	 "Negative	value	too	near	zero	to	dis-
play."
NORANK	 blank	 No	text.

	 Footnotes 379

ZERO	 	 No	symbol	or	text	so	default	 is	"off".

SEE_END The SEE_END footnote will automatically be used in any
table that is more than one page long if the table has footnotes. It will ap-
pear at the bottom of each page except the last if the page has at least one
footnote or if any preceding pages have footnotes. The footnote symbol is
the null string "", so no symbol will be displayed in the table. This foot-
note will not appear if FOOTNOTES EACH PAGE is specified.

EMPTY The EMPTY footnote symbol '–-' will automatically appear in
any table cell for which there is no data. If there are any empty cells in a
table, the footnote symbol and the text 'Data not available.' will be included
in the list of footnotes at the end of the table.

Note that a dash wider than hyphen is used as the footnote symbol for
EMPTY. This character is not on your keyboard but can be entered by typ-
ing &ENDASH; See the appendix called "Character Sets" for additional
details.

ERROR The ERROR footnote symbol '**' will be displayed in any table
cell for which there is no value due to a computation error such as "divide
by zero". If there are any table cells with computation errors, the symbol
and the text 'Computation error.' will be included in the list of footnotes at
the end of the table.

NO_FIT The NO_FIT footnote symbol 'nf' will replace the data in any
table cell in which the data is too large to fit. For example, if the cell
value is 2,453,987 and the column width is 7, the correct data value cannot
fit is the column. If there are any cells for which the data values are too
large to be displayed, the symbol and the text 'Data does not fit.' will be
included in the footnote list at the end of the table.

The NO_FIT footnote is also used when a footnote symbol is too wide to
fit in a data cell. For example, if the column width is 4 and the footnote
symbol is '********', the footnote symbol cannot fit. It will be replaced
with 'nf' the same as if it were a wide data value.

SMALL The SMALL footnote symbol '>0' will appear in any table cell
where a small, non-zero value would otherwise be displayed as 0. This
can happen if the column is too narrow or if the mask doesn't have enough
digits after the decimal place. For example, if the mask is 999.9 and the
cell value is .01, the SMALL footnote symbol will be displayed in the

	 Footnotes 380

cell. Likewise, if the column width is 5 and the cell value is .000006, the
SMALL footnote symbol will be displayed in the cell. If the SMALL
footnote symbol appears in any cells of a table, its text 'Value is too small
to display.' will be included in the footnote list at the end of the table.

SMALL_NEG The SMALL_NEG footnote symbol '<0' will appear in
any table cell where a small, non-zero negative value would otherwise
be displayed as 0. This can happen if the column is too narrow or if the
mask doesn’t have enough digits after the decimal place. For example, if
the mask is 999.9 and the cell value is -.01, the SMALL_NEG footnote
symbol will be displayed in the cell. Likewise, if the column width is 5
and the cell value is -.000002, the SMALL_NEG footnote symbol will be
displayed in the cell. If the SMALL_NEG footnote symbol appears in any
cells of a table, its text 'Negative value too near zero to display.' will be
included in the footnote list at the end of the table.

ZERO The ZERO footnote is the only built-in footnote that is "off" by
default. It can be used to call attention to table cells for which the value is
exactly zero. You can turn on the ZERO footnote by providing a footnote
text with a SET FOOTNOTE statement. If you do not specify a footnote
symbol, TPL TABLES will provide a number for the symbol and display it
in parentheses. For example,

SET	FOOTNOTE	ZERO	TEXT	'Value	is	exactly	0.';

NORANK If you have a table with ranking and a RANK DISPLAY
column, you may have rows in the table for which there is no rank num-
ber to put in that column. This will happen if not all rows of the table are
ranked. By default, the RANK DISPLAY column will be blank for these
rows. Use the NORANK footnote to put something other than blank in
these rows. You can also specify a footnote text so that the NORANK
footnote will appear at the bottom of the table. For example,

SET	FOOTNOTE	NORANK	SYMBOL	"..."
	 TEXT	"Rank	number	not	applicable.";

Font for Built-in Footnote Symbols

The FOOTNOTE SYMBOL FONT is not used for built-in footnote sym-
bols. When a symbol for a built-in footnote is displayed in a data cell, it is
printed in the font that is in effect for the cell. This is the font that would
be used if data were displayed in the cell. The symbol is not raised. At
the end of the table, the footnote symbol is also not raised. It takes on the
font that is in effect at the beginning of the footnote text. You can change

	 Footnotes 381

the font for the symbol at the end of the table but not in the table cells.
To change the symbol font at the end of the table, use a SET FOOTNOTE
statement such as:

SET	FOOTNOTE	EMPTY	SYMBOL	FONT	HB	6;

Forcing Automatic Numbering for Built-in Footnotes

As discussed in the previous section, the built-in footnotes have built-in
footnote symbols. For example, the built-in footnote called EMPTY has a
symbol of "–"; the built-in footnote called SMALL has a symbol of '>0'.
You can get the regular default automatic footnote numbering for a built-in
footnote by using a SET FOOTNOTE statement with the word DEFAULT
to describe the footnote symbol. The statement

SET	FOOTNOTE		SMALL		SYMBOL	DEFAULT;

will replace the built-in symbol for the SMALL footnote with an automati-
cally generated footnote number. Use of DEFAULT also causes the foot-
note symbol to be raised and appear in the footnote symbol font like other
ordinary footnote symbols.

The word DEFAULT can be used for footnotes that are not built-in but
will not generally be needed. If no footnote symbol is specified for these
footnotes, automatic numbering is assumed.

Conflicts with Other Footnotes in Table Cells

Only one footnote is allowed per table cell. If a user-defined footnote
conflicts with a built-in footnote, the following rules apply: for all of
the built-in footnotes, except NO_FIT, if the mask applied to a table cell
contains a footnote reference and no 9's, the footnote from the mask will
override built-in footnotes. If the mask does contain 9's, a footnote in the
mask will not override built-in footnotes.

Deleting Footnotes

Using Null Strings

If a footnote has both a null symbol and a null text, the footnote will not
be used in any tables. For example,

SET	FOOTNOTE	SMALL				SYMBOL	""					TEXT	"";

	 Footnotes 382

This statement will cause the built-in SMALL footnote to disappear from
all tables. The table cells that would have contained the symbol '>0' will
instead contain 0's and no SMALL footnote symbol or text will be includ-
ed in the footnote lists.

Using FORMAT Statements

To delete footnotes on a table-by-table basis, you must use the DELETE
FOOTNOTE statement in a format request. For example, the following
FORMAT statement will delete the footnote named NOTE1 from TABLE
A1 but leave it in effect for any other tables in the table request.

FOR	TABLE	A1:		DELETE	FOOTNOTE	NOTE1;

If you wish to delete all footnotes, including the built-in ones, you can use
the word ALL. Some examples are:

FOR	TABLE	A1:		DELETE	FOOTNOTES	ALL;
FOR	TABLES	ALL:		DELETE	FOOTNOTES	ALL;

As with other DELETE actions in the FORMAT language, there are
comparable RETAIN clauses. For example, if you wanted to turn off all
footnotes, but retain the footnote called NOTE1 for a particular table, you
could say:

FOR	TABLES	ALL:		DELETE	FOOTNOTES	ALL;
FOR	TABLE	A1:		RETAIN	FOOTNOTE	NOTE1;

Forcing Printing of Unused Footnotes with KEEP

In some cases, you may want the text for a footnote to appear at the end
of a table, regardless of whether the footnote is referenced or used in the
table. This is the usual case for a footnote that is just a note -- an informa-
tive piece of text that applies to the entire table and does not need to be
attached to any particular label or table cell. The RETAIN FOOTNOTE
statement, used to reverse the effect of DELETE FOOTNOTE, cannot be
used to force printing of footnotes that are not used in the table.

A simple way to accomplish this result is to use the SET NOTE statement.

You can also use the FORMAT statement KEEP FOOTNOTE. An ex-
ample is:

SET	FOOTNOTE	ROUND_NOTE	TEXT
	 	'Note:	Components	may	not	add	to	totals,	due	to	rounding.'

	 Footnotes 383

FOR	TABLE	B3:		KEEP	FOOTNOTE	ROUND_NOTE;

The text for the footnote called ROUND_NOTE will be printed at the end
of table B3, even if the footnote is not used anywhere in the table. Since
no footnote symbol is specified and the footnote is not used in the table, no
footnote symbol is generated for it. It is printed as a simple note.

Note that the FORMAT statements DELETE FOOTNOTE, RETAIN
FOOTNOTE and KEEP FOOTNOTE can apply to the same footnote. If
they do, and there is a conflict between them, the last one encountered by
the system will win. Also, note that if both the symbol and the text for
a footnote are null strings (''), the footnote cannot be kept in the table by
either RETAIN FOOTNOTE or KEEP FOOTNOTE.

Example of Table with Footnotes

The following example illustrates the use of many of the footnoting ca-
pabilities we have described. In the table request, the footnotes called
MULTI, MANDATE, ASSOC, and PLAN are referenced in DEFINE state-
ment labels and in the table title. Since no symbols are specified in the
SET FOOTNOTE statements, the default symbols 1 through 4 are assigned
by TPL TABLES.

use	benefit	codebook;

define	plan_type	indent	2	'All	participants'/	on	plan;
	 indent	4	'Total'	 if	1;
	 'Single	employer'	 if	2;
	 'Multiemployer'	footnote	multi	 if	3;
	 'Mandated	benefits'	footnote	mandate	if	4;
	 'Employer	association'	footnote	assoc	if	5;

table	one	'Table	86.		Plan'	footnote	plan	
	 '	administration:		Percent	of	full-time	participants	in	selected'
	 '	benefits	by	type	of	plan	sponsor,	medium	and	large	firms'	:
	 heading		 health	then	life	then	other_ins,
	 stub		 plan_type;

set	footnote	plan	text		 'Does	not	include	supplemental	plans.';

	 Footnotes 384

set	footnote	multi	text	
	 'Individual	employers	in	the	same	or	in	a	related	industry'	
	 '	contributing	a	negotiated	amount	to	trust	fund	providing'
	 '	benefits	for	employees	covered	under	a	collective'
	 '	bargaining	agreement.';

set	footnote	mandate	text	
	 'The	majority	of	the	participants	with	mandated	sickness'
	 '	and	accident	insurance	benefits	were	covered	by	State'
	 '	 temporary	disability	plans.';

set	footnote	assoc	text	
	 'Band	of	small	employers	in	a	common	trade	or	business,'
	 '	 for	example,	savings	and	loan	associations.		The	plan'
	 '	sponsored	by	the	association	is	not	negotiated	with	the'
	 '	employees.';

Three additional footnotes are set in the format request. First, the built-in
footnote called SMALL is "reset". The symbol is set to DEFAULT so that
a number will be assigned in place of the built-in symbol '>0', and the text
is set to 'Less than 0.5 percent' to replace the built-in text 'Value is too
small to display.' Second, the built-in footnote EMPTY is "reset" with a
null string so that the built-in text 'Data not available." will not print at
the end of the table.

The last footnote NOTE_FOOT is a note that will print at the end of the
table. It requires a KEEP FOOTNOTE statement, because it is not refer-
enced in the table. Since it is not used in a label or table cell, it is printed
as a simple note without a symbol.

set	footnote	small	symbol	default	text	 'Less	than	0.5	percent.';

set	footnote	empty	text	 '';

set	footnote	note_foot	text
	 indent	2	'NOTE:		Because	of	rounding,	sums	of	 '	
	 indent	0	'individual	 items	may	not	equal	totals.		 '
	 'Dash	indicates	no	employees	in	this	category.'/;

keep	footnote	note_foot;

The resulting table is:

	 Footnotes 385

Table 86. Plan1 administration: Percent of full-time
participants in selected benefits by type of plan
sponsor, medium and large firms

Plan sponsor Health
insurance

Life
insurance

Sickness
and

accident
insurance

All participants

Total 100 100 100
Single employer 96 97 87
Multiemployer2 4 3 2
Mandated benefits3 – – 11
Employer association4 .. 5() 5() –

1 Does not include supplemental plans.
2 Individual employers in the same or in a related industry

contributing a negotiated amount to trust fund providing
benefits for employees covered under a collective bargaining
agreement.

3 The majority of the participants with mandated sickness
and accident insurance benefits were covered by State
temporary disability plans.

4 Band of small employers in a common trade or business,
for example, savings and loan associations. The plan
sponsored by the association is not negotiated with the
employees.

5 Less than 0.5 percent.
NOTE: Because of rounding, sums of individual items may

not equal totals. Dash indicates no employees in this
category.

	 Footnotes 386

If the table is exported as a text table we get the following. Note the dif-
ference in the treatment of footnote symbols.

Table 86. Plan(1) administration: Percent of
full-time participants in selected benefits by type
of plan sponsor, medium and large firms

Plan sponsor
Health

insurance
Life

insurance

Sickness
and

accident
insurance

All participants

Total 100 100 100
Single employer 96 97 87
Multiemployer(2) ... 4 3 2
Mandated benefits(3) – – 11
Employer

association(4) .. (5) (5) –

 1 Does not include supplemental plans.
 2 Individual employers in the same or in a
related industry contributing a negotiated amount
to trust fund providing benefits for employees
covered under a collective bargaining agreement.
 3 The majority of the participants with mandated
sickness and accident insurance benefits were
covered by State temporary disability plans.
 4 Band of small employers in a common trade or
business, for example, savings and loan
associations. The plan sponsored by the
association is not negotiated with the employees.
 5 Less than 0.5 percent.
NOTE: Because of rounding, sums of individual

items may not equal totals. Dash indicates no
employees in this category.

The SET NOTE Statement

The SET NOTE statement can be used in the codebook, table request or
profile (PROFILE.TPL) in addition to the format request. See also the
SET NOTE statement in the FORMAT section of the manual for additional
details on its use in a format request.

SET NOTE lets you specify note text that can be printed at the end of a
table. When a note is printed, it looks like a footnote without a symbol.
You do not need to reference the note anywhere or use a KEEP FOOT-
NOTE statement to force it to be printed as you do with footnotes that do
not have symbols. A note will always print at the end of any table(s) for

	 Footnotes 387

which it is set. Unless set in the format request, a note will apply to all
tables.

Format	 SET	NOTE		(name)		TEXT		label	;

where name is the name of the note. The parentheses around the note
name are optional. The note TEXT can be any valid TPL TABLES label
except that it cannot contain a reference to a footnote. The word TEXT is
optional. Thus the most simple format for the SET NOTE statement is:

SET	NOTE		name		label	;

Example	 SET	NOTE	QQQ	'This	table	was	prepared	by	QQQ	Software,	Inc.';
SET	NOTE	CD	'Confidential	Data.';

The notes called QQQ and CD will print at the end of each table.

Font Controls in Footnotes

The default fonts for footnotes can be set using the FOOTNOTE TEXT
FONT and FOOTNOTE SYMBOL FONT statements in the FORMAT
language. This method works well if you want to use the same fonts for
all footnotes. If you need to select fonts for individual footnotes, you can
enter font choices directly in footnote text and symbols. These font selec-
tions are ignored for text table exports.

Rules for inserting font choices in footnote texts are the same as for any
other label. For a complete list of available fonts, see the FONT statement
in the FORMAT section of the manual.

To change the font for a footnote symbol, simply add the FONT specifica-
tion to the SYMBOL part of the SET FOOTNOTE statement. You can use
any of the font choices available in the FORMAT language FONT state-
ment. For example,

SET	FOOTNOTE	(A)		SYMBOL	FONT	HB	6	'*'	 	 	TEXT	'Text';

To change the font of a default symbol, specify only the font. For ex-
ample,

SET	FOOTNOTE	(B)		SYMBOL	FONT	HB	6			TEXT	'Text';

If there is a symbol string, the font specification can be on either side of
the symbol string. Only one font can apply to a footnote symbol.

	 Footnotes 388

The font size specification is optional. If size is not specified, the size will
be determined by the default font size for footnote symbols.

If the footnote symbol is attached to a label and is larger than the font
sizes in the label, the vertical spacing will be adjusted to allow for the
larger footnote symbol. If a large symbol is used in a data cell, the verti-
cal spacing will not be adjusted for the footnote symbol. In this case, it is
possible that the large footnote symbol will overlap with the line above.

Matching the Footnote Symbol Font to the Adjacent Font

You can use the word MATCH as a font specification for footnote symbols
when you want the footnote symbol font to match that of the adjacent text
or data value. As with other font specifications, MATCH has no effect on
text tables. To use MATCH as the default specification, use the FORMAT
statement:

FOOTNOTE	SYMBOL	FONT	=	MATCH;

MATCH can also be specified for individual footnote symbols in the SET
FOOTNOTE statement. For example:

SET	FOOTNOTE	PRELIM	TEXT	'Preliminary	data'
	 SYMBOL	'P'	FONT	=	MATCH;

When the footnote symbol is used in a data cell, it matches the font in ef-
fect for that cell. At the bottom of the page, it matches the font at the be-
ginning of the footnote text. When used in any other label, it matches the
font that is active at the point where the footnote is referenced in the label.

Quick Reference Summary of Font Treatment for Symbols

In the following, we use the term "cell font". Cell font is defined as the
font that would be used if data were to be displayed in the cell. Initially, it
is the DEFAULT FONT.

Non-built-in Footnotes
The symbol font is used for symbols in labels, in cells and at the end of
the table.

If a symbol font is entered in SET FOOTNOTE, this font becomes the
symbol font for the footnote.

If a symbol is alone in a cell, it is enclosed in parentheses; the parentheses
are in the cell font.

	 Footnotes 389

Built-in Footnotes
In a data cell, the cell font is always used for the symbol.

At end of a table, the font in effect at the beginning of the footnote text is
used for the symbol.

If a symbol font is entered in SET FOOTNOTE, this font is used at the end
of the table but the cell font is still used in cells.

MATCH
Match works the same for built-ins and all other footnotes.

MATCH can be set by FOOTNOTE SYMBOL FONT = MATCH; or in
individual SET FOOTNOTE statements.

In a label, the font for the symbol matches the font active at the point
where the footnote is referenced.

In a data cell, the font for the symbol matches the cell font.

At the bottom of the page, the font for the symbol matches the font in ef-
fect at the beginning of the footnote text.

Using Footnotes in TEXT Masks

When a footnote is used in a TEXT mask, the format for the symbol in the
data cells is determined by the TEXT mask. See the "Mask" chapter for

full details on TEXT masks.

A footnote symbol displayed with a TEXT mask is not raised. Instead, it
is displayed at the normal text height unless you precede it with SUP or
SUPER to get superscript display. In addition, for data cells containing
only a footnote symbol, the symbol is not enclosed by parentheses. If you
want parentheses, you need to include them in the TEXT mask.

Example	 SET	FOOTNOTE	t_note	SYMBOL	'***'		TEXT	'$100,000	and	above.';
POST	COMPUTE	avg_age	'Age'	=
	 age	/	persons	MASK	99	 	 	 IF		>	17;
	 MASK	TEXT	'Young'	FOOTNOTE	t_note	 IF		OTHER;

	 Footnotes 390

Using SYM in Footnote Text for More Control of
Symbol Format

In some cases, you may wish to change the format or placement of the
symbol at the end of a table where it appears alongside the footnote text
but without altering it in the body of the table where it appears in labels or
data cells. For example, suppose you want the footnote symbol to be red
in the body of the table, but you want it to be green at the end of the table.
Or, you want to indent the footnote symbols and text in a certain way at
the end of the table.

You can use the special word SYM in footnote text to provide this type of
functionality. Footnote text is a normal label with all of the label features
such as color specifications, fonts and indentations supported by other
labels. If you insert SYM into the footnote TEXT, the footnote symbol
will be displayed at that point in the text and will take on the label charac-
teristics that apply at that point in the text. The footnote symbol will retain
its original SYMBOL characteristics wherever it is displayed in the body of
the table.

Note that references to fonts, color and superscripting in the following
examples do not apply to text tables. Label features such as RIGHT IN
SPACE are described in detail in the "Labels" chapter.

Example	 SET	FOOTNOTE	sample		SYMBOL	COLOR		red	"x"	
 TEXT 	COLOR	green		FONT	hb	10
	 SYM	"	Sample	footnote	text";

In the body of the table, the footnote symbol x will appear in red with the
default footnote font and will be raised (as a superscript) in the standard
way. At the bottom of the table, x will be green in Helvetica Bold (hb)
font, size 10.

Note that when SYM is used, the footnote symbol at the bottom of the
table will, by default, have the footnote text font rather than the footnote
symbol font and will not be raised. This is because the symbol takes on
the text characteristics in effect. To reproduce the raised format for the
symbol within the text, where the footnote text font is h 10 and the foot-
note symbol font is h 8, we need to specify SUPER in front of SYM to
raise the symbol, return to NORMAL level following SYM, and add font
specifications as follows:

SET	FOOTNOTE	sample		SYMBOL	COLOR		red	"x"	

	 Footnotes 391

	 TEXT		COLOR	green		FONT h	8
	 SUPER	SYM NORMAL FONT h	10	"	Sample	footnote	text";

Since there is one blank at the beginning of " Sample footnote text", there
will be one blank space between the symbol and the following footnote
text.

When SYM is not used, footnote symbols are right-aligned within a default
space of 3 characters. To reproduce this spacing between the footnote
symbol and text, we can add RIGHT IN SPACE 3 in front of SYM, re-
move the blank at the beginning of the text, and then add SPACE TO 4 in
front of the text.

SET	FOOTNOTE	sample		SYMBOL	COLOR		red	"x"
 TEXT		COLOR	green
	 RIGHT IN SPACE 3 FONT h	8		SUPER	SYM NORMAL
 SPACE TO 4 FONT h	10	"Sample	footnote	text";

Using SYM with RIGHT IN SPACE to Align Footnote Symbols
and Notes

For footnotes, the alignment at the bottom of a table is determined accord-
ing to built-in defaults. If you have footnote symbols of different widths,
they will be aligned independently, relative to their footnote text. If you
wish, you can right-align the symbols within a space of a specific width
using a combination of RIGHT IN SPACE, SPACE TO and SYM. See
also the "Labels" chapter for additional details on RIGHT IN SPACE and
SPACE TO.

To illustrate, we use the following collection of footnotes and notes:

set	note	src	 'Source:		Department	of	Health.';

set	note	nt
	 'Note:		This	table	shows	footnotes	with	default	alignment.';

set	footnote	sum	symbol	font	h	 's'
	 text	 'The	total	 is	 less	than	the	sum	of	the	individual	 items	'
	 'because	many	workers	participate	in	plans	with	more	'
	 'than	one	feature.';

set	footnote	df		text	 'Data	collected	for	the	month	of	March.';

	 Footnotes 392

set	footnote	dental
	 text	 'Participants	who	elected	dental	coverage	only	
	 'were	not	included	in	this	tabulation.';

By default, the footnotes and notes will be displayed as follows:

Health care benefits: Percent of full-time participants by
coverage with selected cost containment features, medium
and large firms, 19951

Cost containment feature All par-
ticipants

Technical
and clerical
participants

Production
participants

Total2,s 100 100 100

Incentive to seek second surgical
opinion .. 35 40 28

Higher payment for generic
prescription drugs 7 7 6

Separate deductible for hospital
admission 9 9 7

Urging prehospitalization testing 47 52 43
Preadmission certification requirement 16 15 16
Incentive to audit hospital statement 2 2 1

Source: Department of Health.
Note: This table shows footnotes with default alignment.

s The total is less than the sum of the individual items because many workers
participate in plans with more than one feature.

1 Data collected for the month of March.
2 Participants who elected dental coverage only were not included in this

tabulation.

As we can see, there is no indentation for notes. For the footnotes with
symbols, the symbols are indented within a space of 3, and the footnote
texts follow after a space of 1. To align "Source:", "Note:", and the foot-
note symbols within a space of 7, then start the remaining text at position
10, we can use a combination of RIGHT IN SPACE 7, SYM and SPACE
TO 10:

set	note	src		text	right	 in	space	7	'Source:'
space	to	10	'Department	of	Health.';

set	note	nt		text	right	 in	space	7	'Note:'
space	to	10	'This	table	shows	footnote	symbols	"right	 in	space".';

set	footnote	sum	symbol	 's'		 text	right	 in	space	7		super	sym	normal
space	to	10	'The	total	 is	 less	than	the	sum	of	the	individual	 '
	 'items	because	many'/
space	to	10	'workers	participate	in	plans	with	more	than	one	feature.';

	 Footnotes 393

set	footnote	df		text	right	 in	space	7	super	sym	normal
space	to	10	'Data	collected	for	the	month	of	March.';

set	footnote	dental		text	right	 in	space	7		super	sym	normal
space	to	10;'Participants	who	elected	dental	coverage	only	 '
'were	not	included	in'/
space	to	10	'this	tabulation.';

Health care benefits: Percent of full-time participants by
coverage with selected cost containment features, medium
and large firms, 19951

Cost containment feature All par-
ticipants

Technical
and clerical
participants

Production
participants

Total2,s 100 100 100

Incentive to seek second surgical
opinion .. 35 40 28

Higher payment for generic
prescription drugs 7 7 6

Separate deductible for hospital
admission 9 9 7

Urging prehospitalization testing 47 52 43
Preadmission certification requirement 16 15 16
Incentive to audit hospital statement 2 2 1

Source: Department of Health.
Note: This table shows footnote symbols "right in space".

s The total is less than the sum of the individual items because many
workers participate in plans with more than one feature.

1 Data collected for the month of March.
2 Participants who elected dental coverage only were not included in

this tabulation.

The footnote symbols, s, 1 and 2 are all only a single character. The
example would work equally well for any footnote symbol that fits in the
space of width 7 specified by RIGHT IN SPACE 7.

	
	 Automatic Formatting 394

C h a p t e r 2 3

Automatic Formatting

defAuLT fOrmAT fOr TABLeS

This chapter describes the default rules used when TPL TABLES formats
a table automatically. You can easily change most of these rules by using
FORMAT statements either in your profile or in a format request.

Page Format

Page size is initially set during installation of TPL TABLES. Within a
given page size, a table is printed with margins. The default margin sizes
are:

top	margin	=	1	inch;
bottom	margin	=	1	inch;
left	margin	=	0.5	inches;
right	margin	=	0.5	inches;

The table is centered within the available space. If the table is too wide
for the space, it is divided into as many partitions as necessary with each
partition on a new page. These partitions are called banks. The stub labels
are repeated in each bank, and each bank is centered.

Pages are not numbered. If you wish to have page numbers, date, time
and/or job identification printed on the pages, see the FORMAT statement
called PAGE MARKER for details.

	
	 Automatic Formatting 395

Table Title Format

The table title from the TABLE statement appears at the top of the page
and is aligned with the left edge of the table. If no title is provided in the
TABLE statement, the table name is used as the title. For example:

TABLE	MANUFACTURING_INDUSTRIES:		STATE,	UNION_STATUS;

would cause the table name MANUFACTURING_INDUSTRIES to be
used as the table title.

To center the title, follow the required table name with a title enclosed in
quotes and the keyword CENTER. For example:

TABLE	A	CENTER	'Manufacturing	Industries'	:		STATE,	
UNION_STATUS;

Similarly, use of the word RIGHT with a table title will cause the title to
be aligned with the right edge of the table.

Heading and Column Format

The default column width is about 10 characters including the space taken
up by the column divider. Heading labels are centered and segmented over
multiple lines automatically when necessary. Each segmented portion is
centered. For a text table, if a label segment cannot be perfectly centered
because of an uneven number of spaces, it is adjusted to the right one posi-
tion. For example, if there are 9 spaces available for a 6 character heading
label, it will be displayed with 2 spaces to the left and 1 space to the right.

Coalescing of Labels

If two or more adjacent boxes at the same heading level have the same la-
bel, the boxes will be automatically merged to a single larger box contain-
ing one appearance of the label.

For example, in the printed heading for TOTAL THEN SEX BY TOTAL,
the boxes for the two lowest level TOTAL columns would be merged:

Total
Male Female

Total

	
	 Automatic Formatting 396

This coalescing of labels will occur even if the labels are from different
variables. If you do not want the label boxes to merge, then you need
to make the labels different. The easiest way to accomplish this without
affecting the appearance of the individual labels is to put a conditional
hyphen at the front of one of the labels. For example,

"This	is	a	label"
-	"This	is	a	label"

will not be merged if they are in adjacent boxes.

See also the Format statement REPLACE LABEL for more information.

Stub and Row Format

The default stub width is about 20 character positions. Stub label indenta-
tion for each level of nest is two character positions. If there are enough
levels of nest in the stub to cause the indentation to go beyond the middle
of the stub, indentation will stop.

A stub label too long for the available space will be automatically segment-
ed over two or more lines. If a stub label must be segmented because it is
too long for the stub width, the continued segments will be indented three
character positions from the first line segment. As with the indentation to
show nesting, no segment will start beyond the middle of the stub.

The following example shows a nesting indentation of two positions and a
continuation indentation of three positions:

STUB	LABEL	NUMBER	 ONE
	STUB	LABEL	NUMBER
			TWO	IS	VERY	LONG
			EXTENDING	OVER
			FOUR	LINES
		STUB	LABEL	NUMBER	THREE

If a label used in the stub has the word CENTER associated with it, the
label will be centered within the width of the stub. Similarly, if the label
has the word RIGHT associated with it, it will be aligned with the right
edge of the stub.

	
	 Automatic Formatting 397

Normally a label will appear for each variable used in the stub expression.
The one exception is when a null-labeled variable is nested with a vari-
able at the next highest level. For example the stub expression, CITY BY
(TOTAL THEN SEX) will begin as:

BOSTON
			TOTAL.......	(total	values)
			MALE........	(data	values)
			FEMALE......	(data	values)

Suppose that you want the "BOSTON" label to move down one line and
replace the "TOTAL" label. In other words, you want the city label to be
the label for the total line. If the variable producing the total line is cre-
ated with a null label, BOSTON and other city names will collapse down
to the total line. For example:

BOSTON........	(total	values)
			MALE........	(data	values)
			FEMALE......	(data	values)

One way to create a null label is to use the DEFINE statement as follows:

DEFINE	TOTALS		ON		SEX;
	 ''	 	 	 	 	 IF		ALL;

Then replace TOTAL with the DEFINE variable TOTALS in the stub
expression.

A data row for which there is no data is called an empty row. Empty data
rows are not printed.

Wafer Label Format

Wafer labels appear in the upper left corner of each page, two lines below
the table title. Wafer labels appear only if there is a wafer expression in
the TABLE statement. Empty wafers are not printed. The wafer label for-
mat depends on the content of the wafer expression. In the next examples,
assume a single variable from the codebook is used in the wafer expres-
sion.

Codebook variable First wafer label
	 	 	 	 will print as:

INCOME	OBS	5	 	 INCOME

	
	 Automatic Formatting 398

REGION	CON	 	 SOUTH
			(
	 SOUTH		=		1
	 NORTH		=		2
	 EAST		=		3
	 WEST		=		4
)

REGION	'Regions	of	U.S.A.'	CON	1	 South
			(
	 'South'		=		1
	 'North'		=		2
	 'East'		=		3
	 'West'		=		4
)

REGION	CON	1	(1:4)		 1	REGION

This last example illustrates the lack of clarity which can result in a wafer
label when condition names or condition labels are not defined for control
variable values. However, for certain types of control variables, wafer
labels resulting from this format are satisfactory. Assume two control
variables representing the size of dwelling (ROOMS) and age of household
head (YEARS) are described in a codebook as follows.

ROOMS	CON	1	
			(
	 '1	ROOM'		=		1
	 2:9
)

YEARS		CON	2		(18:99)

If ROOMS is used as the wafer expression, then the first two wafer labels
will be:

1	ROOM
2	ROOMS

If a wafer expression contains nested control variables, such as REGION
BY ROOMS, the wafer labels will appear as a succession of control vari-
able condition labels separated by commas, as in:

SOUTH,	1	ROOM

	
	 Automatic Formatting 399

For a wafer expression such as YEARS BY INCOME BY ROOMS,
where there is a nested observation variable, the first wafer will have the
label:

INCOME	FOR	(18	YEARS,	1	ROOM)

Data Cell Format

Table cell values that do not have masks are rounded to the nearest whole
integer and displayed with no special symbols except commas. The values
are right-adjusted in the table columns. If you want a different format or
alignment for values, you can specify the format using a print mask.

For any cell that does not have data, a dash is printed in the center of the
table cell.

Cell data consisting of too many characters for the column width are
handled in a special way. Each cell value that is too long to fit within the
column width will be reduced, first by removing from the number any spe-
cial characters (, $ % and footnote symbols), then by truncating decimal
places if there are any. A warning message will alert you to the fact that
some items have been removed.

If the value is still too long for the entire data value to be displayed, it will
be replaced by the footnote symbol nf. The nf footnote, Data does not
fit., will appear at the bottom of the table.

	 Color and Grey 400

C h a p t e r 2 4

Color and Grey

uSing COLOr, COLOr ShAding And
grey ShAding in TABLeS

General Information on Color and Grey

You can specify color for individual labels, including titles and footnote
texts, and masks within codebooks, table requests and FORMAT requests.
Color defaults for data values, labels and rules (horizontal and vertical
lines) can be specified with FORMAT statements. In addition, you can
request color or grey shading for an entire table or for selected parts of a
table.

The word COLOR can also be spelled COLOUR.

COLOR and GREY specifications are ignored in text tables.

Important This chapter is best viewed in the pdf form since colors are not displayed
in the paper manual.

Effect on Monochrome Printers

If tables that use color are printed on a non-color printer, the colors will
print as shades of grey. See the FORMAT statement COLOR = NO for
tips on switching between color and monochrome. See also the special

	 Color and Grey 401

color GREY. Its best use is for grey shading on either monochrome or
color printers.

r g b colors

Colors are specified by a combination of red, green and blue. We will re-
fer to them as r g b where the amount of each color in the mix is indicated
by a value from 0 to 100. For example, the color blue has the r g b num-
bers 0 0 100. In other words, there is no red, no green, and the maximum
amount of blue.

Color Chart

A color chart file called colors.ps is included with the TPL Tables system.
It can be found in either the doc subdirectory or the examples subdirectory
of the TPL system directory, depending on the version of TPL TABLES
you have. If you have a color PostScript printer, you can print this chart
on your color printer to see what colors are printed for a variety of r g b
colors.

The color chart is also shown on the next page of this manual. With the
PDF version of the manual open in Adobe Acrobat Reader, you can print
the page on any color printer.

There is very little consistency between color printers, so the same r g b
color printed on one color printer may look quite different when printed on
another. With the color chart, you can choose precisely from the colors as

printed by your printer.

	 Color and Grey 402

 0 20 99 0 20 80 0 20 60 0 20 40 0 20 20 0 20 0 0 0 0 0 0 20 0 0 40 0 0 60 0 0 80 0 0 99

20 20 9920 20 8020 20 6020 20 4020 20 2020 20 020 0 020 0 2020 0 4020 0 6020 0 8020 0 99

 0 60 99 0 60 80 0 60 60 0 60 40 0 60 20 0 60 0 0 40 0 0 40 20 0 40 40 0 40 60 0 40 80 0 40 99

20 60 9920 60 8020 60 6020 60 4020 60 2020 60 020 40 020 40 2020 40 4020 40 6020 40 8020 40 99

40 60 9940 60 8040 60 6040 60 4040 60 2040 60 040 40 040 40 2040 40 4040 40 6040 40 8040 40 99

 0 99 99 0 99 80 0 99 60 0 99 40 0 99 20 0 99 0 0 80 0 0 80 20 0 80 40 0 80 60 0 80 80 0 80 99

20 99 9920 99 8020 99 6020 99 4020 99 2020 99 020 80 020 80 2020 80 4020 80 6020 80 8020 80 99

40 99 9940 99 8040 99 6040 99 4040 99 2040 99 040 80 040 80 2040 80 4040 80 6040 80 8040 80 99

60 99 9960 99 8060 99 6060 99 4060 99 2060 99 060 80 060 80 2060 80 4060 80 6060 80 8060 80 99

80 99 9980 99 8080 99 6080 99 4080 99 2080 99 080 80 080 80 2080 80 4080 80 6080 80 8080 80 99

99 99 9999 99 8099 99 6099 99 4099 99 2099 99 099 80 099 80 2099 80 4099 80 6099 80 8099 80 99

60 60 9960 60 8060 60 6060 60 4060 60 2060 60 060 40 060 40 2060 40 4060 40 6060 40 8060 40 99

80 60 9980 60 8080 60 6080 60 4080 60 2080 60 080 40 080 40 2080 40 4080 40 6080 40 8080 40 99

99 60 9999 60 8099 60 6099 60 4099 60 2099 60 099 40 099 40 2099 40 4099 40 6099 40 8099 40 99

99 20 9999 20 8099 20 6099 20 4099 20 2099 20 099 0 099 0 2099 0 4099 0 6099 0 8099 0 99

80 20 9980 20 8080 20 6080 20 4080 0 2080 20 080 0 080 0 2080 0 4080 0 6080 0 8080 0 99

60 20 9960 20 8060 20 6060 20 4060 20 2060 20 060 0 060 0 2060 0 4060 0 6060 0 8060 0 99

40 20 9940 20 8040 20 6040 20 4040 20 2040 20 040 0 040 0 2040 0 4040 0 6040 0 8040 0 99

	 Color and Grey 403

Color Definitions in color.tpl

Colors can also be referenced by name where the colors have been defined
in a file called color.tpl. Establishing color definitions in this way can be
very convenient if you have a set of standard colors that you use frequent-
ly, because you do not need to remember the r g b values for the colors.
Instead, you can reference the colors by name. This approach also allows
you to choose different sets of standard color definitions for different print-
ers and adjust your color output to the different printers simply by using a
different color.tpl file.

The TPL TABLES installation process creates a file called color.tpl and
puts it in the TPL TABLES system directory. Several examples of color
definitions are included in this file. You can edit it to change or add to the
color definitions. If you want to leave the system color file unchanged but
use a different set of color definitions for your own jobs, you can make
a copy of color.tpl in the subdirectory where you are working and edit it
to include your own set of color definitions. The color definitions in the
directory where you are working will override the ones in the color.tpl file
in the TPL TABLES system directory.

The format of a color definition in color.tpl is:

Format	 color	r	g	b

where color is a name that you choose to associate with a specific color
definition and r, g and b are numbers between 0 and 100 (inclusive) which
specify the red, green, and blue components of a color.

Note Color definitions entered in color.tpl DO NOT end with a semicolon (;).

Note If you enter a color definition in color.tpl with the color name GRAY or
GREY, it will be ignored. These names are reserved for grey characters
and shading.

	 Color and Grey 404

Example Following is an example of a color.tpl file:

red	 100	 0	 0
green	 0	 100	 0
blue	 0	 0	 100
brown	 60	 40	 0
cyan	 0	 100	 100
yellow	 100	 100	 0
light_yellow	 100	 100	 20
purple	 40	 0	 100
magenta	 100	 0	 100
orange	 90	 60	 0
black	 0	 0	 0

Effect The colors red, green, blue, brown, cyan, yellow, light_yellow, purple,
magenta, orange and black are defined in the color.tpl file and can be refer-
enced by name in any TPL TABLES color specifications.

Example To choose the color RED as the default for all characters and rules in a
table, you can use the FORMAT statement:

DEFAULT	COLOR	=	RED;

This statement has the same meaning as the statement:

DEFAULT	COLOR	=	100	0	0;

	 Color and Grey 405

Example To shade the table heading with the color LIGHT_YELLOW, you can use
the FORMAT statement:

SHADE	HEADING	LIGHT_YELLOW;

This statement has the same meaning as the statement:

SHADE	HEADING	100	100	20;

Average Household Income by Sex of
Householder and Region.

Regional Totals

Sex of Householder

Total Male Female

Average Family Income

Total U.S. $31,830 $36,884 $20,460
New England 35,776 41,825 23,694
Mid Atlantic 33,983 40,217 22,124
East North Central 32,044 37,784 19,174
West North Central 27,947 31,966 16,965
South Atlantic 31,480 36,817 20,673
East South Central 25,151 29,886 14,441
West South Central 28,264 32,728 16,975
Mountain 29,391 33,157 19,281
Pacific 36,429 41,053 24,871

Note on Changing Color Definitions in color.tpl
If you include color names in individual labels, including titles and foot-
note texts, or masks within codebooks or table requests, you should be
aware that these colors are "built into" the labels and masks when the
codebooks or table requests are first run. TPL TABLES converts the color
names to the literal r g b numbering and saves this numbering as part of
the labels or masks as they are processed. Thus, if a codebook is pro-
cessed with one set of color name specifications and then the color.tpl file
is changed, the old color specifications will continue to apply to the labels
in that codebook until the codebook is reprocessed. Similarly, changing
color.tpl before a TPL TABLES rerun will be effective for FORMAT state-
ment colors but not for table request colors.

	 Color and Grey 406

Recommendation
If you reference colors by name in a codebook, then change the color.tpl
file, you will probably want to reprocess the codebook to switch to the new
color definitions.

If you run a table request in which colors are referenced by name, then
change color.tpl, you will probably want to run the job over from the
beginning to get the new color definitions. Doing a rerun with FORMAT
statements will not change the original label or mask colors that were as-
signed in the table request.

Printing Color Separations for Tables

Color separations cannot be printed directly from TPL TABLES, but you
can print them easily using desktop publishing software. First, ask TPL
TABLES to convert your tables to Encapsulated PostScript (EPS) files.
The tables will be converted into EPS files with one table page per file.
You can then bring the resulting EPS table pages into documents created
with desktop publishing software. If the tables have color, the EPS files
will automatically include the information needed for the desktop publish-
ing software to print CMYK color separations. You do not need to do
anything special to make this happen.

Example In PageMaker, after bringing an EPS table page into the document, choose
"Print", then "Color", then click on "Separations".

The Special Color GREY

You can specify GREY in any situation where COLOR is allowed. GREY
prints equally well on both color and non-color printers. It can be particu-
larly useful for shading if you have a non-color printer. It is less useful for
labels or data values, since letters and numbers do not print very well in a
grey shade. GREY is specified with a number between 0 (white) and 100
(black).

GREY can also be spelled GRAY.

The following examples show some uses of GREY in FORMAT state-
ments.

Examples	 REPLACE	LABEL	WITH	GREY	30	'A	grey	label';
SHADE	HEADNOTE	GREY	5;

	 Color and Grey 407

Since GREY is a special built-in color, the color names GREY and GRAY
can only be used with a number that specifies the degree of shading. If
there is a definition of GREY or GRAY in the color.tpl file, the definition
will be ignored.

Color Specifications for Individual Labels and Masks

Color can be added to labels, including titles and footnote texts, and masks
within codebooks, table requests and FORMAT requests. Color specified
in individual labels and masks overrides colors specified in the FORMAT
statements, DEFAULT COLOR and LABEL COLOR.

The color applies to the printed characters. To shade the background for
part of a table, you must use one of the FORMAT statements that begin
with the word SHADE.

Labels

COLOR can be used freely within a label in the same way as other types
of label characteristics such as fonts, spacing and line breaks.

Example	 "This	is"	COLOR	RED	"	a	two-tone	label."	COLOR	20	20	80

The label will print as follows:

"This	is"		will be printed in the default label color.

"	a	two-tone	label."	will be printed in RED as defined in the color.tpl
file.

If the label is used in a table stub on a line that has a row of data, the trail-
ing dots at the end of the stub label will be printed in color 20 20 80 (a
shade of blue).

Masks

COLOR can appear anywhere in a data mask. Note that this is different
from a FONT specification which must be at the end of a mask. When
used in a data mask, COLOR applies to the entire mask.

Example	 MASK		COLOR	100	0	0		999.99%

The data values and percent sign will be printed in color 100 0 0 (red).

	 Color and Grey 408

TEXT Masks
If you use a TEXT mask, you can vary colors within a table cell. In the
following example, the color is entered with a REPLACE MASK statement
in a format request.

Example	 FOR	ROW	1,	COLUMN	1:		REPLACE	MASK	WITH	TEXT
	 COLOR	GREEN	'$'	COLOR	RED	VALUE(2);

For the table cell in row 1, column 1, the data value will be displayed in
red. The value will be preceded by a green $.

Example of Color Mask in Conditional Post Compute
Suppose that you are tabulating average family income by region and you
wish to emphasize regions where the average family income is less than
20,000 by printing the table cell value in red for any cell with a value less
than 20,000. You can do this with a conditional Post Compute that assigns
to these cells a mask with the color red.

POST	COMPUTE	AVG_INCOME	'Average	Family	Income'	=
INCOME/COUNT	MASK	$999,999		IF	INCOME/COUNT	>=	20000;
INCOME/COUNT	MASK	COLOR	RED	$999,999	IF	OTHER;

Average Household Income by Sex of
Householder and Region.

Regional Totals

Sex of Householder

Total Male Female

Average Family Income

Total U.S. $31,830 $36,884 $20,460
New England 35,776 41,825 23,694
Mid Atlantic 33,983 40,217 22,124
East North Central 32,044 37,784 19,174
West North Central 27,947 31,966 16,965
South Atlantic 31,480 36,817 20,673
East South Central 25,151 29,886 14,441
West South Central 28,264 32,728 16,975
Mountain 29,391 33,157 19,281
Pacific 36,429 41,053 24,871

Average incomes of less than $20,000 are shown in red.

	 Color and Grey 409

Color Specifications for Footnotes and Notes

Text
Since the text for a footnote or note can contain any of the features allowed
in labels, you can enter one or more color specifications in the text of a
SET FOOTNOTE or SET NOTE statement. If you do not enter any color,
the text will have the default label color.

Symbols
Footnote symbol color is determined by the following rules.

1. If you enter a symbol color in a SET FOOTNOTE statement, this color
will always take precedence over any other rule for footnote symbol
color.

2 You can choose a default symbol color by putting a SYMBOL COL-
OR statement in your profile or FORMAT request. For example:

SYMBOL	COLOR	=	BLUE;

 If you do not choose a default symbol color, the default label color will
be used as the default symbol color.

3. When a footnote is displayed at the bottom of a table, the symbol will
have the default symbol color unless rule 1 applies. This is true both
for footnotes you create and for built-in footnotes.

4. When a footnote symbol is displayed in a label, it will be in the default
symbol color unless rule 1 applies.

5. When a symbol for a built-in footnote is displayed in a table cell, it
will be in the cell color unless rule 1 applies. Cell color is the color
that would be used if the cell contained a data value.

6. When a symbol for a regular (not built-in) footnote is displayed in a
table cell, it will be in the default symbol color unless rule 1 applies.
In particular, it will not be affected by color in a mask or a REPLACE
MASK COLOR statement.

In a SET FOOTNOTE statement, a footnote symbol can have one color
assigned. The color can be entered before or after the symbol. If you are
using the default footnote symbol, you can add a color specification before
or after the word DEFAULT.

	 Color and Grey 410

Example	 SET	FOOTNOTE	CONFIDENTIAL
	 SYMBOL	COLOR	RED	'**'
	 TEXT	COLOR	GREEN		'Confidential	data.		Do	not	release.';
REPLACE	TITLE	WITH	COLOR	BLUE	
	 'Average	Household	Income	by	Sex	of	 '
	 'Householder	and	Region'	FOOTNOTE	CONFIDENTIAL;

The table title will be BLUE. The symbol '**' for the footnote called
CONFIDENTIAL will be printed in RED both in the table title and at the
bottom of the table. The footnote text will be printed in GREEN at the
bottom of the table.

Average Household Income by Sex of
Householder and Region.**

Regional Totals

Sex of Householder

Total Male Female

Average Family Income

Total U.S. $31,830 $36,884 $20,460
New England 35,776 41,825 23,694
Mid Atlantic 33,983 40,217 22,124
East North Central 32,044 37,784 19,174
West North Central 27,947 31,966 16,965
South Atlantic 31,480 36,817 20,673
East South Central 25,151 29,886 14,441
West South Central 28,264 32,728 16,975
Mountain 29,391 33,157 19,281
Pacific 36,429 41,053 24,871

** Confidential data. Do not release.

If we wanted to use a default numeric footnote symbol, we could get the
same RED color for the footnote symbol by using the word DEFAULT
with the color:

	 Color and Grey 411

SET	FOOTNOTE	CONFIDENTIAL
	 SYMBOL	COLOR	RED	DEFAULT TEXT	COLOR	GREEN
	 	 'Confidential	data.		Do	not	release.';

For built-in footnotes such as EMPTY, the symbol displayed in a table
cell will take on the color in effect for the cell. The footnote symbol at
the bottom of the table will have the default symbol color (the same as
the default label color if not explicitly set) and the footnote text will have
the default label color. If you want to change this treatment, use a SET
FOOTNOTE statement to override the built-in treatment.

Example	 SET	FOOTNOTE	EMPTY			SYMBOL	COLOR	RED	&endash;	;
	 TEXT	RED	'Data	not	available.';

Note that a medium-width dash (endash) is used as the footnote symbol for
EMPTY. This character is represented by &endash; . See the appendix
called "Character Sets" for additional details.

Setting COLOR Defaults for Characters and Rules

COLOR defaults can be set for all characters and rules used in tables. De-
faults can be set in either the profile or a format request using the follow-
ing FORMAT statements. Colors can be specified in r g b format or using
color names that have been defined in color.tpl.

Format	 DEFAULT	COLOR	=	color;
LABEL	COLOR	=	color;
RULE	COLOR	=	color;
SYMBOL	COLOR	=	color;

Color defaults are applied as described below. For additional details, see
the section on "COLOR Defaults" in the FORMAT chapter. In cases where
color specifications are entered directly into individual table elements such
as labels, masks or footnotes, these individual specifications will take pre-
cedence over the default COLOR specifications.

DEFAULT COLOR is the print color for the entire table if no other colors
are specified. If you do not set DEFAULT COLOR, the default is black.

	 Color and Grey 412

If RULE COLOR and LABEL COLOR are specified, the DEFAULT
COLOR remains as the default color for table cells.

RULE COLOR is the print color for rules. It applies to all rules, includ-
ing rules added by the FORMAT statement RULE AFTER ROW and rules
included with spanner labels. If no explicit RULE COLOR is specified,
rules are printed in the default color.

LABEL COLOR is the print color for all text in tables except character
strings in cell masks. These strings are printed in the default color. If no
explicit LABEL COLOR is specified, all labels, titles and footnote texts are
printed in the default color.

SYMBOL COLOR is the print color for all footnote symbols. If SYM-
BOL COLOR is not set explicitly, the default label color is used for sym-
bols.

COLOR defaults apply only to characters and rules. For background shad-
ing in color or grey, see "Background Shading with COLOR or GREY" in
this chapter or the FORMAT statement called SHADE.

Example	 DEFAULT	COLOR	=	0	20	99;
FOR	TABLE	1:		REPLACE	TITLE	WITH	COLOR	RED	'Red	table	title';
FOR	TABLE	2:		RULE	COLOR	=	RED;

Effect All tables will be printed in the default color 0 20 99 (a shade of blue)
except as follows. The first table will have a red title. The rules in the
second table will be red, and the rest of the second table will be printed in
the default color.

Replacing Mask Color

With the FORMAT statement, REPLACE MASK COLOR, you can replace
the color of a mask without disturbing any other specifications in the mask
and without re-entering the entire mask. See the FORMAT chapter for
complete details.

Mask color can be replaced for a single cell, a group of cells or the entire
table. If you replace the mask color for an entire table, the mask color
serves as a default color setting for the table cells without affecting other
parts of the table that are colored by the DEFAULT COLOR statement.

Format	 REPLACE	MASK	COLOR	WITH		color;

	 Color and Grey 413

The color can be specifed in r g b format or using color names that have
been defined in color.tpl.

Example FOR	ROW	1:		REPLACE	MASK	COLOR	WITH	RED;
FOR	ROW	1	COLUMN	1:		REPLACE	MASK	COLOR	WITH	BLUE;
FOR	VARIABLE	INCOME:		REPLACE	MASK	COLOR	WITH	GREEN;

Effect The mask color for the first row will be red except in column 1 where the
mask color will be blue. The rows and/or columns containing INCOME
values will have a mask color of green.

Background Shading with COLOR or GREY

Shading is an excellent way to highlight selected parts of a table or to add
color in a pleasing way if you have a color printer. Even if you have only
a monochrome printer, you can get some excellent effects by using GREY
shading to emphasize selected parts of a table.

You can use SHADE statements to specify background shading for an en-
tire table or for different sections of a table. You can choose the color for
each element shaded. Shading is specified in the profile or format request
with the FORMAT statement called SHADE. Colors can be chosen using r
g b numbers, color names that have been defined in color.tpl, or the special
color GREY with a number between 0 and 100 (inclusive) that selects the
degree of grey shading..

Format	 SHADE	table-element	[COLOR]	r	g	b;
SHADE	table-element	[COLOR]	color-name;
SHADE	table-element	GREY	n;

table-element can be any of the following:

TABLE	 	 								 	 STUB
TITLE	 	 	 DATA
WAFER	LABEL		 ROW
HEADNOTE	 					 COLUMN
TOP	 	 						 	 CELL
HEADING	 								 	 FOOTNOTES
STUB	HEAD	 	 LABEL

	 Color and Grey 414

Following are some examples to introduce you to shading. For complete
details on shading, see the FORMAT statement called SHADE.

Example	 FOR	TABLE	2:		SHADE	HEADING	GREEN;
FOR	TABLE	2,	COLUMN	1:		SHADE	CELLS	RED;

Effect All tables will be printed without shading except in the second table. The
heading in the second table will be shaded in the color GREEN. The first
column will be shaded with the color RED.

Example	 SHADE	TABLE	PUMPKIN;
REPLACE	TITLE	WITH		COLOR	RED	
	 'Tableau	15B	'	 'Statistiques	sommaires	selon	le	genre	
d'établissement.'

Effect In this example, we combine background shading with color text in the
table title. The entire table is shaded in pumpkin color (99 60 20) and the
table title text is red. The other text, numbers and rules are printed in the
default color black.

Tableau 15B Statistiques sommaires selon le genre
d’établissement.

Dépenses de fonctionnement

Salaires Autres Total

Musées
Musées 42 357,34 282,36 42 639,70
Parcs naturels 71 628,05 76,25 71 704,30
Lieux d’intérêt

historique 61 359,82 62,56 61 422,38
Archives 81 305,43 48,55 81 353,98
Centres

d’expositions 511,48 10,53 522,01
Observatoires et

planétariums 434,79 1,28 436,07
Zoos et aquariums 67,69 51,66 119,35
Jardins botaniques 74,15 6,98 81,13

Total 257 738,75 540,17 258 278,92

Example	 FOR	ROWS	1	TO	21	BY	2:		SHADE		ROW	GREY	10;

Effect Alternate data rows are shaded light grey.

	 Color and Grey 415

Number of households by type of household
and state.

Type of Household

Married
couple

Other
family

Nonfamily
household

Connecticut 57,980 18,666 37,626
Maine 22,535 1,937 11,952
Massachusetts 71,997 14,208 29,184
New Hampshire 11,541 744 3,451
Rhode Island 12,559 719 6,306
Vermont 1,456 360 –
New Jersey 134,095 37,399 70,480
New York 197,547 60,114 110,844
Pennsylvania 218,880 28,678 103,033
Illinois 25,297 1,869 13,212
Indiana 37,912 4,781 7,157
Michigan 2,964 1,437 –
Ohio – 1,526 3,066
Wisconsin 22,528 – 12,172
Iowa 38,220 1,279 7,824
Kansas 11,169 1,250 1,276
Minnesota 10,192 2,598 7,973
Missouri 20,479 2,975 6,201
Nebraska 13,634 2,514 2,652
North Dakota 4,703 289 295
South Dakota 1,478 251 1,060

– Data not available.

	 Exports 416

C h a p t e r 2 5

Printing and Export

PrinTing TABLeS And COnverTing Them
TO differenT fOrmATS

Introduction

By default, TPL tables are created as Adobe PostScript® files. The tables
are all contained in a single file, tables.ps. which is located in the TPL
subdirectory TPLnnnn. In the Microsoft Windows environment, tables
are displayed, printed and exported using Ted. In Unix, Linux and other
operating systems, tables are displayed using external programs of the
user's choice. Printing and exporting are controlled by user prompts or
command-line arguments.

Printing

In Windows, any table may be printed using the print command in Ted.
If you have a printer that supports PostScript, you will get better results,
especially if you are scaling or using dotted or dashed rules, by using Post-
script Print. If you don't have a PostScript printer, you can export to pdf
and then print from within Acrobat Reader.

In a non-windows environment, you cannot print tables directly unless you
have a printer which supports PostScript. Otherwise you should print from
within your table display program or export to pdf and print from Acrobat
Reader or an equivalent program.

	 Exports 417

How to Export

Instructions for exporting files depend on whether you are running TPL
TABLES under Windows or UNIX.

Windows
All table files are exported from TED. See TED Help for details on ex-
porting interactively. To produce an exported file in a batch job, you must
select the type of exports you want and include the commands in your
script see TPL Help or the appendix on Scripts.

UNIX
If you run TPL TABLES using the command line prompts, a prompt will
ask if you want to export to the various formats. To produce an export file
using a command argument, see the appendix with UNIX Run Instructions.
If you wish to prevent prompts, you can set values for the export options in
format statements.

Autosize

When a table is to be printed, it must fit onto the paper. If the table is too
big, it is broken into parts so that it can be printed. Many of the export
types are not intended to be printed so they do not have the page printing
constraint. Instead the "paper" can be made as wide and long as needed.
For example a data table or a CSV file is never broken into parts to ac-
comodate a fixed size page, so autosize is alway set. Web pages can be as
large as needed but you may wish to limit their size so users will not have
to scroll to see them. So HTML export allows autosize as an option.

Note that autosize does not guarentee that the entire table run will produce
a single export file. Table breaks and such commands as EJECT AFTER
ROW may cause the output to be spread over multiple files. The exact
behavior depends on the export type.

EPS Export

EPS is a form of PostScript designed for exporting into programs such as
publication software. It goes into the programs as a graphic but one which
can be scaled without loss of resolution. Nearly all of the images in this
manual were placed as eps files. Each page of a TPL TABLES run gets

	 Exports 418

exported as a separate eps file. In addition, each page has a bounding box
which exactly matches the outer edge of the table on the page rather than
the entire page. When a TPL TABLES generated eps file is brought into
publication software, the image will either be visible or a bounding box
will show on the page. So the eps image can be placed exactly where you
want it. Page markers are not considered to be part of the table so they are
outside the bounding box and will not be displayed in the publication.

PDF Export

Adobe Acrobat PDF format is a commonly used format for exchanging
documents including tables. It is often used for web display when the
author wishes to display the document with more precise formatting than is
available using HTML. The Acrobat Reader, which is used for displaying
the PDF file, is available free for most operating systems.

PostScript tables can be distilled to Acrobat PDF format. In the Windows
version of TPL TABLES, you can do this as an export from TED if you
have Adobe Acrobat Distiller available on your computer. If you do not
have Acrobat Distiller, you can install and use Ghostscript (gs815w32.exe)
to create PDF files. After TPL TABLES is installed, an installation icon
for GPL Ghostscript may be on your desktop. Otherwise, it can be found
in C:\program files\gpl. See PDF in TED Help for more information.

Ghostscript is available for free download for most versions of UNIX,
Linux and other operating systems.

HTML Export

You can use TPL TABLES to produce HTML tables that can be directly
displayed on the web by any recent browser. The HTML fully conforms
to the W3C standard for HTML 4.01. HTML tables are very close in ap-
pearance to the PostScript tables. There may be some small differences
based on the fonts that are available on the machines viewing the HTML.
There are also differences because PostScript is designed for display on
fixed page sizes while the HTML "page size" is variable. With the HTML
you can specify autosize which means that the HTML page is as large as it
needs to be to display the table. This option is not available for PostScript.

	 Exports 419

Accessible HTML

TPL TABLES can produce HTML tables which conform to the World
Wide Web Consortium (W3C) guidelines for HTML Accessibility. These
guidelines are part of the Americans with Disabilities Act, Electronic and
Information Technology Accessibility (Section 508). All HTML tables
posted on U.S. government web sites must conform to these guidelines.

By producing your HTML tables with TPL TABLES, you can ensure that
the HTML will be conformant and accessible to people who are blind or
visually impaired.

The 508 conforming tables are nearly identical to the regular TPL HTML
tables so it is unnecessary to put two sets of tables on your website in
order to conform to the Section 508 guidelines.

For instructions and additional details about accessible HTML, see the
HTML ACCESS statement as described in the Format chapter of the
manual.

Footnote Display at the End of a Table
All footnote text displayed at the end of a table is included on the last
HTML page that has data, even if the PostScript version of the table has
footnotes that continue on to one or more pages after the last page of data.

If you have specified that footnotes be displayed in multiple columns, they
will be displayed as they are in the PostScript table except that the text for
a single footnote will not be broken across multiple columns.

Pages and Navigation

Navigation Bar
By default, HTML tables are saved in a job's TPLnnnnn subdirectory in a
way similar to EPS tables. One HTML file is created for each table page
with a page number and a suffix of .htm on the file name.

You can request a navigation bar to string together the HTML pages. If
the pages with a navigation bar are to be displayed on the Web, all pages
should be stored in the same directory on your Web server.

	 Exports 420

Links and Anchors
HTML provides a way for page viewers to jump between web pages or
different locations within a web page. This is accomplished by inserting
Links and Anchors within the web pages. An Anchor is a destination. A
Link is an instruction to jump to an anchor or web address when the link
is pressed by the viewer. Links are displayed to viewers by underlining.
Anchors are not visible in the displayed web page.

TPL Tables provides language for inserting Links and Anchors into table
labels or cells. See the section on Links and Anchors later in this chapter
and the chapter on Labels and Masks for details.

Autosized and Single File HTML

The Autosize option causes the "paper" to expand so that you do not get
page breaks because of too many columns or rows in a table. Page breaks
will still occur if there are explicit ejects. Breaks will also occur between
tables unless you use Format statements to join them, e.g. EJECT AFTER
TABLE = NO or SKIP 0 LINES AFTER TABLES.

The Single File option does not affect what gets put on each page of
output. It just puts all of the pages together into a single file rather than
splitting them across files. All title, heading, and footnote information is
retained for each table page and the pages are joined end to end in the
HTML file. Since only one HTML file is created, no page number is
added to the HTML file name.

It is reasonable to use both the Autosize and Single File options for the
same HTML export. If both are used, tables will be formatted without row
or column breaks and multiple tables will be joined end to end in a single
HTML file.

Note If you are using Autosize with tables that have wafers, you will get best
results by putting the wafer labels in one of the spanner positions (WAFER
LABEL = DATA SPANNER or ROW SPANNER).

Page Markers

Page Markers are included in HTML tables and are always aligned to the
left.

	 Exports 421

HTML Links and Anchors

HTML links (or hyperlinks) and anchors are used to direct browsers to
jump from one web page to another or to jump from one location on a
page to another on the same or a different page. A Link specifies a path
to a page. An Anchor marks a location on a page. When you click on
a link, the browser jumps to the page specified by the link. If the link
includes an anchor, the browser jumps to the location on the target page
marked by the anchor.

You can attach links and anchors to masks and labels. They only affect
tables that are exported as HTML. A link attached to a mask will cause
cells of a table to have links. A link attached to a label will cause the dis-
played label to have a link.

Formats	 HTML	LINK	path-name
HTML	LINK	path-name#anchor-name
HTML	ANCHOR	anchor-name

where path-name is usually a relative path including file name
and anchor-name is an identifier.

If a link contains blanks, it must be enclosed in double quotes, for exam-
ple, "..\north east\my table.htm".

Windows Note If you are entering a link interactively, do not enclose it in quotes. They
will be added if they are needed.

Case makes a difference on the web (and on UNIX systems), i.e. the file
Table1.htm is different from TABLE1.HTM or table1.htm. For the web,
the case of each letter in a link must match the case of each letter of the
name on the web. If you use all lower case, you won't have to think about
this, but note that the default names of the html files exported from TPL
begin with an upper case T, e.g. Table1.htm, Table2.htm, etc. If you re-
tain these names for the web, links to these files must have the upper case
T.

The link should include the full name of the target file, e.g. table2.htm not
just table2. Note that you must know what the target file name will be
even if you haven't exported it yet. You may find it easier to do an export,
figure out file names, then add links and export again.

Note that no checking is done to verify the existence of the path-name
since the target path-name may not exist when the job is run.

	 Exports 422

Links
A link is a path to a file. The path should be relative to the location of the
file containing the link. If the target file will be in the same subdirectory
as the file you are linking from, you can just enter the target file name. If
you must follow a path, it should begin with something like ..\ rather that
something like c:\. This is because web pages will typically be created on
a local disk and then moved from the local disk to a web site. Note that
you may use forward or backward slashes.

A link in a label applies to the first label segment that follows it. If your
label has more than one segment and you want the link to apply to more
of the label, you must set the link for each segment separately. This
scheme lets you to attach a link to only a single word or group of words
rather than a whole label if that is what you want.

 Examples The following link has a target file in the same subdirctory as the file con-
taining the link. No path information is required.

replace	stub	head	with	html link mw2.htm	"Characteristics";

The following link has its target file in a different subdirectory of the same
directory. In addition, the target subdirectory has a blank in its name, so
the link must be enclosed in quotes.

replace	stub	head	with
	 html link "..\north east\ne2.htm"	"Characteristics";

The following table title is divided into two segments, so that a link can be
applied to only the last segment.

replace	title	with	"Population	by	city,	current	year.		"	
			html link ..\lastyear\citypop.htm	"Click	here	for	last	year's	data.";

The same link could be included in a mask:

for	row	1	column	1:		replace	mask	with	
			html link ..\lastyear\citypop.htm	999.99;

Note If HTML ACCESS is set and there is a link in a cell that contains only a
footnote symbol, two links will be generated. The HTML ACCESS link
will take precedence.

	 Exports 423

Using Links with Anchors
If you wish to jump to a specific location on the target page, you must
put an anchor at that point and add the anchor name to your link. You
specify this by writing your link path followed by # followed by the
anchor name, e.g html link table2.htm#start_of_footnotes. If the tar-
get is on the same page as the link, you can just reference the anchor;
e.g. html link #start_of_footnotes.

An Anchor can be any valid TPL identifier. Anchors should be unique for
any given web page. So if you attach an anchor to a mask, the mask must
be for an individual cell, not a row, column or variable. Similarly, if an
anchor is attached to a label, the label should appear only once on a page.

Examples In the following example, assume that there are two pages of a table in the
same subdirectory. A footnote is displayed at the bottom of the second
page ne2.htm. One of the labels in the table has a footnote symbol that is
linked to an anchor at the beginning of the footnote text.

for	condition	tenure(3):	replace	label	with	"No	cash	rent"
	 html link ne2.htm#military_bases	footnote	cash_rent;

set	footnote	cash_rent
text	html anchor military_bases "Housing	units	on	militay	bases	are	
included	in	the	no	cash	rent	category.";

	 Exports 424

Page ne1.htm

Page ne2.htm

If the path to the page containing the anchor has one or more blanks, en-
close the entire link, including the anchor, in quotes.

for	condition	tenure(3):	replace	label	with	"No	cash	rent"
	 html link "..\north east\ne2.htm#military_bases"	
	 footnote	cash_rent;

HTML Links to External or Absolute URLs

An HTML link to a URL will work for tables that are on the web. Enter
the URL as you would enter the path in an HTML link to another table
page. It must be enclosed in double quotes.

Example	 replace	title	with	"Population	by	state"	/
	 "This	table	was	created	by	"
	 html link "http://www.tpltables.com"	"TPL	Tables.";

Windows Note If you are entering a link interactively, do not enclose it in quotes. They
will be added if they are needed.

	 Exports 425

How to Request HTML Tables

Instructions for exporting HTML depend on whether you are running TPL
TABLES under Windows or UNIX.

Windows
HTML tables are exported from TED. See TED Help for details on ex-
porting interactively. To produce HTML in a batch job, see TPL Help or
the appendix on Scripts.

UNIX
If you run TPL TABLES using the command line prompts, a prompt will
ask if you want HTML output. To produce HTML using command argu-
ments, see the appendix with UNIX Run Instructions. See also the Format
statement HTML OUTPUT = YES/NO to prevent the prompts.

CSV (delimited) Export

In exported CSV files, each cell value is contained in double quotes and
the values are separated by commas. The wafer labels, if any, and the stub
labels are added to the data as extra columns at the beginning of each row.
If you do not want these label columns, delete the wafer labels and the stub
before exporting. The bottom level of the heading is used as the first row
of the CSV file. This row provides field names for the columns of the file.
If you do not want this row of names, delete the heading before exporting.
You may also change the heading labels before exporting if you want better
field names.

Footnotes symbols are not included in the labels or values, but other mask
items, such as $, %, or mask text, are retained in the data values.

See the Format statement CSV DIVIDER to separate the values with a
character other than comma.

Windows Note If you are exporting interactively from TED, there is an option to enter a
character other than comma to be used as the divider between the values in
the exported file(s), or you can select Tab as the divider.

	 Exports 426

CSV Files

By default, exported CSV files are saved in a job's TPLnnnnn subdirec-
tory. One CSV file is created for each table in the job with a name that
includes the table number and a suffix of .csv on the file name. For ex-
ample, if there are three tables in the job, there will be three exported files
with the names Table1.csv, Table2.csv, and Table3.csv.

Windows Note If you are exporting interactively from TED, the exported file(s) will be
saved using the File Name and Current Directory shown in the Export
screen. You can change the name and directory if you wish.

ODS and XLS Export

ODS and XLS are two different spreadsheet formats. ODS is the current
open intermational standard for spreadsheets. All current versions of Excel
(since Excel 2007) and other current spreadsheet programs such as Open
Office read ODS files. XLS is an older, Microsoft Excel specific, format
for spreadsheets. Other spreadsheet programs will in general read XLS
files but tt is recommended that ODS be used instead of XLS because it is
the current standard.

TPL spreadsheet export files, when brought into a spreadsheet program,
produces a display similar to what the original table looks like. However,
when the table display would interfere with the normal use of a spread-
sheet, TPL opts for easier use of the spreadsheet. For example, banking is
not retained for spreadsheet files.

Text Table Export

A text table is a table made up exclusively of fixed-width characters and
fixed width blanks. It can be printed on any printer and viewed in most
display programs. The text table is often wider than the PostScript table
and so may break into more pages. You can specify autotsize when you
export the table but then the table may be too wide to print.

Below is a PostScript table and its text table equivalent

	 Exports 427

Table Q1. Selected Characteristics of Households, by Total Money
Income
[Numbers in thousands]

Total Under
$5,000

$5,000 to
$9,999

$10,000 to
$14,999

$15,000 to
$19,999

All households 46,333 3,105 5,184 4,846 4,776

Tenure
Owner 29,791 1,136 2,350 2,494 2,711
Renter 15,672 1,836 2,667 2,229 1,968
No cash rent 871 133 167 123 97

Region
Northeast 10,020 579 1,190 879 920
Midwest 11,543 812 1,343 1,218 1,239
South 15,469 1,288 1,693 1,778 1,631
West 9,302 425 959 971 987

Type of Household and Sex of
Householder

Male householder
Married couple 24,967 446 1,114 1,916 2,340
Other family 1,390 87 138 151 162
Nonfamily household 5,686 578 858 736 652

Female householder
Married couple 1,536 39 96 95 130
Other family 5,283 814 939 775 629
Nonfamily household 7,472 1,142 2,039 1,173 863

	 Exports 428

Data Table Export

The Data Table export allows you to turn a table into a data file. It is
similar to a text table but with all non-data parts removed. If we use the
example from text tables above we get:

		46,333					3,105					5,184					4,846					4,776		
		29,791					1,136					2,350					2,494					2,711			
		15,672					1,836					2,667					2,229					1,968			
					871							133							167							123								97			
		10,020							579					1,190							879							920			
		11,543							812					1,343					1,218					1,239			
		15,469					1,288					1,693					1,778					1,631			
			9,302							425							959							971							987			
		24,967							446					1,114					1,916					2,340			
			1,390								87							138							151							162			
			5,686							578							858							736							652			
			1,536								39								96								95							130			
			5,283							814							939							775							629			
			7,472					1,142					2,039					1,173							863		

	 Exports 429

If we add the option to zero-fill we get:

	046,333			003,105			005,184			004,846			004,776			
	029,791			001,136			002,350			002,494			002,711			
	015,672			001,836			002,667			002,229			001,968			
	0000871			0000133			0000167			0000123			0000097			
	010,020			0000579			001,190			0000879			0000920			
	011,543			0000812			001,343			001,218			001,239			
	015,469			001,288			001,693			001,778			001,631			
	009,302			0000425			0000959			0000971			0000987			
	024,967			0000446			001,114			001,916			002,340			
	001,390			0000087			0000138			0000151			0000162			
	005,686			0000578			0000858			0000736			0000652			
	001,536			0000039			0000096			0000095			0000130			
	005,283			0000814			0000939			0000775			0000629			
	007,472			001,142			002,039			001,173			0000863			

There is also an option to retain the stub which is useful in identifying the
rows of data

PC-Axis Export (Windows only)

The PC-Axis family consists of a number of programs for the Windows
and Internet environments. It supports interactive browsing and download-
ing from numerical tables and is used by a number of national statistical
offices. For more information see the PC-Axis web site at:

www.pc-axis.scb.se

The following rules apply when exporting a table to PC-Axis format:

•	 You must create the table using FILL EMPTY LINES.

•	 Each table to be exported must be a single cross-tabulation.
It cannot have THEN's in its specification.

•	 The table cannot contain rank variables.

PC-Axis Files

The files are exported in a standard PC-Axis format. By default, the
exported files are saved in a job's TPLnnnnn subdirectory. One file is cre-
ated for each table in the job with a name that includes the table number
and a suffix of .px on the file name. For example, if there are three tables
in the job, there will be three exported files with the names Table1.px,
Table2.px, and Table3.px.

	 Exports 430

Note If you are exporting interactively from TED, the exported file(s) will be
saved using the File Name and Current Directory shown in the Export
screen. You can change the name and directory if you wish.

Example Following are a simple Postcript table and the PC-Axis file created from
this table.

Table 1. Households by residence and
region

Type of Residence

Inside
metropolitan

areas

Outside
metropolitan

areas

Region
Northeast 6,246 1,006
Midwest 4,654 2,622
South 6,438 2,723
West 4,587 1,724

CHARSET="ansi";
MATRIX="Q1";
SUBJECT-AREA="area";
SUBJECT-CODE="S1";
TITLE="Table	1.	Households	by	residence	and	region";
LANGUAGE="en";
CONTENTS="Count";
UNITS="units";
DECIMALS=3;
HEADING="Type	of	Residence";
STUB="Region";
VALUES("Type	of	Residence")="Inside	metropolitan	areas","Outside	metro-
politan	areas";
VALUES("Region")="Northeast","Midwest","South","West";
DATA=
6246.000	1006.000	
4654.000	2622.000	
6438.000	2723.000	
4587.000	1724.000
;

	 Data Drill 431

C h a p t e r 2 6

Data Drill (Windows Only)

Looking at the Contributors to Your Table Cells

Data Drilling provides a way to examine the records which contribute to a
table cell. This will help you discover such things as which data records
are the major contributers to a cell or perhaps help you detect errors in the
data.

Data Drilling works in Ted on a finished table. You begin the process by
selecting the cells you wish to examine. Once you have selected the cells
of interest, press Data Drill. You will now be presented with a list of
variables from the records to include in your drill report. The list includes
most of the variables used in your table request. Post Computed variables
are not included in the list since they are not associated with individual
fields. Only the numerators used in percent cells are included in the list.
If you click Include variables not in request, you will also get other co-
debook variables on the records used by the request. For databases, fields
on database tables not used by the request are not available.

Fields are added to your report by highlighting them and pressing the Add
button. It is best to limit your report to only those fields which are of
interest. Otherwise your report is hard to read and print.

Another option you have is to specify the number of decimal places to be
used for the observation variables in your report.

After you have completed specifying your drill report, press the Apply but-
ton. Your data file will be reread and your drill report will be displayed in
Ted. You may now add results for additonal cells to your report or create
a new drill report.

	 Statistics Tests (Windows Only) 432

C h a p t e r 2 7

Statistical Tests (Windows Only)

STATiSTiCAL TeSTing And diSPLAy

Introduction

TPL Tables is a program for producing statistical tables in presentation
quality format. It is not intended as a general purpose statistical package.
However, some people wish to produce tables with statistical test results in
them. TPL Tables performs these tests and formats the results in a presen-
tation quality output all in a single step. The tests are performed in Ted
on "finished" tables.

The calculations specified in this documentation and implemented in TPL
Tables code are commonly used calculations for the following statistics. It
is the responsiblity of the user to make sure that the assumptions about the
samples and distributions required for these calculations are satisfied by the
user data. All tests assume normal distributions and that the samples are
independent. They do not assume that the number of contributers to each
cell match.

The tests currently available are:

Student's T-Test

Z Test

Anova F-Test

F-Test of Standard Deviations

Chi Squared Test

Tukey HSD Test

	 Statistics Tests (Windows Only) 433

How Statistics Test Results are Displayed

All of the displays of statistical results in TPL Tables involve marking of
the cells on which the tests are performed. In some cases the cells are
shaded. In others, footnote symbols or cell markers are used.

In addition, the cells are identified with a footnote text or note at the end
of the page or table. The footnotes are ordinary footnotes with names of
STAT

n
 where n are successive numbers. The footnote texts for these can

be modified as with any other footnote.

Templates

Changing statistics footnote texts individually for each test you perform can
be a burden. So TPL Tables provides a more general way to change the
text while preserving the individual results. This method involves changing
templates. The templates are listed in the templates.tpl file in the direc-
tory where TPL Tables is installed. Change only the text, not the names.
You may change them in place and add an include statement to profile.
tpl. If you do this, be sure to include the full path name to the templates
file. Alternately you can add changed templates to a local profile.tpl in the
directory where you are running your job. Finally you can add modified
template statements to your individual format requests.

Footnote templates are just like regular footnotes with a two exceptions.
You should alway use footnotes, never notes. Otherwise the note template
will display even when its associated statistical test is not performed. TPL
Tables will generate a footnote or note from the template as appropriate for
the type of statistic being used. The second distinction of templates is that
they may contain the keywords Value and Variable.

Value is replaced by the significance level selected for the test. For exam-
ple, if a significance level of .05 is selected, the resulting footnote will con-
tain either .05 or 5% where value appears in the template. Which appears
depends upon an item in the Preferences menu of Ted. If Confidence as
Percent is checked, 5% will be used. Otherwise .05 will be used.

Variable is used only for certain tests such as Chi Squared which are per-
formed using selected control variables. Variable is replaced by a list of
these variables.

	 Statistics Tests (Windows Only) 434

Template Example

Replace the CHI_SQUARED_TWO_SIG template with the text:

Set Footnote(CHI_SQUARED_TWO_SIG) Text
 "A 2 tailed Chi Squared test performed on " VARIABLE
 "in the shaded area resulted in a difference at the" VALUE "level.";

Perform a 2 tailed Chi Squared test on Group and Sex at a signficance
of .10 using the template. Confidence as Percent is checked. If the test
shows a significant difference, the footnote will be:

A 2 tailed Chi Squared test performed on GROUP and SEX in the shaded area
resulted in a difference at the 10% level.

Other Output

The tables themselves contain only the final output of the statistical tests
-- whether the results are significant. In some cases you may wish to see
additional information. A file, stats.log, is created and displayed in a Ted
window It contains additional information about the tests performed. It is
located in the TPLnnnn directory where the test was run. The exact con-
tent of the log depends upon which tests are performed.

Notes and Restrictions on Statistics Tests

Statistical tests cannot be performed on Post Computed variables in TPL
Tables. Some of the tests are performed on Means or Standard Deviations.
For these tests, the table should be created using the Mean or Standard
Deviation built-in statistics rather than using a Post Compute.

TPL Tables supports weighted means. These can be used in all statistical
tests that involve means. TPL Tables implements this by treating a weight-
ed value as multiple records. If a record used in a mean has a weight of 3,
TPL Tables treats the statistical calculation as if the data file had 3 identi-
cal records with no weight. The extension to fractional weights is straight-
forward.

	 Statistics Tests (Windows Only) 435

The display of statistical tests involves marking of the cells to which they
apply with footnote symbols, cell markers or shading. Since a cell can-
not have 2 different footnote symbols, cell markers or shades, TPL Tables
does not automatically mark the same cell as a contributer to two statisti-
cal tests. If you wish to use the same cell in multiple tests, then you can
adjust the shading and footnote texts to reflect the actual situation by using
standard footnote and shade statements.

Undo

The Ted program has an undo command which is especially useful for
statistical testing. When a test is applied, several changes may be made
in the table. Without undo, if you decided to not display the test results
you might have to add or remove several format statements. With undo, a
single click removes all of the new format statements. Note however that
applying and undoing statistical tests until you get the result that you want
will work but may not be a statistically sound procedure.

Restricting Variables and Conditions in Statistics
Testing

Some statistics tests supported by TPL apply to a cross tabulation (See
Cross Tabulation in the Tables chapter) rather than to 2 individual cells.
These tests are restricted to 2 control variables. But TPL supports cross
tabulations with more than 2 control variables. For example:

Three Control Variables

Race

White Black

Age

Young Old Young Old

Sex of Householder

Male Female Male Female Male Female Male Female

Average Income 24,137 16,663 38,068 21,939 19,903 9,608 28,001 16,812

	 Statistics Tests (Windows Only) 436

If you choose to run a Chi Squared test against this table, you will be pre-
sented with 3 variables to check Race, Age and Sex. You can only check
2. If you check Race and Age, the test will be performed as if the table
you ran was:

Restricted to Race by Age

Race

White Black

Age

Young Old Young Old

Average Income 21,572 33,496 14,149 22,525

If you choose Race and Sex, the test will be performed as if the table you
ran was:

Restricted to Race by Sex

Race

White Black

Sex of Householder

Male Female Male Female

Average Income 37,146 21,488 27,420 16,144

Note The cells in the above tables don't "add up" because the cells are averages
rather than counts.

Restricting Conditions

You can also restrict the conditions used in a statistics test even for un-
selected control variables. The effect is the same as running the table
request with a select statement to filter out the unwanted conditions.

This feature is useful if your request has a control variable with subtotals
or error values or if your control variable includes more categories than
you wish to look at in your test. For example, if your control variable is
State and you are only interested in testing New England states, then you
can limit your control variable to only those states without having to create
a new table request.

	 Statistics Tests (Windows Only) 437

Student's T-Test

Description

A Student's T-Test is used to determine whether the difference between two
cells containing means are statistically significant.

Scope

A T-Test is performed on 2 mean cells. Note that the cells must come
from a Mean statement rather than a Post Compute.

How is T-Test Calculated?

Based on Mathematical Statistics by Bickel and Dotsom

For the selected Cells a and b :
na is the number of records contributing to a
nb is the number of records contributing to b
xai are the values contributing to a
xbi are the values contributing to b

Mean Xa =

∑
i
xai

na

Mean Xb =

∑
i
xbi

nb

S22=

∑
i
xai−xa

2∑
j
xbj−xb

2

nanb−2

t=na nb /nanb∣xa−xb∣/S2

Footnote Templates

TTEST_ONE_SIG (One tailed T-Test with significant results)
TTEST_TWO_SIG (Two tailed T-Test with significant results)
TTEST_ONE_NOSIG (One tailed T-Test with non-significant results)
TTEST_TWO_NOSIG (Two tailed T-Test with non-significant results)

	 Statistics Tests (Windows Only) 438

Z Test

Description

The Z-Test is used to determine if the difference between a sample mean
the full population mean is large enough to be statistically significant.
Note that the cells must come from Mean statements rather than Post Com-
putes.

Scope

Two table cells are selected. One should be a sample mean and the other a
full population mean.

How is Z-Test Calculated?

Based on Basic Statistical Analysis
by Richard C Sprinthall
found at http://en.wikipedia.org/wiki/Z-test

N p= Population Count
Ns= Sample Count
V p= Total of values contributing to the Population Cell
V s= Total of values contributing to Sample Cell
vpi= Individual values contributing to the Population Cell
Standard Deviation for Population p=

N p∑
i
v pi

2 − ∑
i
v pi

2

N p−12

SE = p/Ns

z = V s / Ns − V p / N p / SE

Footnote Templates

ZTEST_ONE_SIG (One tailed Z-Test with significant results)
ZTEST_TWO_SIG (Two tailed Z-Test with significant results)
ZTEST_ONE_NOSIG (One tailed Z-Test with non-significant results)
ZTEST_TWO_NOSIG (Two tailed Z-Test with non-significant results)

	 Statistics Tests (Windows Only) 439

Anova F-Test

Description

An ANOVA test is used to compare the means in a region of a table to see
whether there are significant differences among them.

Scope

Select a single Mean cell. Note that the cells must come from a Mean
statement rather than a Post Compute. The test will be performed on all
of the cells in the Cross Tabulation (See Cross Tabulation in the Tables
chapter) containing that cell. You can restrict the test to part of the Cross
Tabulation if you wish. The test is performed on at most 2 of the control
variables used to form the Cross Tabulation

How is Anova F-Test Calculated?

Based on Concepts and Applications of Inferential Statistics
by Richard Lowry
found at http://faculty.vassar.edu/lowry/webtext.html

nT = Number of Cells in Test
vT = Total of all values contributing to test
vci are the individual values contributing to cell c
nc is the number of cells contributing to cell c

Degrees of Freedom between groups DFbg = nT − 1

Degrees of Freedom within groups DFwg = ∑
c
nc−1

Variance for cell c c
2 =

nc∑
i
vci

2−∑
i
vci

2

nc nc−1

Mean for cell c vc = vc / nc

Mean for all cells vT = vT / nT

	 Statistics Tests (Windows Only) 440

MSwg =
∑
c
c

2nc − 1

∑
c
nc − 1

MSbg =
∑
c
nc vc−vT

2

DFbg

f =
MSbg
MSwg

DFbg , DFwg , and f are used to calculate the confidence value

Footnote Templates

ANOVA_ONE_SIG (One tailed ANOVA test with significant results)
ANOVA_ONE_NOSIG (One tailed ANOVA test with non-significant results)

	 Statistics Tests (Windows Only) 441

F-Test of Standard Deviations

Description

An F-Test of Standard Deviations compares two cells containing standard
deviations to see whether they are statistically different.

Scope

Select two cells containing standard deviations. The order of cell selection
matters. Note that the cells must come from a Stdev or Stdevp statement
rather than a Post Compute.

How is F-Test Caculated?

Based on the US National Institute of Standards and Technologies
(NIST) Engineering Statistical Handbook:
NIST/SEMATECH e-Handbook of Statistical Methods
http://www.itl.nist.gov/div898/handbook/

For the selected Cells a and b :
na is the number of records contributing to a
nb is the number of records contributing to b
vai are the values contributing to a
vbi are the values contributing to b

Variance for cell a a
2 =

na∑
i
vai

2−∑
i
vai

2

nana−1

Variance for cell b b
2 =

nb∑
i
vbi

2−∑
i
vbi

2

nbnb−1

f = a
2
/b

2

Footnote Templates

FTEST_ONE_SIG (One tailed F-Test with significant results)
FTEST_ONE_NOSIG (One tailed F-Test with non-significant results)

	 Statistics Tests (Windows Only) 442

Chi Squared Test

Description

The Chi Squared test is performed on an array of count or weighted count
table cells determined by 1 or 2 control variables. The test determines
whether the distribution of the values in the cells is significantly different
from what would be expected.

Scope

Select a single cell which contains a count or weighted count. The test
will be performed on all of the cells in the Cross Tabulation (See Cross
Tabulation in the Tables chapter) containing that cell. You can restrict the
test to part of the Cross Tabulation if you wish. The test is performed on
at most 2 of the control variables used to form the Cross Tabulation.

How is Chi Squared calculated?

Based on Concepts and Applications of Inferential Statistics
by Richard Lowry
found at http://faculty.vassar.edu/lowry/webtext.html

Yates' correction Based on
http://en.wikipedia.org/wiki/Yates'_chi-square_test

Orc = The observed value for the cell at row r column c

Or = ∑
c
Orc

Oc = ∑
r
Orc

Erc = The expected value for the cell at row r colum c

Erc =
Oc×Or

Orc

X
2 = ∑

r ,c

Orc − Erc
2

Erc

	 Statistics Tests (Windows Only) 443

In the case where the array of cells is 1 by 2 or 2 by 2 and some observed
cell is < 5, a Yates correction is performed by modifying the calculation:

X
2 = ∑

r ,c

∣Orc − Erc∣− .52

Erc

Restrictions

The test is limited to about 100 table cells. More specifically, if N
a
 is the

number of conditions for one control variable and N
b
is the number of the

other, then (N
a
 - 1) (N

b
 - 1) must be less than 100.

Footnote Templates

CHI_SQUARED_ONE_SIG (One tailed Chi Squared test with significant
results)
CHI_SQUARED_TWO_SIG (Two tailed Chi Squared test with significant
results)
CHI_SQUARED_ONE_NOSIG (One tailed Chi Squared test with non-signif-
icant results)
CHI_SQUARED_TWO_NOSIG (Two tailed Chi Squared test with non-signif-
icant results)

	 Statistics Tests (Windows Only) 444

Tukey HSD Test

Description

The Tukey Honestly Significantly Different (HSD) test is typically a
follow-on test to an ANOVA F-test. The ANOVA test may show that the
aggregate difference among the means of several samples is significant.
The Tukey test attempts to determine which individual pairs of means dif-
fer significantly. If you have already run an ANOVA test, you may wish
to undo those results before running the Tukey test to avoid cluttering your
table.

Scope

Select a single mean or weighted mean cell. The test will be performed on
all of the cells in the Cross Tabulation (See Cross Tabulation in the Tables
chapter) containing that cell. You can restrict the test to part of the Cross
Tabulation if you wish. The test is performed on at most 2 of the control
variables used to form the Cross Tabulation.

How is Tukey HSD Test Calculated?

Based on Concepts and Applications of Inferential Statistics
by Richard Lowry
found at http://faculty.vassar.edu/lowry/webtext.html

Mean vc =

∑
i
vic

nc
where
nc is the number of contributers to cell c
v ic are the values which contribute to cell c

Harmonic Mean H =
N

∑
c
1/nc

where
N is the total number of cells in the calculation
nc is the number of contributers to cell c

	 Statistics Tests (Windows Only) 445

Variancec
2 =

nc∑
i
vic

2− ∑
i
vic

2

ncnc−1
where
nc is the number of contributers to cell c
vicare the values which contribute to cell c

Within Group Mean WG =

∑
c
c

2nc−1

∑
c
nc−1

Tukey value Qij =
∣vi−v j∣

WG /H

The Qij value for each pair of cells, i and j, in the scope is compared with
a table to determine whether the values are significantly different. If the
values are not significantly different, they get a common Cell Marker.

How are Results Displayed?

A Tukey test involves comparing each cell in a range with every other cell.
With even a modest number of cells, the total number of comparisons can
be large. If footnotes were generated for each comparison, the table would
be crowded and hard to read. Instead a more compact method is used
to show results. Markers are used for this. If two cells are statistically
similar, they will have a marker letter in common. If two cells are differ-
ent, they will have no marker letter in common. If for example all pairs of
cells in the comparison range are statistically the same, then each of these
cells will get the single marker a. If each pair of cells differ, each cell will
get a different marker letter.

For a more complicated example, suppose we have 4 table cells we wish to
compare. There are 6 comparisons. Suppose we find:

1 - 2 similar so assign a to 1 and 2
1 - 3 similar so assign b to 1 and 3
1 - 4 differ
2 - 3 differ
2 - 4 similar so assign c to 2 and 4
3 - 4 differ

	 Statistics Tests (Windows Only) 446

Results

cell 1 gets ab
cell 2 gets ac
cell 3 gets b
cell 4 gets c

Note that we cannot use a to display both the 1 - 2 comparison and the 1
-3 comparison because then it would appear that 2 and 3 also are statisti-
cally similar.

Restrictions

Unlike other statistical tests on Cross Tabulations, you cannot restrict the
variables used in a Tukey test. So your cross tabulation must have at most
2 control variables in it. You can restrict the condition values for these
variables.

Footnote Templates

TUKEY_NOTE (Note describing output)

	 TPL-SQL 447

C h a p t e r 2 8

TPL-SQL

inTrOduCTiOn TO The dATABASe inTerfACe

TPL-SQL is an optional database interface for TPL. It allows TPL Tables
and TPL Report to read data directly from a SQL database. When you use
the interface, you do not need to first extract the data from the database.
So you do not need space to store the extracted data. You also do not need
to know SQL. TPL automatically generates the request to extract just the
data it needs. It processes the data as it extracts it, so there is not even a
need for extra temporary storage. Further, TPL does not write on your da-
tabase. Anyone with read access to the data can produce tables or reports.

In TPL Tables and TPL Report, there is very little difference between ac-
cessing a stand-alone sequential file and accessing one or more relations
stored in a database. If you already know TPL Tables or TPL Report and
know the structure of your data, you will find it very easy to use TPL-SQL.
The primary differences between processing a sequential file and process-
ing a database are found in describing the data in your codebook.

ODBC Note This chapter applies to all versions of TPL-SQL, including the Windows
version that accesses databases via ODBC. If you are using the Windows
version of TPL-SQL, we recommend that you use Codebook Builder to
generate a codebook. Most of the information contained in this chapter
is also included in the Codebook Builder Help, along with instructions on
how to use Codebook Builder.

Oracle Note If you are running jobs against an Oracle database on a Unix or
Linux machine, you mst set LD_LIBRARY_PATH=oracle-path/lib
where oracle-path is where Oracle is installed.

	 TPL-SQL 448

TerminOLOgy - yeS, yOu wAnT TO reAd ThiS

Unfortunately, TPL Tables and relational theory use the same words to
mean different things. In relational terminology, a table is approximately
the equivalent of a flat sequential data file in TPL terminology. In TPL
terminology, a table is the final product of a TPL Tables run. To avoid
confusion, when we refer to a table we mean the output of a TPL Tables
run. We will refer to the data file used in relational terminology as a SQL
table or a relation. Variable and field are used interchangeably. The SQL
term column will not be used as this could be confused with TPL Tables
and TPL Report output columns.

TPL-SqL COdeBOOk

The primary difference between using TPL Tables or TPL Report with a
sequential file and using them with TPL-SQL can be found in the descrip-
tion of the data contained in the TPL codebook.

Note Codebooks for SQL databases cannot contain repeating groups.

Sequential files may be either flat files or hierarchical files. Each row of a
sequential file is called a record. If all records are of the same format, the
file is flat. If records of different format are interspersed, the file is called
hierarchical. The order of the records on the sequential file determines the
hierarchical membership; i.e. the children immediately follow their parent.

When using TPL-SQL, TPL Tables and TPL Report process data stored in
SQL databases as hierarchies. But in the case of a SQL database, records
of different types are not interspersed. Instead, the records of each type
are stored in separate SQL tables. Since the order of records cannot be
used to describe hierarchical relationships, something else must be used.
This other thing is a pairing between fields on different SQL tables. We
call such a pairing, an association, and statements which define them are
association statements. The fields in association statements are frequently
but not always key fields. They are the fields that are specified in SQL
requests in the where clause of joins.

A TPL codebook describing a sequential hierarchical file consists of a
description of one or more records. Each record description consists of
a description of its constituent fields. A TPL codebook which uses TPL-
SQL consists of descriptions of one or more SQL tables. Each SQL table

	 TPL-SQL 449

description consists of a description of its constituent fields. In addition,
the TPL-SQL codebook includes association statements which define how
multiple SQL tables are to be processed together.

A Simple TPL-SQL Codebook Example

Though much of this document discusses hierarchical files, we will begin
with a flat file example. Suppose we have a flat sequential file describing a
family. The TPL codebook might be:

Sequential	 Begin	Families	Codebook
File Version	 Family	 Record

Filler 7
Region	control	1
	 (
	 	 "Northeast"	 =	1
	 	 "North	Central"	 =	2
	 	 "South"	=	3
	 	 "West"	 =	4
)
Living_Qrt		"Living	Quarters"	control	1
	 (
	 	 "Owned"	 =	1
	 	 "Condominium"	=	2
	 	 "Rented"	 =	3
	 	 "Unknown"	 =	"	"
)
Persons_in_family	obs	2
Gross_income_of_head	obs	7
Gross_income_of_spouse	obs	7
End	Families	Codebook

If we now load our data into a SQL database we can describe our data file
to TPL using the following:

SQL Database	 Begin	Families	Codebook	SQL
Version	 Family	defines	"family"	Table

Region	defines	"region"	control	1
	 (
	 	 "Northeast"	 =	1
	 	 "North	Central"	 =	2
	 	 "South"	=	3
	 	 "West"	 =	4
)

	 TPL-SQL 450

Living_Qrt		defines	"living_qrt"	"Living	Quarters"	control	1
	 (
	 	 "Owned"	 =	1
	 	 "Condominium"	=	2
	 	 "Rented"	 =	3
	 	 "Unknown"	 =	"	"
)
Persons_in_family	defines	"persons_in_family"	obs	2
Gross_income_of_head	defines	"gross_income_of_head"	obs	7
Gross_income_of_spouse	defines	"gross_income_of_spouse"	obs	7
End	Families	Codebook

The only necessary changes are that SQL is added after Codebook; Re-
cord becomes Table; and the Filler field is eliminated. In most cases a
defines clause is also needed. A change in meaning which is not discern-
ible concerns the order of fields in the record or SQL table description.
In a sequential file description, the fields must be listed in the order they
occur in the file. In a SQL database description, the order of the fields is
arbitrary within a SQL table. Another change is that it is not necessary to
describe all of the fields in a SQL table in your codebook. Perhaps some
of the fields are confidential and should not be used. Other fields may be
text fields which are not appropriate for tables. If you do not have TPL
Report, you may wish to omit these fields. For sequential file codebooks
you are required to mark the space these fields occupied as Filler. In a
codebook describing a SQL table, the fields can just be omitted.

Defines Clause

The defines clause is used to map TPL variable names into SQL database
field names. If the defines clause is omitted, TPL assumes that the SQL
database field name is the same as the TPL variable name except that it is
all uppercase. In the above example, all of the SQL database field names
are assumed to be in lowercase. So the defines clauses are necessary. De-
fine clauses are discussed more fully later.

A Better Solution - Using Information from the
Database

The simple transformation above is not the recommended way of creating a
TPL-SQL codebook. The SQL database contains much of the information
contained in the TPL codebook. If the TPL codebook information does not
match the database information, then errors or incorrect tables will result.
Thus instead of requiring the transformation described above, TPL provides
a way to automatically query the database for the relevant information

	 TPL-SQL 451

contained within the database. You activate this processing by omitting the
information you can obtain from the database. The recommended code-
book source is:

You Write	 Begin	Families	Codebook	SQL
Family	Table
Region	defines	"region"	control	 get conditions from data
Living_Qrt		defines	"living_qrt"	"Living	Quarters"	control	from data
Persons_in_family	defines	"persons_in_family"	obs	
Gross_income_of_head	defines	"gross_income_of_head"	obs
Gross_income_of_spouse	defines	"gross_income_of_spouse"	obs
End	Families	Codebook

In this codebook source, field widths and obs modifiers such as float have
been eliminated as have control variable condition values lists. Instead of
listing the condition values, we have included get conditions from data or
its shorter synonym from data.

Unix

On computers running Unix, use the tpl conditions program to process the
above codebook source. The tpl conditions program will fill in the field
widths, datatype details and control variable conditions to create a new
codebook source. The new codebook source shown below can be edited to
provide better condition names. It should then be run through tpl code-
book to produce a compiled codebook. For more details, see the Appendix
titled TPL Conditions and the sections on tpl conditions in Run Instruc-
tions (UNIX) for more details.

TPL-SQL	 Begin	Families	Codebook	SQL
Generates	 Family	defines	"family"	Table

Region	defines	"region"	control	1
	 (
	 	 		"1"	 =	"1"
	 	 	"2"	 =	"2"
	 	 	"3"	 =	"3"
	 	 	"4"	 =	"4"
)
Living_Qrt		defines	"living_qrt"	"Living	Quarters"		control	1
	 (
	 	 "1"	 =	"1"
	 	 "2"	 =	"2"
	 	 "3"	 =	"3"
	 	 "	"	 =	"	"
)

	 TPL-SQL 452

Persons_in_family		defines	"persons_in_family"		obs	2
Gross_income_of_head	defines	"gross	income	of	head"		obs	7
Gross_income_of_spouse	defines	"gross_income_of_spouse"		obs	7
End	Families	Codebook

Windows

On computers running Microsoft Windows, the above codebook source
is processed directly by the codebook processor to produce the following
source. The data source and password if required are also provided to the
codebook program. See Run Instructions (Windows) and Scripts (Win-
dows) for more details.

NOTE: It is important for Windows sources that each variable descrip-
tion start on a new line. Otherwise the new source described below may
not be correct.

When the codebook processor has completed its work, a new codebook
source is created with evaluated to expressions to show the information
obtained from the database. The actual conversion depends upon both the
data and the database management system. A possible conversion of our
example follows:

TPL-SQL	 Begin	Families	Codebook	SQL
Generates	 Family	defines	"family"	Table

Region	defines	"region"	control	get	conditions	from	data
	 evaluated to	control	1
	 (
	 	 		"1"	 =	1
	 	 	"2"	 =	2
	 	 	"3"	 =	3
	 	 	"4"	 =	4
)
Living_Qrt		defines	"living_qrt"	"Living	Quarters"	control	from	data	
 evaluated to	control	1
	 (
	 	 "1"	 =	1
	 	 "2"	 =	2
	 	 "3"	 =	3
	 	 "	"	 =	"	"
)

	 TPL-SQL 453

Persons_in_family		defines	"persons_in_family"	obs
	 evaluated to	obs	2
Gross_income_of_head	defines	"gross	income	of	head"	obs	
 evaluated to	obs	7
Gross_income_of_spouse	defines	"gross_income_of_spouse"	obs	
 evaluated to	obs	7
End	Families	Codebook

You may wish to edit and reprocess this new source. This will enable you
to do such things as provide better labels for condition values. If the code-
book name is Families, the new codebook source will be FAMILIES.S.

Conversions from Database to TPL Data Types

In our example, we assumed that all of the data was loaded into the data-
base as character fields of the same length as the original data. This is not
necessary. SQL databases support many formats of data and conversions
of data from one format to another. However, you as a user of TPL do not
need to worry about these conversions. In general all you need to do is la-
bel the fields as observation, control, or character. The system will cor-
rectly determine the exact data type and place it in the evaluated to clause.
You can use these data types explicity, but this is not recommended.

Restrictions There are some restraints on what fields you can label observation or con-
trol. For example, if a data field contains alphabetic characters, it should
not be used as an observation. TPL will detect and report some of these
errors when the codebook is created. Others will only be detected when
table or report jobs are processed.

	 TPL-SQL 454

ODBC Data Type Conversions

The following chart shows the acceptable conversions from ODBC to TPL
datatypes.

 TPL Types

ODBC Types Obs Con Char2

date	 	 	 y	 y	 y
time	 	 	 y	 y	 y
timestamp	 	 y	 y	 y
char	 	 	 y1	 y	 y
varchar		 	 y1	 y	 y
longvarchar	 	 y1	 y	 y
numeric		 	 y	 y	 y
decimal		 	 y	 y	 y
tinyint	 	 	 y	 y	 y
smallint		 	 y	 y	 y
integer	 	 	 y	 y	 y
bigint	 	 	 y	 y	 y
float	 	 	 y	 y	 y
double	 	 	 y	 y	 y
binary	 	 	 y	 y	 y
varbinary	 	 y	 y	 y
longvarbinary	 	 y	 y	 y
bit	 	 	 y	 y	 y
real	 	 	 y	 y	 y

1 If a character string described as obs contains non-numeric values, this
will be detected when a table or report is processed. It will not be detected
by the codebook processor.

2 Character may be a new data category for you. It is similar to con-
trol but without the requirement of a list of possible conditions. In TPL
Report it can be used in selects, recodes, conditional computes or report
statements. In TPL Tables it can be used in selects, defines or conditional
computes but not directly in tables

	 TPL-SQL 455

Oracle Data Type Conversions

The following chart shows the acceptable conversions from Oracle to TPL
data types.

 TPL Types

 Oracle Types	 Obs Con Char2

date	 	 y	 y	 y
char	 	 y1	 y	 y
varchar2	 y1	 y	 y
varchar	 y1	 y	 y
number		 y	 y	 y
long	 	 n	 n	 n
raw	 	 n	 n	 n
long	raw	 n	 n	 n
rowid		 n	 n	 n
mslabel	 n	 n	 n

1 If a character string described as obs contains non-numeric values, this
will be detected when a table or report is processed. It will not be detected
by the codebook processor.

2 Character may be a new data category for you. It is similar to con-
trol but without the requirement of a list of possible conditions. In TPL
Report it can be used in selects, recodes, conditional computes or report
statements. In TPL Tables it can be used in selects, defines or conditional
computes but not directly in tables

	 TPL-SQL 456

Sybase Data Type Conversions

The following chart shows the acceptable conversions from Sybase to TPL
datatypes.

 TPL Types

 Sybase Types	 Obs Con Char2

char	 	 y1	 y	 y
varchar	 y1	 y	 y
bit	 	 y	 y	 y
binary	 y	 y	 y
tinyint	 y	 y	 y
smallint	 y	 y	 y
integer	 y	 y	 y
float	 	 y	 n	 n
long	float	 y	 n	 n
money	 y	 n	 n
datetime	 y	 y	 y
decimal	 y	 y	 y
numeric	 y	 y	 y
image	 n	 n	 n

1 If a character string described as obs contains non-numeric values, this
will be detected when a table or report is processed. It will not be detected
by the codebook processor.

2 Character may be a new data category for you. It is similar to con-
trol but without the requirement of a list of possible conditions. In TPL
Report it can be used in selects, recodes, conditional computes or report
statements. In TPL Tables it can be used in selects, defines or conditional
computes but not directly in tables

New Data Types

In addition to the usual codebook data types, the following data types
may be generated in the evaluated to clause. You should not enter these
directly. However, you may wish to add a time-unit to generated obs date
fields.

obs varying and con varying — These are just regular observation and
control variables stored on the database as varying length fields. TPL
Tables and TPL Report automatically handle these data types so you can
treat them as if they are normal fixed-length fields. "Short" control vari-

	 TPL-SQL 457

able values are right-padded with blanks. This data type is currently imple-
mented for databases only.

character varying — TPL Report does not pad these fields when they are
displayed. This data type is currently implemented for databases only.

money or obs money — This is a floating point data type. If there is no
explicit mask provided, the system defaults to a mask of $999.99. This
data type is currently implemented for databases only.

control date or character date — The format of the date is determined by
a database environment variable. If you change the value of this environ-
ment variable, you must rerun your codebook against the database before
you run a table or report request. Dates are sorted and displayed in chron-
ological order rather than character sort order. This data type is currently
implemented for databases only.

Sybase If client Sybase software is not installed on the computer on
which TPL is running and installation Option 1 was used to in-
stall TPL, control date fields will be displayed in US English.
If you wish to display dates in a different format, then you can
explicitly change the generated labels.

obs date time-unit — where time-unit may be year, day, hour, minute, or
second. If you chose to explicitly call a field obs date and omit time-unit,
then the system will assume a time-unit of day. This data type is currently
implemented for databases only.

Oracle The field evaluates to the number of units since January 1,
1900 at 00:00:00. Dates are floating point numbers so decimal
values will be shown if a mask is provided which specifies
them.

Sybase The field evaluates to the number of units since the current
time (when job is run). Thus all past dates are negative and
future dates are positive. Dates are truncated integer values not
decimal fractions.

ODBC The meaning of time units in databases accessed via ODBC
depends upon the underlying database system. Consult your
database manuals for information on this.

	 TPL-SQL 458

The obs date data type is especially useful for computing time intervals;
e.g.,

Compute	Life_span	=	Death_date_in_years	-	Birth_date_in	years;

Note that the time unit for the two terms in the compute must be the same
or a trash answer will result.

Label-Code Tables

It is common in SQL databases to have SQL tables which pair code values
with longer descriptions or labels. This can save a considerable amount
of space in your database. It also allows the description to be changed
without changing large numbers of database records. When an extract
is made from the database, a SQL join is normally performed so that the
label rather than the code is displayed with the other data fields. The TPL
codebook can make use of these label-code pairs to create condition sets
for control variables.

In our earlier example of codebook generation we included the line:

Living_Qrt		"Living	Quarters"	control	from	data

This generated the following:

Living_Qrt		"Living	Quarters"	control	from	data	evaluated	to	control	1
	 (
	 	 "1"	 =	1
	 	 "2"	 =	2
	 	 "3"	 =	3
	 	 "	"	 =	"	"
)

Suppose we had in our database a SQL table lq_tab with fields lq_code
and lq_lab and values:

 lq_code lq_lab

	 1	 Owned
	 2	 Condominium
	 3	 Rented
	 '	 '	 Unknown

	 TPL-SQL 459

The lq_code field in the lq_tab SQL table has the same range of values
as the Living_Qrt field of the family SQL table. So we can substitute the
new TPL codebook statement:

Living_Qrt	"Living	Quarters"	control	from	lq_tab(lq_lab,lq_code)

The result is:

Living_Qrt		"Living	Quarters"	control	from	lq_tab(lq_lab,lq_code)	
evaluated	to	control	1
	 (
	 	 "Owned"	 =	1
	 	 "Condominium"	=	2
	 	 "Rented"	 =	3
	 	 "	Unknown"	 =	"	"
)

The SQL table containing the label-code pairs can be referenced in this
way without itself being described elsewhere in the codebook.

The label and code fields must be put in the parentheses in the order shown
above, that is label first and code second.

Alternate Names - The DEFINES Clause

By default, the TPL name for a field is the same as the name of the field
on the database. There are some cases where this is not desirable. For ex-
ample, in a sequential file we sometimes wish to use the same field as both
an observation variable and a control variable. We accomplish this by us-
ing a redefine clause. TPL-SQL codebooks cannot have redefine clauses,
but the defines clause can be used to accomplish the same result.

tpl-name1	defines	sql-name		control	from	data
tpl-name2	defines	sql-name	obs

The sql-name is the name for the database field. It may be placed within
quotation marks. This is useful if it happens to be a TPL keyword or is
otherwise not a valid name for a TPL variable. tpl-name1 and tpl-name2
are two TPL variable names. They can be used in table and report requests
as well as association statements in the codebook. The only place the SQL
name can be used is in the special SQL SELECT statements discussed
later.

	 TPL-SQL 460

A codebook description with a defines may include all of the standard
codebook field qualifiers; e.g.,

Living_quarters		"Living	Quarters"	defines	Living_Qrt	control
condition	label	 is	"Housing	type	=	"	value		from	data	

Sybase Sybase is case sensitive; that is, lower-case letters and upper-
case letters are not treated as equal. TPL is case sensitive
only for items within quotes. Thus if Sybase fields were given
lower-case names when the fields were created in the database,
defines must be used to reference them. For example, if a
Sybase field is "Last_name" then consider the following TPL
codebook statements:

1)	 Last_name	CONTROL	GET	CONDITIONS	FROM	DATA;

2)	 LAST_NAME	DEFINES	Last_name	CONTROL	
	 	 GET	CONDITIONS	FROM	DATA;

3)	 LAST_NAME	DEFINES	"Last_name"	CONTROL	
	 	 GET	CONDITIONS	FROM	DATA;

Statement (1) is not acceptable since TPL will convert Last_
name to LAST_NAME which will not match the database field
name.

Statement (2) is also unacceptable since again TPL will convert
Last_name to LAST_NAME

Statement (3) is correct because TPL will not change the case
of the quoted item.

ODBC Some databases accessed via ODBC in the Windows version
of TPL-SQL are case sensitive in the same way as described
for Sybase above. If you get error messages saying that your
database fields cannot be found, it may be because you need
to enclose the database field names in quotes. If you use the
Codebook Builder to prepare your codebook, you do not need
to be concerned with this. Codebook Builder will provide the
names from the database and enclose them in quotes.

Fields within a single SQL table must have unique names. However, it is
common practice for fields in different SQL tables within the same da-
tabase to have the same name. This is especially true for fields used for
TPL associations or SQL joins. When processing a request, TPL Tables

	 TPL-SQL 461

and TPL Report must know which SQL table should be used to retrieve
data for a variable. There are two options available in TPL Tables and TPL
Report. First, you can use the SQL technique of qualifying a name when
there is an ambiguity. For example suppose both the Company SQL table
and the Employee SQL table have a field called company_id. A TPL
Tables request can include a Table statement such as:

Table	T1:	Company.company_id	by	region,	total;

An alternate approach using TPL would be to use defines clauses in your
codebook to give the two fields different TPL names.

Creating Subfields with Substr

The substr feature lets you describe variables that are subparts of fields in
your database. In non-database codebooks, this funtionality is provided by
Redefine.

The list of data types supported for Substr should be the same as the list
supported for Control variables.

The syntax for a subfield is:

SUBSTR(sql-name,	start-position,	 length-of-subfield)

The sql-name is the name of the field in the database. If the sql-name is
not a valid TPL name or is in a database that is case sensitive, it must be
enclosed in quotes. In addition, quotes are required for lower case sql-
names. Start-position is relative to the sql-name field

An example from a codebook source with subfields is:

COMPANY_CODE	"Company	Code"	Defines	"company_code"	Con
	 from	Data
company_type	Defines	Substr("company_code",	1,	2)	Con	from	Data
Numeric_part	Defines	Substr("company_code",	3,	3)	Con	from	Data

An example of a resolved codebook source with all database-derived infor-
mation filled in is:

COMPANY_CODE	"Company	Code"	Defines	"company_code"	Con	
Right	Blank	Fill	 from	Data	evaluated	to	Con	5	(
"AM703"	=	"AM703"

	 TPL-SQL 462

"AP001"	=	"AP001"
etc.
)
	company_type	Defines	Substr("company_code",	1,	2)	Con	from	Data	
evaluated	to	Con	5	(
"AM"	=	"AM"
"AP"	=	"AP"
etc.
)	
Numeric_part	Defines	Substr("company_code",	3,	3)	Con
Right	Blank	Fill	 from	Data	evaluated	to	Con	5	(
	"001"		=		"001"	
.
.
"703"	=	"703"
etc.	
)

Multiple SQL Tables and Association Statements

A SQL database typically has many SQL tables in it. A TPL codebook for
a SQL database need not describe all of these SQL tables. However a TPL
codebook will usually describe more than one SQL table. The method
for describing multiple SQL tables is basically the same as that used for
describing multiple record types for a sequential hierarchical file. Separate
descriptions are included for each SQL table. In addition, in the SQL case,
one or more association statements must be provided to relate the separate
SQL tables.

An Example

Consider the Families codebook we discussed earlier. Suppose our SQL
database also contains a SQL table of family member data. Our combined
codebook source might look like the following:

Begin	Families	Codebook	SQL
Family		defines	"family"	Table
Family_id	defines	"family_id"	obs
Region	defines	"region"	control	 get	conditions	from	data
Living_Qrt		defines	"living_qrt"	"Living	Quarters"	control	from	data
Persons_in_family	defines	"persons_in_famly"	obs	
Gross_income_of_head		defines	"gross_income_of_head"	obs
Gross_income_of_spouse	defines	"gross_income_of_spouse"	obs

Member		defines	"member"	Table
Family_id		defines	"family_id"	obs

	 TPL-SQL 463

Age	defines	"age"	obs
Sex		defines	"sex"	control	from	data
Education	defines	"education"	control	from	data
Favorite_car	defines	"favorite_car"	from	car(car_id,car_name)

Family is parent of member where Family.Family_id =
Member.Family_id;

End	Families	Codebook

The example consists of two descriptions of individual SQL tables plus
one association statement near the end which relates the two SQL tables.
Notice that each of the SQL table descriptions has a field, Family_id, on
it. This field is used by the association statement to connect the members
with their family. The association statement asserts that a Member record
belongs to a particular Family whenever the family_id on the Member
record matches the Family_id on the Family record. The parent tells
the system that Family is above Member in a hierarchical relation. In
other words, each Family may have multiple Members. TPL imposes few
restrictions on the data types of the terms on each side of the equal sign in
a where clause. However a database error will result if one of the terms is
an integer or floating point number in the database and the other contains a
non-numeric value.

When TPL Tables or TPL Report processes a request using this association
statement, it will read each Family record, get the Family_id from the re-
cord and then use this Family_id to retrieve from the Member SQL table
each of the Member records which have this Family_id. It will then read
the next Family record, get its Family_id and proceed in the same way.

Warning Fields on the right side of an association statement should be indexed.
Otherwise performance may be unaccepable. See the section on "Opti-
mizing Performance" for more information.

By default, if a Family record has a Family_id which appears on no
Member records, the Family record is rejected with an error message.
The TPL codebook statements Process incomplete hiearchies = yes or no
and Report incomplete hierarchies = yes or no will alter this behavior in
the same way as it does with sequential hierarchies.

Now suppose we wish to add the Car SQL table to our codebook. Each
Member has one Favorite_car. Then we do not have a parent relation
but rather what we call a sibling or sib relation. The addition to our code-
book might be:

	 TPL-SQL 464

Car	defines	"car"	table
Car_id	defines	"car_id"	control	from	data
Car_name	defines	"car_name"	character
Car_cost	defines	"car_cost"	obs
Car_weight	defines	"car_weight"	obs

Member is sib of Car where Member.Favorite_car = Car.Car_id

When TPL Tables or TPL Report processes a database using this new as-
sociation statement, for each Member record it reads, it will determine the
favorite_car for that Member. This Favorite_car code will be searched
for in the Car_id field of the Car SQL table. If exactly 1 match is found,
processing will proceed normally. If no record in the Car SQL table has
the appropriate Car_id an error message will result and both the Member
and Car records will be discarded. If multiple Car records are found to
have matching Car_ids, an error message will result and the "duplicate"
Car records will be rejected. Which Car record is kept is undefined. If
Report incomplete hierarchies = no is specified, no error message will be
reported for either the case of no Car records or multiple Car records.

The effect of Tabulate incomplete hierarchies = yes depends upon
whether a table or report is being created. In a TPL Tables job, Tabulate
incomplete hierarchies = yes causes a higher level record with no lower
level records to contribute to cross tabulations which only involve the
higher level records. But when we are using sib associations, both records
are at the same level. So there can be no cross tabulations to which the
Member record contributes and the Car record does not. Thus Tabulate
incomplete hierarchies = yes has no effect on records in an incorrect sib
association in TPL Tables job.

In a TPL Report job, Tabulate incomplete hierarchies = yes results in a
report row being generated for a record which does not have a sibling. The
sibling columns for that row are marked as missing data.

It is not an error if multiple Members have the same favorite car or if
some car is the favorite of no members. All that is required for a correct
sib association is that each record from the SQL table to the left of the
sib association have exactly one match in the SQL table to the right of the
sib association. This brings up an important point that will be discussed
more fully later. When a table or report request is processed, the resulting
output will depend upon which associations are used. In our example, if
we compute the average cost of favorite_cars by using our sib association
to get from the Member SQL table to the Car SQL table we will not get
the same result as we would if we just calculated the average cost of cars

	 TPL-SQL 465

in the Car SQL table. In the former case, the average is weighted by how
many members have a car as their favorite. In the latter case, the average is
unweighted.

More on Association Statements

In the above example, Member and Car were associated using a single
pair of fields. In some cases multiple pairs of fields must be used to speci-
fy an association. These pairs are connected by and. Consider a database
of Employers and Employees. Assume some of the Employers have
many branches. An Employee is employed at a single branch. The branch
is designated by both a Company_id and a Branch_id. Then we might
have two different association statements to relate the Employee SQL table
to the Employer SQL table:

Employer	is	parent	of	Employee	where	
Employer.Company_id	=	Employee.Company_id

Employer	is	parent	of	Employee	where	
Employer.Company_id	=	Employee.Company_id	
and	Employer.Branch_id	=	Employee.Branch_id

A table or report request may use either of these associations. If the first
one is used and we calculate the average number of employees per employ-
er we will get the average number of employees per company. If we use
the latter association statement we will get the average number of employ-
ees per branch.

As a notational convenience, the association statements can be written more
concisely as:

Employer	is	parent	of	Employee	where	Company_id	=	Company_id

Employer	is	parent	of	Employee	where	Company_id	=	Company_id	
and	Branch_id	=	Branch_id

The SQL table name to the left of an equal sign in a where clause is as-
sumed to be the same as the SQL table name to the left of parent or sib
and the SQL table name to the right of the equal signs is assumed to be the
same as the SQL table name to the right of parent or sib.

	 TPL-SQL 466

Use of %INCLUDE in Codebooks

A TPL codebook describing a large complex database can become very
long. An easy way to make the codebook more manageable is to create
separate files for descriptions of each SQL table. You can then use the
%INCLUDE feature to assemble these files into a single TPL codebook.
This technique is especially useful for corporate databases which are used
by many different categories of users. Certain users will produce tables or
reports from only some of the SQL tables while other users will use a dif-
ferent set of SQL tables for their work. Separate TPL codebooks may be
made for these different users by including only those SQL table descrip-
tions that they will need for their work.

Codebook Abstract

When the TPL codebook processor is run against a SQL database, multiple
files are produced. For MS Windows, one is the new codebook source
with evaluations in it. This was discussed earlier. The second file is the
.K file which is the codebook executable. This is a file that is not intended
for reading. The third file is the .L file which contains error messages for
an unsuccessful codebook or the Abstract of a successful codebook run.
The Abstract for a TPL-SQL codebook is similar to the Abstract produced
from a sequential file with a few exceptions.

A codebook for a sequential file contains columns for the number of bytes
described, the level, and the parent of each record. None of these are rel-
evant to a SQL database record. The sequential file codebook also contains
information on the location of each field within a record. This is also not
relevant for a SQL description.

The TPL-SQL codebook abstract contains two things not found in a se-
quential file codebook. One is the SQL column name. This name will
match the TPL variable name unless a defines has been used to change the
TPL name.

	 TPL-SQL 467

The second addition to a TPL-SQL codebook abstract is a list of the As-
sociation statements that have been specified. Each of these association
statements has a number assigned to it. This number is important. It may
be needed in creating a plan for processing the data in a table or report
request.

TPL	CODEBOOK	Copyright(C)	2005	QQQ	Software,	Inc.	All	Rights	Reserved.Version	6.0	

of	CODEBOOK	compiled	on	Wed	May	11	18:03:09	EST	2005.

TPLDB	ABSTRACT	FOR	DATABASE	tpldb

Created	6/17/05	at	4:49:16	PM	from	codebook	source	tpldb.cbk

The	records	and	variables	described	in	your	codebook	are	listed	below

in	alphabetical	order.		For	non-database	codebooks,	the	first	position

of	each	record	is	location	1.

RECORD	SQL	TABLE					

OFFICE	 	 BRANCH

COMPANY	 COMPANY							

EMPLOYEE	 PERSON								

SQL	DATABASE	ASSOCIATIONS

			1:	 OFFICE	 is	parent	of	EMPLOYEE	 where	ID	=	ID

			2:	 COMPANY	is	parent	of	OFFICE	 where	COMPANY_ID	=	COMPANY_ID

	 and	BRANCH	=	BRANCH

VARIABLE	 SQL	COLUMN	 SIZE	 TYPE	 TPL	RECORD

NUMBER_EMP	 SIZE	 4	 OBS	 OFFICE

OFFICE	 BRANCH	 —	 RECORD	OBS	 OFFICE

BIRTH	 BIRTH	 —	 CON	 EMPLOYEE

BIRTH_C	 BIRTH	 —	 CHAR	 EMPLOYEE

BIRTH_O	 BIRTH	 —	 OBS	 EMPLOYEE

BRANCH	 BRANCH	 4	 OBS	 COMPANY

BRANCH	 BRANCH	 4	 OBS	 OFFICE

COMPANY	 COMPANY	 —	 RECORD	OBS	 COMPANY

COMPANY_CHAR	 COMPANY_NAME	 20	 CHAR	 COMPANY

COMPANY_ID	 COMPANY_ID	 4	 OBS	 COMPANY

COMPANY_ID	 COMPANY_ID	 4	 OBS	 OFFICE

COMPANY_NAME	 COMPANY_NAME	 20	 CON	 COMPANY

ID	 IDX											 	 1	 OBS	 OFFICE

ID	 ID	 10	 OBS	 EMPLOYEE

PERSON	 FULLNAME	 20	 CON	 EMPLOYEE

SALARY	 SALARY	 8	 OBS	 EMPLOYEE

SEX	 SEX	 1	 CON	 EMPLOYEE

EMPLOYEE	 PERSON		 —	 RECORD	OBS	 EMPLOYEE

End	CODEBOOK	processing

	 TPL-SQL 468

TABLe And rePOrT requeSTS fOr SqL
dATABASeS

A TPL Tables or TPL Report request run against a SQL database looks
very much like a request run against a sequential file. There are five main
differences:

1) The command line for invoking the job is slightly different. (The com-
mand line options appropriate for your database system are described
in the run instructions appendices.)

2) A job run against a SQL database may require that some variable
names be qualified with the name of their SQL table.

3) A SQL database request may include Association statements.

4) A request run against a SQL database may require a plan to specify
how the data is to be read.

5) Statements can be included to optimize performance. A table or report
request run against a SQL database may include a SQL Select state-
ment in addition to or instead of a regular TPL Select statement. You
can use a SQL Fetch statement in your profile or format request for
additional performance tuning.

Qualified Names

All TPL variable names for sequential file fields must be unique. As was
stated earlier, for a SQL database, the TPL names need be unique only for
a given SQL table. TPL must know which SQL table it should retrieve
data from. If there is an ambiguity, the variable names must be quali-
fied by the TPL name for the SQL table; e.g. Employer.Branch_id or
Employee.Branch_id. TPL Tables and TPL Report will produce an error
message whenever an ambiguity exists.

The need for qualified names can be completely eliminated by using de-
fines clauses in the codebook to assign unique TPL names to each database
field. If you have not done this, TPL still minimizes the need for qualified
names by the following procedure.

Suppose you wish to use Branch_id which is found on both the
Employee SQL table and the Employer SQL table. The first

	 TPL-SQL 469

time you use Branch_id in your request you must qualify it; e.g.
Employee.Branch_id. From that point forward, TPL will assume that
when you use Branch_id you mean Employee.Branch_id. If in fact you
wish to use Employer.Branch_id, you must explicitly qualify the name.
From that point forward, you must qualify all occurrences of Branch_id.
If this rule seems complicated, don't worry. You may choose to always
qualify ambiguous TPL names. Also, if you fail to qualify a name that
requires qualification, TPL will produce an error message rather than risk
making an incorrect assumption about what you intend.

Association Statements in Table or Report Requests

In some cases, you may wish to create a table or report which requires an
association of SQL tables which was not anticipated when the TPL code-
book was created. Rather than require that the codebook be recreated, TPL
allows you to add association statements to a TPL Tables or TPL Report
request. Association statements in table and report requests are the same
as association statements in the codebook except that a semicolon (;) is
required at the end of each association statement. Association statements,
if included in a request, must be located immediately after the Use state-
ment of the table or report request. They are assigned numbers in order of
occurrence beginning after the last number used by the codebook associa-
tion statements. For example, if the codebook has 3 association statements
and a table request has 2 more, the two table request association statements
will be numbered 4 and 5.

The Processing Plan

By far the most important difference between a TPL Tables or TPL Report
request run against a SQL database and against a sequential file concerns
the sequence of records delivered to TPL for processing. In processing a
sequential file the data records are delivered to TPL in precisely one possi-
ble order — the order the records appear on the file. In the database case,
the records may be delivered to TPL in a variety of orders. The "same"
request can produce radically different output if a different sequence of
records is delivered to TPL.

The sequence of records delivered to TPL is determined by a Plan. A Plan
is a list of association statements which "chain" together the SQL tables.
A plan is valid for a request if it satisfies a collection of conditions:

	 TPL-SQL 470

1) All variables used in the request must be on SQL tables chained to-
gether in the plan.

2) No SQL table may be visited more than once in following the plan
chain.

3) The plan must define a single hierarchical path through the database.

The next few sections will discuss these conditions.

What is a Chain?

SQL tables are chained together by a set of associations if starting from
some node SQL table, we can get from it to each of the other SQL tables
in the chain by going from the SQL table on the left of an association to
a SQL table on the right of an association. For example suppose we have
the following associations (the where clauses have been omitted for clar-
ity):

1:	 A	is	parent	of	B	where	...
2:	 B	is	parent	of	C	where	...
3:	 B	is	sib	of	G	where	...
4:	 G	is	parent	of	F	where...
5:	 C	is	parent	of	D	where	...
6:	 E	is	parent	of	D	where...
7:	 D	is	parent	of	F	where	...

Starting with A as our node we can get to B (using 1) then C (using 2)
then D (using 5) then F (using 7). So A→B→C→D→F form a chain. We
can also form the chains E→D→F and A→B→G→F and several others.
There is no chain which includes both A and E. So a table request which
uses data from SQL table A and SQL table E could not be processed using
the collection of Association statements listed.

How Can A SQL Table Be Chained to Itself?

The requirement that a plan not pass through the same SQL table twice is
because TPL would not know which pass should be used to evaluate a vari-
able. In some database formats people do wish to violate this rule. Sup-
pose for example you have all employees including supervisors in the same
file. You wish to have a count of how many employees have supervisors
who earn particular salaries. You would like to use the Association:

Employee	is	parent	of	Employee	where	employee_id	=	
is_supervised_by;

	 TPL-SQL 471

The solution to this problem is to use the defines construct in the code-
book. In our previous examples we have assigned a new TPL name to a
SQL field. We can also use a defines to assign a new name for a SQL
table. Our codebook would include the following statements:

Employee	Table
description	of	employee	fields	

Supervisor	defines	Employee	Table
same	description	of	fields

Supervisor	is	parent	of	Employee	where	employee_id	=	
is_supervised_by

What is a "Single Hierarchical Path"?

Probably the easiest way to identify a "single hierarchical path" is to as-
sign level numbers to the SQL tables in a plan. The node of the plan is
the SQL table on the left of the first association statement. It is assigned
level 0. Follow the plan chain. If the association statement contains sib
the SQL table on the right is given the same level number as the SQL table
on the left. If the association statement contains parent then the SQL
table on the right is given a level number 1 higher than the SQL table on
the left. Now look at your completed list. If any two parent associations
have SQL tables with the same level number on the left, the plan does not
define a single hierarchical path. Consider the association statements we
looked at earlier:

A	is	parent	of	B	where	...
B	is	parent	of	C	where	...
B	is	sib	of	G	where	...
G	is	parent	of	F	where...
C	is	parent	of	D	where	...
E	is	parent	of	D	where...
D	is	parent	of	F	where	...

One plan we specified was A→B→G→F. If we apply our test to this plan
we get:

A	[level 0]	 is	parent	of	B	[level 1]
B	[level 1]	 is	sib	of	G	[level 1]
G	[level 1]	 is	parent	of	F	[level 2]

No two parent associations have the same level number so the plan is a
single hierarchical path.

Another valid plan is: A→B→G→C which uses the rules

	 TPL-SQL 472

A	[level 0]	 is	parent	of	B	[level 1]
B	[level 1]	 is	sib	of	G	[level 1]
B	[level 1]	 is	parent	of	C	[level 2]

Compare this with the chain A→B→C→G→F. This chain uses

A	[level 0]	 is	parent	of	B	[level 1]
B	[level 1]	 is	parent	of	C[level 2]
B	[level 1]	 is	sib	of	G	[level 1]
G	[level 1]	 is	parent	of	F	[level 2]

In this example, the second and fourth associations both are parent rela-
tions starting at level 1 so we do not have a single hierarchical path.

Why Does TPL Need a Single Hierarchical Path?

An example is probably the easiest way to answer this question. Suppose
we have a database with 3 SQL tables. The SQL tables are Company,
Company_car, and Employee. These SQL tables are connect by:

Company	is	parent	of	Company_car	where	company_id	=	owner_id
Company	is	parent	of	Employee	where	company_id	=	employer_id

These association statements jointly define a plan which violates the single
hierarchy requirement. Now consider the following table request:

Compute	Ratio	=	Car_price	/	Employee_salary;
Post	compute	Ave_car_salary_ratio	=Ratio	/	Company_car;
Table	T1:	Company_location,	Ave_car_salary_ratio;

This table request should tell us something about the cost of keeping
employees happy in different locations. Unfortunately, TPL Tables cannot
process this request. The problem is that there is no way to compute Ratio
since we cannot pair an Employee_salary with a particular Car_price.
We don't know who drives which car.

Let's change the example slightly. Suppose each company buys only one
model of car. Then our association statements become:

Company	is	sib	of	Company_car	where	company_id	=	owner_id
Company	is	parent of	Employee	where	company_id	=	employer_id

Now our plan is valid and our table request works. We know which car
the employee has because we know his company and which car the com-
pany buys. So we can compute Ratio.

	 TPL-SQL 473

TPL doesn't allow multiple hierarchical paths in a single table or report
request because the TPL system then does not have enough information to
combine fields from the different paths.

Plan Selection

When the TPL Tables or TPL Report request processor encounters a re-
quest which is to be run against a database, the system analyzes the request
and the association statements in the request and codebook. If you have
specified a plan, it tests whether the plan you specified is valid for your re-
quest. If you have not specified a plan, it determines all valid plans for the
request. If there is exactly one valid plan, the plan is reported at the end of
the translation step and processing continues. If there is no valid plan or
there are multiple valid plans, processing stops.

When there is no valid plan for your request, you have two choices. First
you may add additional association statements to your request or codebook
so that all required SQL tables are chained into a single plan. If this can-
not be done, you must modify your request by eliminating all references
to fields on the SQL tables which cannot be linked into the plan chain.
Sometimes splitting a job into two separate jobs will enable you to get all
of the data you want from the database while using valid plans.

If your request can be processed using more than one valid plan, the TPL
system will list all valid plans and stop at the end of the translation step.
At this point you must examine the listed plans and determine which if any
correctly capture the desired meaning of your tables or reports. You must
then add a plan statement to your request and reprocess the request. The
following is an example of the output at the end of the translation step:

	 TPL-SQL 474

PLANS:

Read:	 COMPANY

			3:	 COMPANY	is	parent	of	OFFICE						where	COMPANY_ID	=	COMPANY_ID	and	

	 BRANCH	=	BRANCH

			2:	 OFFICE						 is	sibling	of	OFFICE_1				where	COMPANY_ID	=	COMPANY_ID

	 and	BRANCH	=	BRANCH

			1:	 OFFICE						 is	parent	of	EMPLOYEE					where	ID	=	ID

Read:	 OFFICE

			2:	 OFFICE						 is	sibling	of	OFFICE_1				where	COMPANY_ID	=	COMPANY_ID

	 and	BRANCH	=	BRANCH

			1:	 OFFICE						 is	parent	of	EMPLOYEE				where	ID	=	ID

			4:	 EMPLOYEE					 is	parent	of	COMPANY				where	ID	=	OWNER

Read:	 EMPLOYEE

			4:	 EMPLOYEE					 is	parent	of	COMPANY					where	ID	=	OWNER

			3:	 COMPANY	is	parent	of	OFFICE						where	COMPANY_ID	=	COMPANY_ID	and	

	 BRANCH	=	BRANCH

			2:	 OFFICE						 is	sibling	of	OFFICE_1				where	COMPANY_ID	=	COMPANY_ID

	 and	BRANCH	=	BRANCH

***	ERROR:		Since	there	is	more	than	one	possible	plan	for	processing

this	request,	you	must	select	one	of	the	above	plans	by	inserting	a

plan	statement	in	your	request.		Suppose	the	plan	you	wish	to	use	has

the	numbers	3,1,2	in	that	order	next	to	the	association	statements.

Then	your	plan	statement	would	be:	

																					PLAN	3	1	2;

How to Specify a Plan

A plan specification is just the word PLAN followed by a list of associa-
tion statement numbers (in processing order) followed by a semicolon (;).
An example of a plan statement is:

PLAN		3	5	12;

Association statement numbers may be obtained from the list of valid plans
as in the example above. Alternately, they may be obtained from the code-
book abstract. As mentioned before, if you add new association statements
to your table or report request, their statement numbers are just the next
unused numbers. A PLAN statement may occur anywhere in a table or
report request after the USE statement and any association statements.

	 TPL-SQL 475

Plans and the COUNT Variable

Count is a built-in variable in TPL Tables. If a cross-tabulation has no
explicit observation variable, Count is implicitly taken to be the observa-
tion variable. In a sequential hierarchical file Count gives a count of the
number of records at the lowest level of the hierarchy. In a table request
run against a SQL database, Count gives the equivalent result — a count
of the number of records accessed from the SQL table on the right of the
last association statement in the plan. The danger inherent in this is that if
the plan changes, the count will also change.

Suppose we have a database with Industry, Company, and Employee
SQL tables. The SQL tables use the associations:

1:	 Industry	is	parent	of	Company	where	industry_id	=	industry_id
2:	 Company	is	parent	of	Employee	where	company_id	=	company_id

We produce a table statement:

Table	T1:	Industry_category,	Company_location;

Assuming Industry_category is on the Industry SQL table and Compa-
ny_location is on the Company SQL table, the plan is just:

Plan	1;

Thus the table will be a count of companies for each location and industry
category. Now suppose we add a second table to our request:

Table	T2:	Industry_category,	Education_level;

where Education_level is on the Employee SQL table. Our request now
requires the plan:

Plan	1	2;

The implicit Count now counts employees. Without changing the first
table, we have changed its meaning. We now get a count of employees for
each industry category and location instead of a count of companies.

The safest way to avoid problems in counting is to always explicitly in-
clude the SQL table name in any cross-tabulations that do not already
have an observation variable. Then you will know exactly what you are
counting.

	 TPL-SQL 476

Optimizing Performance

Indexing for Multi-Table Processing

Fields on the right side of an association statement should be indexed in
the database. This is true for sibling, one-to-one associations as well as for
hierarchical, one-to-many associations.

TPL does not use joins to process multiple SQL tables. Instead it pro-
cesses the data in a hierarchical fashion. Suppose you have a database
with Employer and Employee SQL tables. The tables are in a parent-
child relationship where matches are on the basis of employer_id on each
of the SQL tables. You wish to produce a TPL table using both of these
SQL tables. TPL will read the first Employer record and find the value
from that record for the employer_id field. It will then search through the
Employee SQL table for each Employee record with the desired Em-
ployer_id. If your database does not have an index built on Employer_id
on the Employee SQL table, then TPL will have to read through the entire
Employee SQL table for each Employer. This can produce unacceptable
performance!

In order to avoid this performance problem, your database must have in-
dexes built on the key fields used on the "child" or right-hand side of the
Association statement. If multiple key fields are needed to relate two SQL
tables, you will get the best performanace if your database has an index
based on the combined fields.

SQL Select

A table or report request run against a SQL database may include a SQL
Select statement in addition to or instead of a regular TPL Select state-
ment. The SQL Select statement provides support for an optimization
which sometimes produces significantly improved performance. If you
use a regular TPL Select statement in your table or report request with a
SQL database, all records which follow the plan are delivered to TPL for
processing. Those which fail the Select are rejected by TPL. If you use
a SQL Select statement, records are rejected within the database software.
Use of this statement improves performance by reducing network traffic
and by saving TPL from processing data which it does not need.

	 TPL-SQL 477

Importance of Indexing and an Efficient SQL Select
Statement
If the SQL Select statement excludes a large share of the data, a signifi-
cant time savings can result. However, you must be careful that your SQL
Select statement is efficient. TPL passes the SQL Select statement to the
database system "as is" without attempting to optimize it.

SQL Select improves performance only if doing selection within the da-
tabase is as fast as doing it within TPL. If you are selecting on a non-in-
dexed field, the database selection is usually much slower than TPL selec-
tion. So don't use SQL Select if the field being selected on is not indexed.

In one case a user had 300,000 establishment records in his database. He
had an indexed field cycle on Establishment. He first tried the SQL Se-
lect statement:

SQL	Select	on	establishment	"cycle	between	115	and	123";	

Using this statement, his request took 2 hours.

He replaced his SQL Select statement with:

SQL	Select	on	establishment	"cycle	in	(115,116,117,118,119,120,121
,122,123)";	

This TPL request produced the same results but took only 5 minutes to
process.

The reason why the second one was so much faster is that since cycle
was indexed, the individual values in the in clause could be found quickly
while the between construction required the database to do a sequential
search for values in the range.

Description of SQL Select
The syntax of a SQL Select statement is:

SQL	Select	on	SQL-Table	"selection-string";

SQL-Table is the TPL name for a SQL table. selection-string is a string
of text which is appended unchanged to the where clause of a SQL Select
statement. Since the selection-string is not modified by TPL, it should
contain SQL field names rather than TPL variable names.

	 TPL-SQL 478

Suppose the Age field is on the SQL table Person. Our TPL codebook has
used a defines clause to assign the TPL name Age_obs to Age. Then the
following two statements should produce the same result:

Select	if	Age_obs	<	50;
SQL	Select	on	Person	"Age	<	50";

Sybase and
ODBC String values passed in SQL select statements must be in
 single quotes; e.g.

	 SQL	Select		on	Company		"name	=	'QQQ	Software'	";

If TPL and the database software are both running on the same computer,
there will be little difference in performance between having TPL reject
records and having the database software reject the records. Bigger differ-
ences will occur if TPL and the database software are running on differ-
ent machines and if the selection is to be done at the bottom level of the
hierarchy defined by the plan. In such cases data will be rejected before it
travels across your network. If the machine running the database software
is faster than the machine running TPL, additional performance improve-
ments will be realized.

In most table and report requests, far more records are retrieved at the bot-
tom level of the processing hierarchy than at higher levels. If a record fails
a select at a level above the bottom level of the hierarchy, then no records
will be retrieved from the database from lower levels regardless of whether
a TPL Select or a SQL Select is used. Thus if selection is done above
the bottom level of a hierarchy, there is unlikely to be much difference in
performance between using a regular TPL Select and a SQL Select.

Difference in Results between Regular Select and SQL
Select
In rare cases, SQL Select and regular Select can produce different results.
The differences only occur when Tabulate Incomplete Hierarchies = Yes;
has been specified.

Suppose we have a database with Family and Member data. If a family
has no members, it will still contribute to the table if Tabulate Incomplete
Hierarchies = Yes; is specified. Instead, suppose the database family does
have members but a SQL Select is used to remove all of its members. To
TPL, the cases are the same and the family will contribute to the table if
Tabulate Incomplete Hierarchies = Yes; is specified.

	 TPL-SQL 479

Now suppose the database family does have members but a regular Select
is used to remove all of them. TPL requires that an entire hierarchical unit
pass a Select in order for any part of it to be included in the tabulation
(see the section on the Select statement in the Hierarchies chapter). So
the family is excluded regardless of the setting for Tabulate Incomplete
Hierarches. In this rare case, SQL Select allows a family to be included
which a regular Select excludes.

SQL Fetch

The SQL Fetch statement is a tuning parameter which should be placed in
your profile.tpl file or in your format statements. It affects the amount of
data that is moved from the SQL Server to TPL on each request for data.

The syntax of a SQL Fetch statement is:

SQL	Fetch	count	=	n;

where n is an integer. The default is 10.

In cases where TPL is executing on one machine and your database is on
another, the choice of value can strongly affect network traffic and perfor-
mance. In a typical example, changing the SQL Fetch Count value from
1 to 10 caused the job to run in 1/3 of the time!

Choosing too high a value for SQL Fetch Count will cause the job to use
more memory than needed. This can actually slow down performance.
Too small a value will degrade performance. If your table or report request
uses a single SQL relation, then there is no theoretical limit to how high
a value you can use. However there is probably little to be gained by
using a value greater than 100. If you are processing a database hierarchi-
cally, select a SQL Fetch Count value no larger than the largest number
of records at the bottom of the hierarchy associated with any given record
immediately above. For example, if you are processing a family-member
hierarchy and no family has more than 12 members, then 12 is the ideal
choice for SQL Fetch Count. The exact choice is not critical. There will
be little performance difference if you use 15 or 8.

	 TPL-SQL 480

SummAry

TPL-SQL provides TPL Tables and TPL Report with direct access to data
stored on a SQL database. No intermediate storage is required. You do
not need to know SQL in order to user the interface.

A TPL-SQL codebook is a simplified standard TPL codebook. It differs
from a standard codebook in that information such as field widths can
be omitted because these can be obtained from the database itself. The
one important addition found in TPL-SQL codebooks is association state-
ments which specify how different SQL tables are to be processed together.
These association statements are chained together to form a plan for read-
ing through the data during processing of a table or report request.

A TPL-SQL table or report request is also very similar to a standard TPL
Tables or TPL Report request. The primary difference is that you may
need to select the plan that is to be used in processing the data.

	 Format 481

C h a p t e r 2 9

Format

The fOrmAT LAnguAge

Introduction

The FORMAT language gives you precise control over the format of your
tables. The automatic formats provided by TPL TABLES are usually ac-
ceptable for analysis and for some types of publications. However, publi-
cation standards in your organization may require that you adjust your table
formats in ways that cannot be achieved by using TPL statements alone.
In other cases, you may find that the default values for such things as col-
umn widths or page size are not appropriate for the types of tables you are
doing. These defaults can be changed with FORMAT statements.

You can use FORMAT statements along with your table request when you
first produce a set of tables, or you can quickly reformat a set of tables
without reprocessing your data. For example, after running a TPL job,
you may see that the numbers in your tables are too large to be displayed
with the default column size, or you may want to change the wording of a
table title. Size and label details such as these can be easily changed with
FORMAT.

A special FORMAT statement called DATA TABLES can be used to
format your tables as a data file that can be used as input to other types of
software, such as spread sheets or graphics programs.

	 Format 482

Where to Put FORMAT Statements

FORMAT statements are prepared using an editor and saved in a file called
a format request. The format request can be used along with the TPL table
request file or separately as part of a rerun process.

 Windows Note If you have the Windows version of TPL TABLES, you have the option of
editing your tables interactively. See TED Help for instructions.

FORMAT statements can also be included in your TPL TABLES profile.
This is a good approach if you want certain statements to apply to all of
your tables whenever you run a TPL TABLES job.

Composition of FORMAT Statements

A FORMAT statement consists of two parts: a FOR clause and an AC-
TION clause. The ACTION clause specifies what is to be done to the
tables. The FOR clause specifies where the ACTION clause should take
effect.

A typical FOR clause is:

FOR	TABLES	1	TO	3		ROWS	1,	3	AND	5		COLUMN	5	:

Some typical ACTION clauses are:

STUB	WIDTH	=	25;
COLUMN	WIDTH	=	14;
REPLACE	MASK	WITH	$99,999.99;
PAGE	WIDTH	=	140;

FOR clauses are optional. If there is no FOR clause before an ACTION,
the FOR clause from a previous statement applies to the new ACTION. If
there is no previous FOR clause, the ACTION applies to the entire set of
tables in the request.

The following set of FORMAT statements shows how ACTIONS can be
grouped with FOR clauses. The first two statements apply to all tables un-
less specifically changed by subsequent FOR clauses.

PAGE	WIDTH	=	120;
STUB	WIDTH	=	25;

FOR	TABLES	2	AND	3:
	 DELETE	EMPTY	COLUMNS;

	 Format 483

	 REPLACE	STUB	HEAD	WITH	'Average	Income';
	 STUB	WIDTH	=	20;

FOR	TABLE	1	COLUMNS	1,	3,	AND	5:
	 COLUMN	WIDTH	=	12;
	 REPLACE	MASK	WITH	999.9;

FOR	TABLE	2	VARIABLE	TOTAL:
	 	REPLACE	LABEL	WITH	'All	Employees';

Action Levels

Different types of ACTION clauses take effect at different levels: request,
table, wafer, column, row or cell.

For example,

STUB	WIDTH	=	30;

is applicable at the table level; that is, you cannot specify one stub width
for wafer 1 of a table and a different stub width for wafer 2 of the same
table. You can specify different stub widths for different tables in the same
request.

If any part of a FOR clause is inapplicable for an associated ACTION be-
cause of the level of the ACTION, the term in the FOR clause is ignored.
Consider the FORMAT statement:

FOR	TABLE	3		ROWS	3	TO	10		COLUMNS	1	TO	6		WAFER	1	:
	 DELETE	COLUMNS;

This statement will cause columns 1 through 6 to be deleted from table 3.
The row and wafer restrictions are inapplicable, so they will be ignored. If
TABLE 3 were omitted from the FOR clause, columns 1 through 6 would
be deleted from all tables in the request.

When an ACTION is specified with a FOR clause that does not apply, TPL
TABLES follows the statement with a message in the OUTPUT file. If
you find that some of your FORMAT statements are applied (or not ap-
plied) in the way that you expect, check the OUTPUT file for messages.

	 Format 484

Action Conflicts

If two or more conflicting actions are specified for the same part of a re-
quest, the last one specified will win. An example of actions in conflict is
two column widths specified for the same column:

COLUMN	WIDTH	=	12;
FOR	TABLE	1		COLUMNS	1	TO	5:		COLUMN	WIDTH	=	8;

In this case, all columns in the request will have a width of 12 except col-
umns 1 to 5 in table 1. Those columns will have a width of 8.

Action Size Specifications

For any action that specifies a size, the size is specified by

amount		[unit]

where amount is a number and unit is optional. If no unit is specified,
characters are assumed. If a unit is specified, the amount can be a decimal
number and the unit can be expressed as inches, centimeters or points us-
ing any of the following words or abbreviations:

inch
inches
in
ins
cm
points
pt
pts

Fractional sizes must be specified as decimal numbers. For example,

STUB	WIDTH	=	2.5	IN;

What can be in the FOR Clause?

The following elements can be referenced in a FOR clause:

ALL
TABLE
WAFER
ROW
COLUMN
VARIABLE
CONDITION

	 Format 485

• To apply an action to an entire table request, you can specify:

FOR	ALL:

• Tables can be referenced by number, name or the word ALL:

FOR	TABLE	table	name(s):	 	 or

FOR	TABLE	table	number(s):	 	 or

FOR	TABLES	ALL:

• Wafers, rows and columns can be referenced by numbers or the
 word ALL.

 Note If any rows of a table do not appear in the table because they are empty
(do not have any data) or because the rows are ranked, you cannot deter-
mine row numbers by counting data rows in the printed table. You can find
the row numbers for PRINTED ROWS in the OUTPUT file.

• Variables can be specified by

FOR	VARIABLE	variable	name:

• Control variable conditions can be specified by

FOR	CONDITION	variable	name(condition	number):	 	 or

FOR	CONDITION	variable	name(condition	name):

Multiple variables or conditions can be referenced in the same FOR clause,
with or without commas between them. Examples are:

FOR	VARIABLE	A	VARIABLE	B	:
FOR	VARIABLES	A,	B,	C	:
FOR	CONDITIONS	VAR(1),	VAR(2),	VAR1(1)	:
FOR	CONDITIONS	VAR1(1,2),	VAR2(1)	:

Variable references only have meaning when used with the actions RE-
PLACE LABEL and REPLACE MASK; condition references only have
meaning when used with REPLACE LABEL.

Ranges of values can be expressed in the FOR clause using the word TO.
Commas, equal signs, and the word AND are optional. For example,

	 Format 486

FOR	TABLE	C3,	ROWS	3	TO	10,	COLUMNS	=	1,	3,	6,	
	 WAFERS	1	AND	2:

means the same as

FOR	TABLE	C3		ROWS	3	TO	10		COLUMNS	1		3		6		WAFERS	1	2:

FOR clauses can include increments. For example,

FOR	ROWS	5	TO	40	BY	5:

This clause means: In the range 5 to 40, begin with row 5 and take every
5th row. It means the same as the following clause.

FOR	ROWS	5	10	15	20	25	30	35	40:

The Format Actions

The FORMAT ACTIONS are grouped by type and listed below. In the
FORMAT reference section of this chapter, statements are ordered alpha-
betically and described in detail.

Note All FORMAT statements must end with a semicolon (;).

Control Page Size
PAGE	LENGTH	=	size;
PAGE	LENGTH	=	AUTOMATIC;
PAGE	WIDTH		=	size;
PAGE	WIDTH		=	AUTOMATIC;
PAPER	=	type;

Change Stub and Column Widths
COLUMN	WIDTH	=	size;
COLUMN	WIDTH	=	AUTOMATIC;
COLUMN	WIDTH	AUTOMATIC	=		NO;	 	 	 (or	YES)
COLUMN	WIDTH	=	AUTOMATIC	MAXIMUM	=	size;
COLUMN	WIDTH	AUTOMATIC	MAXIMUM	=	NO;	 (or	YES)

STUB	WIDTH	=	size;
STUB	WIDTH	=	AUTOMATIC;
STUB	WIDTH	AUTOMATIC	=	NO;	 	 	 (or	YES)
STUB	WIDTH	=	AUTOMATIC	MAXIMUM	=	size;
STUB	WIDTH	AUTOMATIC	MAXIMUM	=	NO;	 	 (or	YES)

	 Format 487

Delete or Retain a Table or Part of a Table
DELETE	 ALL	RULES;
or	 	 BANK	DIVIDER
RETAIN		 COLUMNS;
	 	 DOWN	RULES;
	 	 EMPTY	COLUMNS;
	 	 EMPTY	LINES;
	 	 END	RULE;
	 	 FOOTNOTE;
	 	 HEADING;
	 	 HEADNOTE;
	 	 LAST	RULES;
	 	 LEADING	ZEROS;
	 	 LEADING	ZEROS	EXCEPT	FIRST;
	 	 ROWS;
	 	 SPANNER	RULES;	
DELETE	 STUB;
or	 	 TABLES;
RETAIN		 TITLE;
	 	 WAFER;
	 	 WAFER	LABEL;

Rules and Spanners
RULE		WEIGHT	=	n;	
BOLD	RULE		WEIGHT	=	n;	
ROW	SPAN;
DATA	SPAN;
BANK	DIVIDER;	1

TOP	RULE;	1

END	RULE; 1

WAFER	LABEL	=	DATA	SPANNER;
WAFER	LABEL	=	ROW	SPANNER;
WAFER	LABEL	=	HEADNOTE;
RULE	AFTER	ROW;	1

BOTTOM	RULE	=	DATA	SPAN;	1

BOTTOM	RULE	=	ROW	SPAN;	1

DOWN	RULE		WEIGHT	=	n	and/or	DOUBLE;	1

BOTTOM	RULE	=	BOLD	ROW	SPAN;	1

RULE	AFTER	ROW	RULE	WEIGHT	=	n	and/or	DOUBLE;	1

REPLACE	MASK	FONT	WITH	font;
UNDERLINE	ROW;	1

1 This command is no longer recommended. Go to the command to learn about it's
replacement.

	 Format 488

Column Banking
BANK	AFTER	COLUMN;
BANK	AFTER	COLUMN	=	NO;		 (or	YES)
BANKS	PER	PAGE	=	n;

Row Banking
BANK	AFTER	ROW;
BANK	AFTER	ROW	=	NO;	 	 (or	YES)
ROW	BANKS	PER	PAGE	=	n;
BANK	DIVIDER	DELETE;	1

BANK	DIVIDER	WEIGHT	=	n,		DOUBLE	or	SINGLE;1

Control Stub Indentation and Placement
STUB	CONTINUATION	=	size;
STUB	INCREMENT	=	size;
STUB	RIGHT;		(or	LEFT)
STUB	START	=	size;
STUB	STOP	=	size;

Mark Pages with Page Numbers and Other Information
PAGE	MARKER	marker	specifications;
BOTTOM	PAGE	MARKER	=	marker	specifications;

Page Margin Sizes (see MARGIN)
LEFT	MARGIN	=	size;
RIGHT	MARGIN	=	size;
TOP	MARGIN	=	size;
BOTTOM	MARGIN	=	size;

Column Margins
RULE	MARGIN	=	size;
DATA	RULE	MARGIN	=	size;

Align Left, Right or Center
ALIGN	COLUMN	HEAD		direction;
ALIGN	HEADING	LABEL		direction;

1 This command is no longer recommended. Go to the command to learn about it's
replacement.

	 Format 489

ALIGN	HEADNOTE		direction;
ALIGN	STUB	HEAD		direction;
ALIGN	STUB	LABEL		direction;
ALIGN	TABLE		direction;
ALIGN	TITLE		direction;
ALIGN	WAFER	LABEL		direction;

Control Page Breaks and Contents
SKIP	n	LINES	AFTER	BANK;
SKIP	n	LINES	AFTER	TABLE;
SKIP	n	LINES	AFTER	WAFER;
EJECT	AFTER	ROW;
EJECT	AFTER	ROW		=	NO;	 	 (or	YES)
EJECT	AFTER	TABLE;
EJECT	AFTER	TABLE	=	NO;	 	 (or	YES)
EJECT	AFTER	WAFER;
EJECT	AFTER	WAFER	=	NO;	 	 (or	YES)

Spacing and Presentation
SKIP	amount	AFTER	ROW;
ROTATE;
EXTRA	LEADING	=	n;
SCALE	=	n;
HEADING	SPACE	=	n;
TABLE	SPACE	=	n;	
FONT	=	type/size;

Replace Labels, Masks and Values
REPLACE	LABEL	WITH	label;
REPLACE	MASK	WITH	mask;
REPLACE	MASK	WITH	TEXT	mask;
REPLACE	MASK	COLOR	WITH	color;
REPLACE	MASK	FONT	WITH	font;
REPLACE	MASK	FOOTNOTE	WITH	footnote;
REPLACE	MASK	MARKER	WITH	string;
REPLACE	VALUE	WITH	value;
REPLACE	VALUE	WITH	null;
REPLACE	HEADNOTE	WITH	label;
REPLACE	STUB	HEAD	WITH	label;
REPLACE	STUB	CONTINUATION	WITH	label;	
REPLACE	TITLE	WITH	label;
REPLACE	TITLE	CONTINUATION	WITH	label;
REPLACE	WAFER	LABEL	WITH	label;

	 Format 490

Replace Values with Rank Numbers
RANK	ON	VALUES;

Replace Column Divide Character and Stub Filler Character
REPLACE	FILLER	CHARACTER	WITH	'char';
REPLACE	DIVIDE	CHARACTER	WITH	'char';	1

Choose Rounding Method for Final Data Values
ROUND	=	UP;		(or	EVEN)

Format Tables as a Data File
DATA	TABLES;	1

DATA	TABLES	ZERO	FILL;	1

Footnotes and Notes
SET	FOOTNOTE	footnote;
KEEP	FOOTNOTE	footnote;
KEEP	DATA	FOOTNOTE;
FOOTNOTE	SEQUENCE	=	list;
FOOTNOTES	ON	EACH	PAGE	or	WAFER;		(or	ON	LAST	PAGE)
FOOTNOTE	COLUMNS	=	n;
FOOTNOTE	COLUMNS	=	n	JUSTIFIED;	 (or	UNJUSTIFIED)
REPLACE	MASK	FOOTNOTE	WITH	footnote;
REPLACE	FOOTNOTE	/	NOTE
RAISE	FOOTNOTE	SYMBOL	=	n;	
MAXIMUM	FOOTNOTE	SYMBOL	WIDTH	=	n;
SET	NOTE	note;

Heading Compression
COMPRESS	HEADING;
SPANNER	HEADING;

PostScript
POSTSCRIPT	=	YES;		(or	NO)	

1 This command is no longer recommended. Go to the command to learn about it's
replacement.

	 Format 491

Shading and Color
COLOR	defaults:
	 DEFAULT	COLOR	=	color;
	 LABEL	COLOR	=	color;
	 RULE	COLOR	=	color;
	 SYMBOL	COLOR	=	color;
SHADE	table-element	color/GREY;
COLOR	=	NO;		(or	YES)
REPLACE	COLOR	color	WITH	FONT	font;
REPLACE	MASK	COLOR	WITH	color;

Accessible HTML
HTML	ACCESS;

Retain Extra Files
RETAIN	TABLES	FILE; 1

RETAIN	CELLFILE;

Print and Export Control (UNIX only)

Normally (in default mode), the system will prompt you at the end of a
job to find out whether you want to print outputs or export files to other
formats. You can use the following statements to select the print options in
advance.

CSV	OUTPUT	=	YES	or	NO	or	PROMPT;
EPS	OUTPUT	=	YES	or	NO	or	PROMPT;
HTML	OUTPUT	=	YES	or	NO	or	PROMPT;
ODS	OUTPUT	=	YES	or	NO	or	PROMPT;
XLS	OUTPUT	=	YES	or	NO	or	PROMPT;
PDF	OUTPUT	=	YES	or	NO	or	PROMPT;
DATATABLE	OUTPUT	=	YES	or	NO	or	PROMPT;
TEXT	TABLE	=	YES	or	NO	or	PROMPT;
PRINT	OUTPUT	=	YES	or	NO	or	PROMPT;
PRINT	TABLES	=	YES	or	NO	or	PROMPT;

The default for all statements is PROMPT.

1 This command is no longer recommended. Go to the command to learn about it's
replacement.

	 Format 492

Other Print Controls
CSV	DIVIDER	=	divider;

Use of FORMAT Statements in Profile

FORMAT statement can be included in your TPL TABLES profile (the file
called profile.tpl). These statements will be the default values for all table
runs, or, if you have a profile in your current directory, the statements from
that profile will determine the defaults for all jobs run from that directory.

Profile-only Statements

In addition to the standard FORMAT statements, there are a few statements
that are used only in the TPL TABLES profile.

If TPL TABLES is already running when you insert or change a profile-
only statement in profile.tpl, you must restart TPL TABLES to make the
change effective.

Choosing Character Sets, Non-English Alphabets, and Inter-
national Formats

CODEPAGE	=	name;
COUNTRY	=	name;

Memory Setting
CELL	MEMORY	=	amount;

The following statements are only relevant to UNIX systems. With the
exception of PRINT COMMAND and DISPLAY NAME, they are initially
set when you install TPL TABLES.

	 Format 493

PostScript Display (UNIX only)
DISPLAY	NAME	=	PostsScript-displayer;

Printer Selection (UNIX only)
PRINT	COMMAND	=	'command';

Editor Specifications (UNIX only)
EDITOR	NAME	=	editor_name;
EDITOR	FILE	=	editor_file;

	 Format 494

fOrmAT LAnguAge referenCe

Introduction

In the preceding section, we have provided an overview of the FORMAT
language. In this section, we describe each FORMAT statement in detail.
The statement descriptions are arranged in alphabetical order.

	 Format 495

ALIGN COLUMN HEAD

 Format There are three possible alignments for a column head.

ALIGN	COLUMN	HEAD	LEFT;
ALIGN	COLUMN	HEAD	RIGHT;
ALIGN	COLUMN	HEAD	CENTER;

 Meaning The COLUMN HEAD is the bottom level heading label for a column. The
ALIGN COLUMN HEAD statement can be used to specify alignment for
this level of heading labels without regard to the alignment of the heading
labels above. A column head can be aligned left, right or center within
its column. If a column head is more than one line long, all lines of the
column head label will be aligned the same way.

You will find this statement particularly useful if you wish to change the
default alignment for all column heads without entering an alignment spec-
ification into each individual column head label. If you have included an
alignment of LEFT, RIGHT or CENTER in an individual label that is used
as a column head, the alignment specified within the label will override the
ALIGN COLUMN HEADS statement.

 Level ALIGN COLUMN HEAD can be specified for selected columns.

 Default	 ALIGN	COLUMNS	HEAD	CENTER;

The default for all heading labels is CENTER unless a different default has
been set with the ALIGN HEADING LABELS statement.

 Example	 ALIGN	COLUMN	HEAD	RIGHT;
FOR	TABLE	2	COLUMNS	1	TO	3:		ALIGN	COLUMN	HEAD	CENTER;

 Effect All column heads will be aligned to the right edge of the columns, except
in table 2 where the columns heads will be centered in the first 3 columns.

	 Format 496

ALIGN HEADING LABELS

 Format There are three possible alignments for heading labels.

ALIGN	HEADING	LABELS	LEFT;
ALIGN	HEADING	LABELS	RIGHT;
ALIGN	HEADING	LABELS	CENTER;

The following are equivalent to the sequence of words ALIGN HEADING
LABELS:

ALIGN	HEADING
ALIGN	HEAD	LABELS
ALIGN	HEAD

 Meaning The labels in the table heading can be aligned to the left, right or center.
If a heading label is more than one line long, all lines of the heading label
will be aligned the same way.

You will find this statement particularly useful if you wish to change the
default alignment for all heading labels without entering an alignment
specification into each individual label. If you have included an alignment
of LEFT, RIGHT or CENTER in an individual label that is used as a head-
ing label, the alignment specified within the label will override the ALIGN
HEADING LABELS statement.

Default alignment of stub heads is the same as the default alignment for
heading labels unless you use a separate statement called ALIGN STUB
HEAD.

See also the statement called ALIGN COLUMN HEAD. This statement
can be used to set a different default alignment for the labels at the lowest
level of the heading.

 Level ALIGN HEADING LABELS can be specified for individual tables.

 Default	 ALIGN	HEADING	LABELS	CENTER;

 Example	 ALIGN	HEADING	LABELS	RIGHT;
FOR	TABLE	3:		ALIGN	COLUMN	HEAD	CENTER;

 Effect All heading labels will be aligned to the right, except the column head
labels in table 3. These will be centered.

	 Format 497

ALIGN HEADNOTE

 Format There are three possible alignments for a headnote.

ALIGN	HEADNOTE	LEFT;
ALIGN	HEADNOTE	RIGHT;
ALIGN	HEADNOTE	CENTER;

 Meaning The headnote is a label that can be placed immediately above the table
heading with a REPLACE HEADNOTE statement. This label can be
aligned left, right or center. If it is more than one line long, all lines will
be aligned the same way.

You will find this statement particularly useful if you wish to change the
default alignment for all headnotes without entering an alignment specifi-
cation into each individual headnote. If you have included alignment of
LEFT, RIGHT or CENTER in an individual headnote label, that alignment
will override any label alignment statements.

 Level Headnote alignment can be controlled at the table level.

 Default	 ALIGN	HEADNOTE	LEFT;

 Example	 REPLACE	HEADNOTES	WITH	'Standard	Headnote';
ALIGN	HEADNOTES	RIGHT;
FOR	TABLE	2:		REPLACE	HEADNOTE	WITH	
	 CENTER	'Special	Headnote';

 Effect All tables will have the same right-aligned headnote except for Table 2
where the headnote has a different text and an alignment of CENTER.
Since the CENTER alignment is part of the headnote label for Table 2, this
alignment overrides the ALIGN HEADNOTE statement.

	 Format 498

ALIGN STUB HEAD

 Format There are three possible alignments for a stub head.

ALIGN	STUB	HEAD	LEFT;
ALIGN	STUB	HEAD	RIGHT;
ALIGN	STUB	HEAD	CENTER;

 Meaning The stub head is a label that can be placed in the corner area above the
table stub and beside the heading. This label can be aligned left, right or
center within its area. If the stub head is more than one line long, all lines
of the stub head will be aligned the same way.

You will find this statement particularly useful if you wish to change the
default alignment for all stub heads without entering an alignment specifi-
cation into each individual stub head. If you have included an alignment
of LEFT, RIGHT or CENTER in an individual stub head label, that align-
ment will override any label alignment statements.

 Level Stub head alignment can be controlled at the table level.

 Default	 ALIGN	STUB	HEAD	CENTER;

The default alignment for all labels in the heading area, including the stub
head, is CENTER unless a different default has been set with the ALIGN
HEADING LABELS statement.

 Example	 ALIGN	HEADING	LABELS	RIGHT;
ALIGN	STUB	HEAD	LEFT;
FOR	TABLE	2:		ALIGN	STUB	HEAD	RIGHT;
FOR	TABLE	4:		REPLACE	STUB	HEAD	WITH	
	 'Total	Population'	CENTER;

 Effect The first statement ALIGN HEADING LABELS RIGHT; changes the
default alignment for the heading area, including the stub head, to RIGHT.
The next statement ALIGN STUB HEAD LEFT; overrides the first align-
ment statement so that all stub heads will default to LEFT alignment.
However, in the second table, the stub head will be aligned RIGHT. In the
fourth table, the stub head contains an explicit specification of CENTER
in the label. This specification will override the default stub head align-
ment that was set at LEFT, so that the stub head in the fourth table will be
centered.

	 Format 499

ALIGN STUB LABELS

 Format There are three possible alignments for stub labels.

ALIGN	STUB	LABELS	LEFT;
ALIGN	STUB	LABELS	RIGHT;
ALIGN	STUB	LABELS	CENTER;

 Meaning Stub labels can be aligned to the left, right or center of the stub. You will
find the ALIGN STUB statement particularly useful if you wish to change
the default alignment for all tables without entering an alignment specifica-
tion into each individual stub label. If you have included an alignment of
LEFT, RIGHT or CENTER in an individual stub label, the ALIGN STUB
LABELS specification will not apply to that stub label.

 Note ALIGN STUB LABEL does not affect the alignment of stub labels that
have the SPANNER attribute.

Left Alignment
If the stub labels are aligned to the LEFT (the default alignment), standard
indentation rules apply to nested and multi-line labels unless you over-
ride the standard treatment with other FORMAT statements. The left-most
position for the beginning of a stub label is normally the first stub position
if the stub is on the left. If you have specified STUB RIGHT; the left-most
stub position is normally indented 5 positions from the left edge of the
stub. The left-most position can be changed with a STUB START state-
ment.

Right and Center Alignment
If you choose CENTER or RIGHT aligment for the stub labels, all lines
of stub labels will be aligned the same way. All other indentations, either
standard or user-specified, will be ignored.

 Level The default alignment for stub labels can be specified at the table level.

 Default	 ALIGN	STUB	LABELS	LEFT;

 Example	 ALIGN	STUB	LABELS	RIGHT;
FOR	VARIABLE	JOBS:		REPLACE	LABEL	WITH	
	 'Occupations'	CENTER;

	 Format 500

 Effect The stub labels will be aligned at the right edge of the stub except for
labels such as 'Occupations' where a different alignment, included in the
label, will override the default that was set with ALIGN STUB LABELS
RIGHT.

	 Format 501

ALIGN TABLE

 Format There are three possible table alignments.

ALIGN	TABLE	LEFT;
ALIGN	TABLE	RIGHT;
ALIGN	TABLE	CENTER;

 Meaning A table is aligned (LEFT, RIGHT, or CENTER) between the left and right
margins. If the table is too wide to fit on the page, it will automatically
be divided into as many sections as necessary (one page per section) with
each section aligned the same way. If a table is divided into sections by a
BANK statement, each section will be aligned the same way.

 Level Table alignment can be controlled at the table level. Table alignment can-
not change within a table.

 Default	 ALIGN	TABLE	CENTER;

 Example	 ALIGN	TABLES	LEFT;
FOR	TABLE	3:		ALIGN	TABLE	CENTER;

 Effect All tables except the third will be aligned with the left margin on the page.
The third table will be centered.

	 Format 502

ALIGN TITLE

 Format There are three possible alignments for table titles.

ALIGN	TITLES	LEFT;
ALIGN	TITLES	RIGHT;
ALIGN	TITLES	CENTER;

 Meaning The table title can be aligned with the left or right edges of the table, or it
can be centered within the width of the table. If the title is more than one
line long, all lines of the title will be aligned the same way.

You will find this statement particularly useful if you wish to change the
default title alignment for all tables without entering an alignment specifi-
cation into each individual table title. If you have included an alignment of
LEFT, RIGHT or CENTER in an individual table title, the ALIGN TITLE
specification will not apply to that table title.

 Level Title alignment can be controlled at the table level.

 Default	 ALIGN	TITLE	LEFT;

 Example	 ALIGN	TITLES	CENTER;
FOR	TABLE	2:		ALIGN	TITLE	RIGHT;

 Effect The table title will be centered for all tables except the second. For the
second table, the table title will be aligned with the right edge of the table.

	 Format 503

ALIGN WAFER LABELS

 Format There are three possible alignments for wafer labels.

ALIGN	WAFER	LABELS	LEFT;
ALIGN	WAFER	LABELS	RIGHT;
ALIGN	WAFER	LABELS	CENTER;

 Meaning A wafer label can be aligned with the left or right edges of the table, or it
can be centered within the width of the table. If the wafer label is more
than one line long, all lines of the wafer label will be aligned the same
way.

You will find this statement particularly useful if you wish to change the
default alignment for all tables without entering an alignment specifica-
tion into each individual wafer label. If you have included an alignment
of LEFT, RIGHT or CENTER in an individual wafer label, the ALIGN
WAFER LABELS specification will not apply to that wafer label.

 Level The default alignment for wafer labels can be controlled at the table level.

 Default	 ALIGN	WAFER	LABELS	LEFT;

 Example	 ALIGN	WAFER	LABELS	RIGHT;
FOR	TABLE	2	WAFER	1:		REPLACE	WAFER	LABEL	
	 WITH	'All	regions'	LEFT;

 Effect The wafer labels will be aligned with the right edge of the tables except in
the first wafer of table 2 where the specification of LEFT in the REPLACE
WAFER LABEL statement overrides the default that was set with ALIGN
WAFER LABELS RIGHT.

	 Format 504

AUTOMATIC STUB AND COLUMN WIDTHS

 Format	 STUB	WIDTH	=	AUTOMATIC;
STUB	WIDTH	=	AUTOMATIC		MAXIMUM	=	n	[unit];
COLUMN	WIDTH	=	AUTOMATIC;
COLUMN	WIDTH	=	AUTOMATIC		MAXIMUM	=	n	[unit];

where n is a number that specifies a width, and unit is optional. If no unit
is specified, characters are assumed. If a unit is specified, the amount can
be a decimal number and unit can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left
out altogether. AUTO is a synonym for AUTOMATIC and MAX is a syn-
onym for MAXIMUM.

See also the statements STUB WIDTH and COLUMN WIDTH to set spe-
cific widths for stub and columns.

The following options are also available and are generally used with NO to
reverse the effect of earlier automatic width statements.

STUB	WIDTH	AUTOMATIC	=	NO;	 	 	 (or	YES)
STUB	WIDTH	AUTOMATIC	MAXIMUM	=	NO;	 	 (or	YES)
COLUMN	WIDTH	AUTOMATIC	=		NO;	 	 	 (or	YES)
COLUMN	WIDTH	AUTOMATIC	MAXIMUM	=	NO;	 (or	YES)

 Meaning You can use these statements if you wish to "stretch" tables to the full
width of the page minus the margins; if you wish to have all tables be the
same width, regardless of the number of columns; or if you wish to have
all banks of a table be the same width, even if they have different numbers
of columns.

If you specify COLUMN WIDTH AUTOMATIC; extra space is added to
the columns so that the table takes up the full width of the page minus the
left and right margins and the stub width.

If you specify STUB WIDTH AUTOMATIC; the stub will be expanded
so that the table takes up the full width of the page after deducting the left
and right margins and the space required for the columns.

In general, only one of these two statements would be applied to the same
table. If you specify AUTOMATIC for both the stub and the column

	 Format 505

widths, space will be added only to the columns, unless you also provide a
MAXIMUM clause to limit the amount that can be added to the columns.
In that case, extra space will be added to the stub.

In some cases, COLUMN WIDTH AUTOMATIC; will make columns
wider than is desirable. This is especially likely when a banked table has
only a small number of columns in the last bank. COLUMN WIDTH
AUTOMATIC MAXIMUM n; can be used to limit the effect of automatic
column widths so that no column will have a width greater than n.

 Note If you have set an explicit width for a column that is wider than the maxi-
mum automatic value, this column will not have its width reduced.

 Note If you specify a maximum automatic value for columns, the final width
of the table may not be as wide as the page width minus the margins and
stub.

STUB WIDTH AUTOMATIC MAXIMUM n; can be used to limit the
expansion of the stub to a maximum of n.

 Level These statements can be specified at the individual table level.

 Default	 STUB	WIDTH	=	20;		and

COLUMN	WIDTH	=	10;

unless explicitly specified otherwise.

 Example Assume that for a table with 5 columns, we have the following FORMAT
statements:

PAGE	WIDTH	=	100;
LEFT	MARGIN	=	5;
RIGHT	MARGIN	=	5;
STUB	WIDTH	=	15;
COLUMN	WIDTH	AUTOMATIC;

 Effect The available space for the columns will be 100 - 5 - 5 - 15 = 75 (i.e. the
page width minus the margins and the stub). Each column will be expand-
ed from the default width of 10 to a width of 15 so that the full page width
will be used.

 Example	 COLUMN	WIDTH	=	20;
COLUMN	WIDTH	AUTOMATIC;
FOR	TABLES	2	and	3:	COLUMN	WIDTH	AUTOMATIC	NO;

	 Format 506

 Effect Column width is first set to 20 but then is set to automatic for all tables.
The last statement turns off the automatic column width for tables 2 and 3,
so tables 2 and 3 will have column width of 20.

 Restrictions Text tables may not produce exactly equal column widths for COLUMN
WIDTH AUTOMATIC; If the available space divided by the number of
columns yields a fractional number, some adjustments must be made to al-
low for the fact that all characters and spaces have the same width.

If you specify STUB WIDTH AUTOMATIC; for a banked table, you may
get some undesirable effects. All banks of a table are formatted with the
same number of lines. If one bank has a relatively narrow stub, a stub
label may need to be broken into two lines to fit in the stub. Another bank
with fewer columns may have a wider stub, but the stub labels will be bro-
ken into multiple lines in the same way as they were for the bank with the
narrow stub. This could produce a strange-looking result.

If these statements are used with PAGE WIDTH AUTOMATIC; they will
be ignored, regardless of the order of the statements.

	 Format 507

BANK AFTER COLUMN

 Format A FOR clause is required to identify the column(s) where banking should
take place.

FOR	COLUMN	n	[optional	additional	column	numbers]:
BANK	AFTER	COLUMN;

 Meaning BANK allows you to specify a break point for a table so that a wide table
can be split into sections called column banks. Each section is printed on
a separate page with all necessary labels (including all stub labels) repeated
for each section of the table.

The following option is also available and is generally used with NO to
reverse a previous BANK.

BANK	AFTER	COLUMN	=	NO;		 (or	YES)

 Level Bank points are specified by column but are controlled at the table level.
Bank points cannot change within a table.

 Default If the table is too wide for the page, it is banked automatically into as
many sections as necessary.

 Example	 FOR	COLUMNS	4,	8:		BANK	AFTER	COLUMNS;

 Effect The first page of the table will contain columns 1-4; the second page of the
table will contain columns 5-8. The remaining columns (assuming there
are few enough to fit) will be on the third page of the table.

 Example	 FOR	TABLES	ALL	COLUMNS	4,	8:		BANK	AFTER	COLUMNS;
	 FOR	TABLE	3:	BANK	AFTER	COLUMNS	=	NO;

 Effect All tables except table 3 will be banked after columns 4 and 8.

 Restrictions If you specify a break point beyond the end of the table, the BANK state-
ment will be ignored. For example, if a table has ten columns, the state-
ment

FOR	COLUMN	15:		BANK	AFTER	COLUMN;

will be ignored.

	 Format 508

BANK AFTER ROW

 Format	 FOR	row specification:		BANK	AFTER	ROW;

 Meaning When ROW BANKS PER PAGE is specified for a table, banking occurs at
the bottom of a page. With BANK AFTER ROW, you can choose the bank
points by specifying the data rows where the banking should occur.

 Note If you use the word EJECT instead of BANK, the results will be the same.

Precise control of bank points can be useful when you want to prevent
banking in the middle of logical groupings of rows. It can also be useful
for balancing the number of rows in each bank.

Note that if any rows of the table are not printed because they are empty
(do not have any data) or because the rows are ranked, you cannot deter-
mine row numbers by counting data rows in the printed table. You can
find the row numbers for PRINTED ROWS in the OUTPUT file. If you
reference an empty row in the FOR clause, the bank will occur before the
next row that has data.

 Note If you have ranked rows and reference an empty row, the BANK AFTER
ROW statement will have no effect. For ranked rows, you need to refer-
ence a row that has data.

The following option is also available and is generally used with NO to
reverse a previous BANK AFTER ROW.

BANK	AFTER	ROW	=	NO;	 	 (or	YES)

 Level Row banking applies to entire tables, but bank points can be specified for
individual rows.

 Default Bank points are determined automatically based on the number of rows that
can fit on a page.

 Example	 ROW	BANKS	PER	PAGE	=	3;
FOR	TABLE	1	ROW	35:		BANK	AFTER	ROW;

 Effect The table will break after row 35 and the table will continue with another
bank on the same page if there is enough space for another bank. If there
is not enough space, the new bank will start on the next page. All other
bank points will be determined automatically.

	 Format 509

 Note The default for row banking is ROW BANKS PER PAGE = 1. Thus, if
BANK AFTER ROW is used without a ROW BANKS PER PAGE state-
ment to specify multiple banks per page, there will be no row banking and
the table will simply break and go to a new page instead of banking after
the specified row(s).

 Note Row numbering restarts with each wafer. For a table with multiple wafers,
if no wafer specification is included in the BANK AFTER ROW statement,
the statement will apply to all wafers.

 Restrictions You must include a FOR clause to specify the rows where the banking
should occur. Otherwise, the BANK AFTER ROW statement will be ig-
nored.

If you have multiple wafers in a row-banked table and there is room for
more than one wafer on a page, you cannot eject or bank at the end of one
wafer to force the beginning of the next wafer to start on a new page.

	 Format 510

BANK DIVIDER

This statement has been replaced by RETAIN BANK DIVIDER which has
more options.

	 Format	 BANK	DIVIDER		WEIGHT	n;
BANK	DIVIDER		DOUBLE	or	SINGLE;
BANK	DIVIDER		DOUBLE	or	SINGLE		WEIGHT	n;
BANK	DIVIDER		DELETE;

where n is a number in points (1 point = 1/72 of an inch).

 Meaning When a table is row banked with multiple banks side by side on a page,
rules are usually added between the banks to divide them. These com-
mands control the weight of the divider, whether the divider is a double
rule, or whether it is deleted entirely.

 Level Bank dividers can be controlled at the individual table level.

	 Default	 BANK	DIVIDER	DOUBLE	WEIGHT	.5;	

	 Example	 For	Table	ONE:	BANK	DIVIDER	SINGLE	WEIGHT	2.0;

 Effect Banks are divided by a single bold rule.

	 Format 511

BANKS PER PAGE

 Format	 BANKS	PER	PAGE	=	n;

where n is a number. The word IS can be used in place of =. Both are
optional and can be left out altogether.

 Meaning If a table is too wide to fit on a page, it is automatically broken into sec-
tions called column banks. Banking can also be requested explicitly with
the BANK AFTER COLUMN statement. By default, each bank begins
on a new page. The BANKS PER PAGE statement can be used to print
multiple banks on a page.

One line is skipped between banks unless you request a different spacing
with the SKIP AFTER BANKS statement. With the statement SKIP 0
LINES AFTER BANKS; the banks will be joined with no space between
banks, and the stub head will be deleted for banks after the first. See the
SKIP AFTER BANKS statement for details.

	 Format 512

 Example	 FOR	COLUMN	2:	BANK	AFTER	COLUMN;
BANKS	PER	PAGE	=	2;

U.S. Waterborne Exports

By Country

Country of Ultimate
Destination

Short Tons of 2000 Lbs.

Liner Tanker

Total .. 248,745 4,146,065

MEXICO, CENTRAL AMER. &
CARIB.

Total .. 3,410 527,313
0 BULK .. 1,932 526,500
1 GENERAL 1,478 813

SOUTH AMERICA
Total .. 104,772 1,348,266
0 BULK .. 59,425 1,319,128
1 GENERAL 45,347 29,138

Country of Ultimate
Destination

Short Tons of 2000 Lbs.

Tramp Total

Total .. 15,334,746 19,729,556

MEXICO, CENTRAL AMER. &
CARIB.

Total .. 584,649 1,115,372
0 BULK .. 576,483 1,104,915
1 GENERAL 8,166 10,457

SOUTH AMERICA
Total .. 2,664,773 4,117,811
0 BULK .. 2,587,432 3,965,985
1 GENERAL 77,341 151,826

Table alignment is determined for each individual page of a banked table
and depends on the width of the widest bank on the page. Narrower banks
are aligned with the stub of the widest bank.

Table titles, wafer labels, headnotes and footnotes will appear only once on
a page regardless of the number of banks. They will be aligned with the
widest bank on the page.

	 Format 513

 Note If you are requesting multiple banks per page, we recommend that you use
equal width banks whenever possible. In general, unequal width banks on
the same page do not look good. This is especially true if you have speci-
fied SKIP 0 LINES AFTER BANKS.

 Note All banks on a page will take up the same amount of vertical space. If you
have different width banks on the same page, you may find that the page
ends sooner than you expect, especially if you have a very narrow bank
that requires the table title to be broken into several lines. In addition, if
one bank has a very long heading label that must be broken into several
lines, the space requirement for that label will apply to all of the banks.
Each bank may then take more vertical space than you expect.

 Level BANKS PER PAGE can be specified at the individual table level.

 Default	 BANKS	PER	PAGE	=	1;

 Example	 BANKS	PER	PAGE	=	3;
SKIP	3	LINES	AFTER	BANKS;

 Effect Each page of the table will contain 3 banks with 3 blank lines between the
banks. If the number of banks in the table is not a multiple of 3, then the
last page will contain fewer than 3 banks.

 Restrictions There must be enough vertical space on the page for each bank to contain
at least one line of data.

	 Format 514

BOLD RULE

	 Format	 BOLD	RULE	WEIGHT	=	n;

	 Meaning		 The	statement	controls	the	thickness	of	bold	rules.		The	rules	at	the	
start	(TOP	RULE)		and	end	(END	RULE)	of	a	table	are	by	default	bold	
rules.		Other	rules	may	be	designated	as	bold	or	these	rules	can	be	
assigned	a	different	weight.		Otther	properties	of	these	rules	should	be	
set	using		the	RETAIN	RULE	options.

 Level	 BOLD	RULE	WEIGHT	can	be	specified	at	the	individual	table	level.

 Default	 BOLD	RULE	WEIGHT	=	1.2;			(in	pts where	1	pts	=	1/72	inches)

	 Example

Default Bold Rule Weight

Race of Householder

White

Hispanic Origin of
Householder

Hispanic Not
hispanic

Average Income
Regions
Northeast 21,358 36,708
Midwest 23,091 31,161
Southeast 24,598 31,954
West 24,944 33,865

Bold Rule Weight = .5

Race of Householder

White

Hispanic Origin of
Householder

Hispanic Not
hispanic

Average Income
Regions
Northeast 21,358 36,708
Midwest 23,091 31,161
Southeast 24,598 31,954
West 24,944 33,865

	 Format 515

BOTTOM RULE SPAN

This Statement has been replaced by
RETAIN LAST RULE rule-options

 Format	 BOTTOM	RULE	=	[BOLD]	ROW	SPAN;

BOTTOM	RULE	=	DATA	SPAN;

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning This statement applies to the horizontal rule at the bottom of a table on
pages other than the last page of the table. Normally, the last bottom
rule on the last page of a table is a bold line that spans the entire table.
Other bottom rules are normal thickness and span only the data part (DATA
SPAN) to indicate that the table is not finished. An exception occurs if you
have specified FOOTNOTES EACH PAGE. In this case all bottom rules
span across the entire table.

With BOTTOM RULE = ROW SPAN; you can request that all bottom
rules span across the entire table. If you want all of these rules to be bold,
you can add the optional word BOLD to the statement.

 Level The BOTTOM RULE statement can be specified for individual tables.

 Default	 BOTTOM	RULE	=	DATA	SPAN;

unless you have specified FOOTNOTES EACH PAGE.

 Example	 FOR	TABLE	1:		BOTTOM	RULE	=	ROW	SPAN;

 Effect For all pages of the first table, the bottom rule will span across the entire
table, but it will be bold only on the last page of the table.

 Note If you are also using the statement SKIP 0 LINES AFTER BANKS; the
table will look better with the default of BOTTOM ROW = DATA SPAN.
If you are using SKIP 1 (or more) LINES AFTER BANKS; the statement
BOTTOM RULE = BOLD ROW SPAN; will produce a more pleasing
result.

	 Format 516

CELL MEMORY (PROFILE only)

 Format	 CELL	MEMORY	=	n;

where n is the number of bytes to be used for cell memory.

 Meaning In general, you do not need to concern yourself with the amount of memory
being used by TPL Tables, but certain types of jobs may run more efficient-
ly if extra memory is available for the generation of table cells. If the cell
generation or subcell generation step of a tables run contains the statement:

The cell buffer was emptied n times.

where n is greater than 1 or 2, then your job will probably run faster if
you increase the value in the statement. The messages regarding unloading
of the cell buffer are contained in the output file. For all jobs, the cell
buffer is unloaded at least once.

Examples of situations in which the extra cell memory may be beneficial to
you include:

• if you have jobs that must calculate many medi-
ans or other quantiles,

• if you are producing extremely large tables in
which there is data for all or most of the table
cells.

	 Default	 CELL	MEMORY	=	2,000,000;

The default value (about 2 megabytes) is set at installation time. This is a
reasonable value for most jobs.

	 Example	 CELL	MEMORY	=	4,000,000;

 Note If you are using the optional COUNTRY statement, you should enter the
value without commas or according to the convention set for your country.

 Restrictions The value chosen must be below the actual memory available on your com-
puter. Otherwise, it will impact other processes running on your computer
without speeding up TPL TABLES and/or will cause TPL Tables to run
very slowly. Pick the smallest value that keeps the cell buffer from being
emptied many times.

	 Format 517

CODEPAGE (PROFILE only)

CODEPAGE determines the character set and sort order for your requests
and tables. It is most often used for non-English languages that have al-
phabetic characters not available in the default CODEPAGE.

See also the statement called COUNTRY to set standards for features such
as currency symbols and date/time formats.

 Important If you add a CODEPAGE or COUNTRY statement to your profile, change
a CODEPAGE or COUNTRY statement in your profile, or make changes
to country.tpl, you need to restart TPL to activate the changes. When
running a table request, you must use the same CODEPAGE and COUN-
TRY statements that you used when processing your codebook. Otherwise,
you will have conflicting standards. In particular, conflicts in CODEPAGE
will cause the sort order to be scrambled.

 Note If you use CODEPAGE and/or COUNTRY statements, place them at the
beginning of your profile.

 Format	 CODEPAGE	=	cp-name;

where cp-name is a CODEPAGE name. The word IS can be used in place
of =. Both are optional and can be left out altogether.

 Level CODEPAGE applies to all tables.

 Windows Default CODEPAGE = WIN88591;

 UNIX Default CODEPAGE = ISO88591;

 Meaning The CODEPAGE statement determines the following:

1. the character set that includes the alphabet
you wish to use in names and labels,

2. the character set for text tables, and

3. the sort sequence for the character set.

The character sets associated with different CODEPAGES are contained in
files that are installed in the TPL system directory. These files have names
that end with .cp. The names correspond to the supported codepages. For
example, for CODEPAGE = WIN88591; the character set information is

	 Format 518

contained in the file WIN88591.cp. For CODEPAGE = ISO88591; the
character set information in contained in the file ISO88591.cp.

The .cp files are ASCII text files that can be printed or displayed on the
screen but you should not change them. Please tell us if you think that a
change should be made for your alphabet.

Alphabet for Names
The TPL alphabet depends on the CODEPAGE. The default CODEPAGE
is adequate for many, but not all, languages. If you need additional letters,
look at the CODEPAGES in the Appendix to find an alphabet that you can
use.

The Character Set for Printing
TPL automatically provides the printable characters for the selected CODE-
PAGE. For text tables, the characters must be stored on the printer.

The Sort Sequence
The proper order for sorting depends on the character set used. TPL
will use the sequence that goes with the character set selected by the
CODEPAGE statement.

The sort sequences for all character sets are stored in a file called sort.tpl
that is installed in the TPL system directory. This is an ASCII text file
that you can print or display on the screen. It can be edited according to
the instructions included at the beginning of the file. We would appreciate
your telling us if you think that changes should be made in the sort.tpl file
that we distribute with the TPL software.

If You Need to Select a CODEPAGE

Consult the character set tables in the Appendix called "Character Sets"
and use the codepage name from any table that contains the characters that
you need.

	 Format 519

COLOR Defaults

 Format	 DEFAULT	COLOR	=	r	g	b;
LABEL	COLOR	=	r	g	b;
RULE	COLOR	=	r	g	b;
SYMBOL	COLOR	=	r	g	b;

where r, g and b, are numbers between 0 and 100 (inclusive) which specify
red, green, and blue components of color.

 Meaning COLOR defaults can be set for all characters and rules (lines) used in
tables. The defaults are applied as follows.

DEFAULT COLOR is the print color for the entire table if no other colors
are specified. If RULE COLOR and LABEL COLOR are specified, the
DEFAULT COLOR remains as the default color for table cells.

RULE COLOR is the print color for rules. It applies to all rules, includ-
ing rules added by the FORMAT statement RULE AFTER ROW and rules
included with spanner labels. If no explicit RULE COLOR is specified,
rules are printed in the default color.

LABEL COLOR is the print color for all text in tables except character
strings in cell masks. These strings are printed in the default color. If no
explicit LABEL COLOR is specified, all labels, titles and footnote texts are
printed in the default color.

SYMBOL COLOR is the print color for all footnote symbols. If SYM-
BOL COLOR is not set explicitly, the default label color is used for sym-
bols.

In cases where color specifications are entered directly into individual table
elements such as labels, masks or footnotes, these individual specifications
will take precedence over the default COLOR specifications.

COLOR defaults apply only to characters and rules. For background shad-
ing in color or grey, see the SHADE statement (or COLOR shading).

	 Format 520

Note on Cell Color
There is no default color statement that applies only to table cells. If you
wish to change the cell color without affecting other table elements that are
to be displayed in the default color, you can use the FORMAT statement,
REPLACE MASK COLOR, to replace the mask color for entire tables.
This statement affects only cell color and does not change the other mask
characteristics of a cell.

Note on Underlining
The color for underlining is determined by the labels or masks to which
the underlining applies if it is part of the font for the labels or masks. If
you have used the FORMAT statement UNDERLINE ROW, the underlin-
ing will be in the color of the DEFAULT COLOR.

 Level All COLOR statements can be specified for individual tables.

 Default The default color is black.

 Example	 DEFAULT	COLOR	=	0	20	99;
FOR	TABLE	1:		REPLACE	TITLE	WITH	
	 COLOR	100	0	0	'Red	table	title';
FOR	TABLE	2:		RULE	COLOR	=	100	0	0;

 Effect All tables will be printed in the default color 0 20 99 (a shade of blue) ex-
cept as follows. The first table will have a title in the color 100 0 0 (red).
The rules in the second table will be printed in the color 100 0 0 (red).
The rest of the second table will be printed in the default color.

Alternate Format for the COLOR Statements

Colors can also be referenced by name where the colors have been defined
in a file called color.tpl.

 Format	 DEFAULT	COLOR	=	color;
LABEL	COLOR	=	color;
RULE	COLOR	=	color;
SYMBOL	COLOR	=	color;

where color is a user-selected name that has been assigned to a color defi-
nition in the color.tpl file.

The color.tpl file is installed as part of the TPL TABLES system with sev-
eral colors already defined. You can customize this file to add the colors of

	 Format 521

your choice. For complete details, see the section called "General Informa-
tion about Color" in the Color chapter.

 Example	 DEFAULT	COLOR	=	BLUE;
FOR	TABLE	2:		RULE	COLOR	=	BROWN;
FOR	TABLE	2,	COLUMN	1:		REPLACE	MASK	WITH	
	 COLOR	RED	999.9;

 Effect All tables will be printed in the default color BLUE except the second
table. The rules in the second table will be printed in the color BROWN.
Since the color RED is included within the mask for the first column of the
second table, the data values in that column will be printed in RED. The
rest of the second table, the labels and the other data values, will be printed
in the default color.

	 Format 522

COLOR = NO

 Format	 COLOR	=	NO;
REPLACE	COLOR	c	WITH	FONT	f;

where c is a color name or r g b specification and f is a font name and
optional font size.

 Meaning In some cases a table is designed to be printed on a color printer but must
be previewed on a monochrome printer. Colors are printed on a mono-
chrome printer as shades of grey. The resulting table is often hard to read,
and different colors sometimes convert to the same shade of grey. These
two additional statements may be added to your FORMAT request to deal
with this.

 Level These statements apply to the entire request.

 Default COLOR = YES; is the default. If you have not specified COLOR = NO;
the REPLACE COLOR statements are ignored.

If COLOR = NO; is selected, and no REPLACE COLOR statement is pro-
vided, all color information is ignored and the tables are printed in black
and white.

If COLOR = NO and REPLACE COLOR statements are included, the
tables are still printed in black and white but the REPLACE COLOR state-
ments are used to substitute special fonts for color.

 Example Suppose you have a table intended for printing on a color printer and sup-
pose that you wish to use a RED data mask to emphasize certain table
cells. You need to preview this table on a monochrome printer but you
want the red cells to stand out. You can accomplish this by adding the fol-
lowing two statements to your FORMAT request or profile.

	 COLOR	=	NO;
	 REPLACE	COLOR	RED	WITH	FONT	HB;

Now all red cells will be displayed in Helvetica Bold. When you are ready
to print on your color printer, just replace COLOR = NO; with COLOR =
YES; The REPLACE statements need not be removed since they will be
ignored.

Restrictions Changing the color of a string of characters does not change its length, but
changing the font and especially the font size of the string does change its

	 Format 523

length. REPLACE COLOR statements are intended for use in preview-
ing tables before final printing on a color printer. To aid in doing this, all
table layout is done before the font changes are applied. Consequently, if
a wider font is specified in a REPLACE COLOR statement, some character
strings may be too wide to fit in their space. Thus, they may overlay some
of the adjacent rules or stub filler dots. If the font size is not changed, this
will rarely happen but it is possible.

Alternate Approach

If you want to produce a publication-quality table that emphasizes certain
table cells or labels with color and can be printed on both a monochrome
and color printer, you can assign both a color and a distinguishable font to
the cells or labels that you want to emphasize. Do not use a REPLACE
COLOR statement but do use COLOR = NO; when printing on a mono-
chrome printer. On a color printer, both the color change and the font
change will highlight the emphasized cells or labels. On a monochrome
printer, the font change will show the emphasis.

	 Format 524

COLUMN WIDTH

 Format	 COLUMN	WIDTH	=	amount		[unit];

where amount is a number and unit is optional. If no unit is specified,
characters are assumed. If a unit is specified, the amount can be a decimal
number and unit can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning For specified columns, make the table columns n characters wide. The
column width includes the column divide character. If the column width
is n, then the column will have one less than n positions for data plus one
position for the divide character.

If the column width action is not restricted by a FOR clause, the column
width will be the same for all columns in all tables. Column widths can
vary within a table.

See also AUTOMATIC STUB AND COLUMN WIDTHS in this chapter
for automatic adjustment of columns widths to fill the available space.

 Level Column width can be specified for individual columns but is controlled at
the table level. For a particular column, the column width will be the same
throughout any one table.

 Default	 COLUMN	WIDTH	=	10;

 Example	 COLUMN	WIDTH	=	15;
FOR	TABLE	3	COLUMNS	2	AND	4:	COLUMN	WIDTH	=	8;

 Effect The first FORMAT statement sets column width to 15 for all tables. If the
second statement follows in the same format request, it sets column width
to 8 for columns 2 and 4 of the third table. For other columns of the third
table and for all other tables, column width will still be 15.

 Restrictions The minimum column width is 3. The page must be wide enough to hold
the stub + the margins + the widest column.

	 Format 525

COMPRESS HEADING

 Format COMPRESS	HEADING;

 Meaning The table heading will be formatted to take up the minimum possible verti-
cal space after allowing for space above and below the label in each head-
ing box.

Note that, even with the COMPRESS HEADING; statement, heading
boxes will always contain at least 1/2 line of space above and below the
label.

See also the statement SPANNER HEADING for another way to reduce
vertical heading space.

 Level Heading compression can be specified for individual tables.

 Default The heading is not compressed. It is built from the top down, and heading
boxes are aligned with adjacent boxes, except at the bottom level where the
box heights may need to vary to fill the space above.

 Example The following table has two levels of heading labels. The heading is very
tall, because each level of labels has one long label. The default formatting
for the heading makes the boxes at each level tall enough to contain the
longest label.

	 Format 526

Movie attendance and video rental by sex

How often do you
go to the movies
with a friend or a
member of your

family?

Rent videos?

Rarely Often Never

Only on
winter
week
ends

Other

Total 90 70 79 38 71
Sex
Female 48 40 38 21 42
Male 42 28 39 15 29
No response – 2 2 2 –

– Data not available.

TPL7429 date = 8/9/92 time = 7:49:07 PM

If we use the statement COMPRESS HEADING; we will shrink the height
of the heading. Note that the boxes no longer align horizontally.

Movie attendance and video rental by sex

How often do you
go to the movies
with a friend or a
member of your

family?

Rent videos?

Never

Only on
winter
week
ends

Other

Rarely Often

Total 90 70 79 38 71
Sex
Female 48 40 38 21 42
Male 42 28 39 15 29
No response – 2 2 2 –

– Data not available.

TPL12895 date = 8/9/92 time = 7:38:26 PM

	 Format 527

 Example A common use of COMPRESS HEADING; is to force the bottom level
of heading boxes to line up (have the same height) even though adjacent
boxes may have different numbers of heading boxes above them. Follow-
ing is a table of this type:

Movie attendance and video rental by sex

How often do you
go to the movies
with a friend or a
member of your

family?

VCR owners only

Rarely Often
Rent videos?

Rarely Often

Total 90 70 79 81
Sex
Female 48 40 38 50
Male 42 28 39 31
No response – 2 2 –

– Data not available.

TPL8226 date = 8/9/92 time = 8:25:25 PM

If we apply the statement COMPRESS HEADINGS; without changing the
table in any other way, the heading will be compressed, but the lowest level
boxes will not line up.

	 Format 528

Movie attendance and video rental by sex

How often do you
go to the movies
with a friend or a
member of your

family?

VCR owners only

Rent videos?

Rarely Often
Rarely Often

Total 90 70 79 81
Sex
Female 48 40 38 50
Male 42 28 39 31
No response – 2 2 –

– Data not available.

TPL9489 date = 8/9/92 time = 8:20:52 PM

To force alignment of the boxes at the lowest level, we must add lines to
the boxes above. One way to do this is to add a / in front of the labels
above: / 'VCR owners only' and / 'Rent videos?'. This technique would
give the desired alignment.

Movie attendance and video rental by sex

How often do you
go to the movies
with a friend or a
member of your

family?

VCR owners only

Rent videos?

Rarely Often Rarely Often

Total 90 70 79 81
Sex
Female 48 40 38 50
Male 42 28 39 31
No response – 2 2 –

– Data not available.

TPL12885 date = 8/9/92 time = 8:17:05 PM

	 Format 529

COUNTRY (PROFILE only)

The COUNTRY setting determines standards for such things as date/time
formats, data formats, and currency symbols. If you are using U.S. stan-
dards for these things, you would normally need a COUNTRY statement
only if you wish to select a particular date format, for example to specify
4-digit year. For additional information about displaying year with 4 dig-
its, see the PAGE MARKER statement.

If the default TPL character set does not provide all of the characters you
need, for example accented letters needed for some languages other than
English, see also the statement called CODEPAGE.

Important If you make changes to country.tpl, add a COUNTRY or CODEPAGE
statement to your profile, or change a COUNTRY or CODEPAGE state-
ment in your profile, you need to restart TPL to activate the changes.
When running a table request, you must use the same CODEPAGE and
COUNTRY statements that you used when processing your codebook.
Otherwise, you will have conflicting standards. In particular, conflicts in
CODEPAGE will cause the sort order to be scrambled.

 Note If you use COUNTRY and/or CODEPAGE statements, place them at
the beginning of your profile. If you are selecting a country other than
the U.S., you should check the profile to see if any decimal numbers are
used. If they are, you may need to edit them so that they conform to your
country's standards as described below in the section called "Separators in
Masks and Decimal Constants".

 Format	 COUNTRY	=	country-name;

where country-name is the name of a country listed in the country.tpl file.
The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Level COUNTRY applies to all tables.

 Default	 COUNTRY	=	US;

 Meaning The COUNTRY statement lets you select appropriate standards for items
such as thousand separator, decimal separator, currency symbol, and date/
time formats. The standards are set in the file called country.tpl. This file
is installed in the TPL system directory. It is an ASCII text file that can be
printed or displayed on the screen. The country-name that you enter in

	 Format 530

the COUNTRY statement must match a name in country.tpl. Associated
with each country in the file, you can see the standards that have been set
for that country.

The countries that currently have entries in the file are listed below. If
your country name is not on this list, look in country.tpl to see if it has
been added. If your country is not in country.tpl, you will need to edit the
file to add the standards for your country. If you add a country to country.
tpl, please send your entry to us. We will add it to our country.tpl file so
that your country will always be included when you get new versions of
TPL software.

AUSTRALIA	 	 	 JAPAN
AUSTRIA	 	 	 MEXICO
BELGIUM_DUTCH	 	 NETHERLANDS
BELGIUM_FRENCH	 	 NZEALAND
BRAZIL		 	 	 NORWAY
CANADA	 	 	 POLSKA
CANADA_FRENCH	 	 PORTUGAL
DENMARK	 	 	 SKOREA
FINLAND	 	 	 SPAIN
FRANCE	 	 	 SWEDEN
GERMANY	 	 	 SWITZERLAND
HUNGARY	 	 	 TAIWAN
ICELAND	 	 	 UK
IRELAND	 	 	 US
ITALY										 	 	 	 	

If there is an entry for your country but you wish to change the standards,
you can edit the country.tpl file. Follow the directions contained in the
file accurately. Errors in this file could cause your TPL jobs to fail. As
with profile.tpl, you can edit the file in the TPL system directory, or you
can make a customized copy to use in the directory where you are running
your TPL jobs.

Separators in Masks and Decimal Constants
For the default country US, the decimal separator is "." and the thousands
separator is "," . The COUNTRY statement lets you choose different de-
faults so that you can enter masks and numeric constants and have values
print with the separators that are customary in your country.

If you wish to display data values with no comma separator, you can edit
your country in the country.tpl file or add a country entry with a unique
name. In the line for the country, enter N in the thousands separator field.

	 Format 531

Enter the country name in the COUNTRY statement in profile.tpl. The
thousands separator will be suppressed.

Enter masks according to your country standard. For example, if your
thousands separator is "." and your decimal separator is "," then a valid
mask would be MASK 9.999,99 .

Note that if your country uses a period "." as the decimal separator you
must enter comma "," as the thousands separator in masks. In the output,
the data will use the correct symbol for the thousands separator if it differs
from comma. Similarly, if your country uses a comma "," as the decimal
separator, you must enter a period as the thousands separator in masks.

For example, some countries, such as France and Finland, use comma ","
as the decimal separator and blank as the thousands separator. Blank can
be entered in country.tpl, but a mask with a blank will cause a syntax er-
ror. If you use blank as the thousands separator, you must enter the mask
using a period as the thousands separator. The data values will be printed
correctly with blank as the thousands separator.

Enter numeric constants according to your country standard. For ex-
ample, if your decimal separator is "," then 457,22 is a valid entry. The
thousands separator is not relevant, because thousands separators cannot be
entered in numeric constants.

 Note This feature does not extend to observation variable values in a data file. If
they have decimal or thousands separators, they must conform to US stan-
dards, i.e. period for decimal and comma for thousands.

Effect on Currency Formats
If you have entered the COUNTRY statement in your profile, the currency
symbol will be taken from the corresponding country entry in country.tpl.
This entry also determines whether the symbol should be displayed before
or after the money value, with or without a blank between. As already
noted, you can edit country.tpl if you wish to change the symbol or its
placement.

The rules for entering currency symbols in masks in codebooks and state-
ments vary depending on the type of currency symbol for your country. In
any case, if your country name and codepage specifications are correct,
a Postscript output will have the correct currency symbol inserted in the
correct place in your data values. If you are using a non-Postscript printer,
what will be printed depends on your printer. Changes to the country.tpl

	 Format 532

file can usually fix non-Postscript printer problems. If not, exporting to pdf
and then printing will fix the problems.

1. For some countries, the currency symbol is a single special character
such as the UK Sterling symbol. For this type of currency symbol, you
may enter either $ or the special symbol in your print masks.

2. For other countries such as France, the currency symbol is a regular
letter in the alphabet. In such cases you must use the US $ in your
print masks, but the letter will be used as the currency symbol in for-
matting data values.

3. For currency symbols such as Kr and Cr$ that contain more than one
character, you must use the US $ in your print masks, but the correct
combination of symbols will be used in formatting the data.

	 Examples	 COUNTRY	=	Denmark;
User	specified	mask	is:	$999,99
Output	for	332.76	is:		332,76Kr

COUNTRY	=	UK;
User	specfied	mask	is:	£999.99
Output	for	332.76	is:	£332.76

COUNTRY	=	CANADA_FRENCH;
User	specfied	mask	is:	$99.999,99
Output	for	54332.76	is:	$54	332,76

In some countries it is customary to insert a blank space between the cur-
rency symbol and the value. Because space is often limited in columns of
data, we have not included blank characters for currency symbols in our
country.tpl file. If you wish to have the blank space inserted, you can
change the currency style field in your country.tpl file to request the blank
space for your country's entry.

 Note TPL software does not support currencies that put the currency symbol at
the decimal point place. Please contact us if you have a requirement for
this format.

Special Treatment for Currency Symbols in Output
TPL provides special treatment for masks that contain the US currency
symbol $. For example, in a column of numbers with a mask of $999.99,
only the first number in the column will be displayed with a $. (See the
MASK chapter for a more detailed description of the $ treatment.) Non-
US currency symbols are given similar treatment.

	 Format 533

Date and Time Formats
Whenever date and time are displayed by TPL, the formats are determined
by COUNTRY. For example, if you use DATE or TIME in the FOR-
MAT statement called PAGE MARKER and have specified COUNTRY =
SWITZERLAND, the statement:

PAGE	MARKER	=	"Page	"	NUMBER	"		Job	run	on	"	
	 DATE	"	at	"	TIME;

will produce tables with page numbers, date and time in the following
format:

Page	1		Job	run	on	31.12.07	at	14,24,38

	 Format 534

CSV DIVIDER

 Format	 CSV	DIVIDER	=	divider;

where divider can be:
SEMICOLON
COMMA
TAB
SPACE
or any single character in quotes.

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning For exported CSV files, the default divider (delimiter) between values is
comma. CSV DIVIDER can be used to specify a different divider charac-
ter.

 Level The divider is controlled at the request level. The same divider applies to
all tables within the same table request.

 Default	 CSV	DIVIDER	=	",";

 Example	 CSV	DIVIDER	=	"	";

 Effect When the tables are exported to CSV format, the values will be separated
by a blank character.

 Restriction If a Tab is entered as the divider, it will be treated the same as a blank. If
you are using the Windows version of TPL and do the export interactively
from Ted, you can select Tab as the divider.

	 Format 535

CSV OUTPUT (UNIX only)

 Format	 CSV	OUTPUT	=	YES	or	NO	or	PROMPT;

Normally, when you have created tables, TPL TABLES will prompt you at
the end of a job to find out if you would like to export the tables to other
formats. To prevent the prompt for CSV and the other export statements,
you can use this statement and each of the other export statements with
YES or NO. Use CSV DIVIDER to specify the divide character.

DATA SPAN

The SPAN specification controls the width of both SPANNER labels and
horizontal lines that have been inserted with the RULE AFTER ROW
statement. DATA SPAN is the default. Alternate SPAN specifications are
described under the ROW SPAN statement.

	 Format 536

DATA TABLES

 This statement has been replaced by the Data Table export option.

	 Format	 DATA	TABLES;
DATA	TABLES	ZERO	FILL;

 Meaning The DATA TABLES statement is especially useful if you are summarizing
information for subsequent use in other software such as spread sheet or
graphics programs.

It formats the tables so that they can be used as a data file. All title and
label information is removed along with the horizontal lines (rules) and
the space between pages and tables. The vertical lines (down rules) are
replaced with blanks. Footnote symbols and text are removed, and the
content of cells that would have special footnotes such as the dash (-) for
"Data not available." is converted to 0.

Only masks remain in effect. If you need decimal points in the numbers
or if you plan to use the data tables as input to software that does not al-
low commas in the data, you may need to add your own mask for the data
since the default mask inserts commas in numbers that are longer than 3
digits and does not include decimal points.

Any other display information that you want to keep in the tables can be
preserved with RETAIN statements.

The page width of a data table is automatically calculated to hold all col-
umns of the table so that all values in a data row will be on the same line.
In other words, wide data tables are not automatically banked.

If more than one table is included in the table request, you will probably
want them to have the same columns widths so that all columns of the data
file output are aligned together. You will probably also want the heading
expressions to be identical so that each column has the same information
throughout.

If you have several tables in a request but want to use only one of them as
a data table, you can use FORMAT statements to delete all tables except
the one you want as a data file. For example, if you have several tables in

	 Format 537

a request but want to use only the second as a data file, you can accom-
plish the desired result with the following FORMAT statements:

DATA	TABLES;
FOR	TABLES	=	ALL:	DELETE	TABLE;
FOR	TABLE	=	2:	RETAIN	TABLE;

ZERO FILL

By default, any space not occupied by the data values and associated mask
characters will be filled with blanks. If you use the ZERO FILL option,
columns will be filled with zeros to the left of each value instead of blanks.
If the values are not right-aligned, then blanks will fill any unused space
to the right of the values. If a value has a mask that includes a character
such as $, this character will remain with the data or will be replaced with
a blank in cells where the $ would not print in a non-data table.

By default, columns are separated by a blank character. If you want to
have zeros fill this space, you must use RETAIN DOWN RULES; and RE-
PLACE DIVIDE CHARACTER WITH '0' ; These statements must follow
the DATA TABLES; statement.

 Level Data tables can be controlled at the individual table level.

 Default Tables are formatted with complete title, label and footnote information,
margins, horizontal and vertical rules and pagination.

 Example	 FOR	TABLE	1:	 REPLACE	MASK	WITH	999999	RIGHT;
	 DATA	TABLE;

 Effect Format the table as a data file with the data right-adjusted within each col-
umn and no commas added.

 Example	 DATA	TABLES;
REPLACE	MASK	WITH	999999.9;
RETAIN	DOWN	RULES;
REPLACE	DIVIDE	CHARACTER	WITH	',';

 Effect The tables are formatted as a data file; the numbers are formatted with a
decimal point. Retaining the down rules and replacing the divide character
with comma causes the numbers to be separated by commas within each
data row.

 Example	 REPLACE	MASK	WITH	999	RIGHT;
DATA	TABLES	ZERO	FILL;
RETAIN	DOWN	RULES;

	 Format 538

REPLACE	DIVIDE	CHARACTER	WITH	'0';

 Effect All values will be right-aligned in the columns, with no commas or deci-
mal points. The values will be zero filled on the left and the space be-
tween columns will contain a zero, so there will be no blanks or other
non-numeric characters in the data file output.

 Note By default, TPL TABLES will not include rows that have no data. You
may find it useful to use RETAIN EMPTY LINES; with the DATA TA-
BLES; statement when you need to have a predictable number of lines in
the output. See the RETAIN EMPTY LINES statement for details.

 Note The DATA TABLES statement is equivalent to the following collection of
FORMAT statements:

TOP	MARGIN	=	0;
LEFT	MARGIN	=	0;
PAGE	LENGTH	=	AUTOMATIC;
PAGE	WIDTH	=	AUTOMATIC;
DELETE	TITLE;
DELETE	HEADNOTE;
DELETE	HEADING;
DELETE	STUB;
DELETE	FOOTNOTES	ALL;
DELETE	ALL	RULES;
DELETE	WAFER	LABEL;
PAGE	MARKER	=	'';

You must take care that you do not unintentionally override parts of the
DATA TABLES effect by following the DATA TABLES statement with a
FORMAT statement that conflicts with one of the above. For example, the
sequence

DATA	TABLES;
PAGE	LENGTH	=	66;

would override the PAGE LENGTH AUTOMATIC statement that is built
into DATA TABLES and cause gaps to appear between pages.

In addition, stub deletion is accomplished within TPL TABLES by setting
the stub width to zero. If you follow the DATA TABLES statement with a
STUB WIDTH statement that sets the stub to a width greater than zero, the
effect may be to retain the stub in the tables.

	 Format 539

 Restrictions There is one exception to the treatment of footnotes in a data table. In a
regular table, if a number is too large to fit within the column, it is footnot-
ed with the symbol "nf" appearing in the cell. In a data table, if a number
is too large, it is replaced with a blank, because a truncated value or a 0
would be wrong. If you get a data table with blanks where data values
should be, expand the column width with a COLUMN WIDTH statement.

DATA TABLE OUTPUT (UNIX only)

 Format	 DATA	TABLE	OUTPUT	=	YES	or	NO	or	PROMPT;
DATA	TABLE	OUTPUT	=	STUB;	
DATA	TABLE	OUTPUT	=	ZERO	FILL;

Normally, when you have created tables, TPL TABLES will prompt you at
the end of a job to find out if you would like to export the tables to other
formats. To prevent the prompt for DATA TABLE and the other export
statements, you can use this statement and each of the other export state-
ments with YES or NO. STUB will cause the stub to be retained. ZERO
FILL will cause leading blanks to be replaced by zeros.

DELETE

The following statements correspond to RETAIN statements. See the like-
named RETAIN statements for details.

DELETE	ALL	RULES;
DELETE	BANK	DIVIDER;
DELETE	BOTTOM	RULE;
DELETE	COLUMNS;
DELETE	DOWN	RULES;
DELETE	EMPTY	COLUMNS;
DELETE	END	RULE;
DELETE	HEADING	BOTTOM	RULE;
DELETE	HEADING	CROSS	RULE;
DELETE	HEADING;
DELETE	HEADNOTE;
DELETE	LAST	RULE;

	 Format 540

DELETE	LEADING	ZEROS;
DELETE	ROW;
DELETE	RULE	AFTER	ROW;
DELETE	RULE	AFTER	STUB;
DELETE	SPANNER	RULE;
DELETE	STUB;
DELETE	TABLES;
DELETE	TITLE;
DELETE	TOP	RULE;
DELETE	WAFER;
DELETE	WAFER	LABEL;

	 Format 541

DISPLAY NAME (UNIX/Linux Profile only)

 Windows Note The Windows version of TPL TABLES uses TED, the TPL editor, to dis-
play tables. DISPLAY NAME is ignored.

 Format	 DISPLAY	NAME	=	PostsScript-displayer;

where PostScript-displayer can be either just the program name or the
name including a full path if needed.

 Meaning When a TPL TABLES job run in PostScript mode completes successfully,
you will be asked if you wish to display the tables. If you answer "yes",
the tables will be displayed using the PostScript-displayer as a separate
process.

 Examples
 Sun Solaris:

	 DISPLAY	NAME	=	pageview;
	 DISPLAY	NAME	=	/usr/openwin/bin/pageview;

 Linux (using KDE):

	 DISPLAY	NAME	=	kghostview;

DO NOT RANK ON VALUES

See RANK ON VALUES

DO NOT REPORT ROWS

See RANK ON VALUES

	 Format 542

DOWN LINE

 This statement has been replaced by RETAIN DOWN RULE rule-options

	 Format DOWN	LINE	WEIGHT	=	n;	 or
DOWN	LINE	DOUBLE;	 	 or
DOWN	LINE	SINGLE;	 	 or
DOWN	LINE	WEIGHT	=	n				DOUBLE	or	SINGLE;

 Meaning RULE is a synonym for LINE in these statements. See the RETAIN
DOWN RULE statements for more information.

DOWN RULE

 This statement has been replaced by RETAIN DOWN RULE rule-options

	 Format	 DOWN	RULE	WEIGHT	=	n;	 or
DOWN	RULE	DOUBLE;	 or
DOWN	RULE	SINGLE;	 	 or
DOWN	RULE	WEIGHT	=	n				DOUBLE	or	SINGLE;

where n is a number. The word IS can be used in place of =. Both are
optional and can be left out altogether. If both a WEIGHT value and one
of the words DOUBLE or SINGLE are used, they can be in any order.
The word LINE can be used in place of the word RULE.

 Meaning DOWN RULE statements do not affect exported text tables. They apply
to the vertical lines that extend from within the heading to the bottom of
the table between the columns. These lines are called down rules. You
can provide a WEIGHT value and/or specify whether the rules should be
DOUBLE or SINGLE. The WEIGHT value increases or decreases the
thickness of the rules. It is expressed in points where each point is 1/72
inches.

 Note The appearance for a particular rule weight on the printed page will vary
from printer to printer. This is especially true with printers of different dpi
(dots per inch).

	 Format 543

DOWN RULE specifications can be restricted to specific columns. This is
useful, for example, if you wish to emphasize the division between certain
columns with double rules or a thicker rule. When columns are specified
in the FOR clause, the specifications are applied to the rules that follow the
specified columns.

The down rule that separates the stub from the body of the table is speci-
fied as column 0. This is true even if you have specified STUB RIGHT.

See also the RULE statement to change the appearance of rules other than
DOWN RULES.

 Note If both a DOWN RULE statement and a RULE statement are present, the
DOWN RULE specifications take precedence for the vertical rules regard-
less of the order of the statements in the format request.

 Level DOWN RULE can be specified at the individual column level.

 Default	 DOWN	RULE	WEIGHT	=	.5		SINGLE;

 Example	 FOR	TABLE	3	COLUMNS	2,	4:		DOWN	RULE	WEIGHT	=	1.5;

 Effect All rules in the tables will have the default rule weight except the vertical
rules after columns 2 and 4. These two rules will be thicker than the oth-
ers.

 Example	 FOR	COLUMN	0:		DOWN	RULE	WEIGHT	=	2;

 Effect Since column 0 refers to the tale stub, the rule between the stub and the
first data column will be thicker than the rules between the other columns.

 Example	 FOR	TABLE	THREE_A	COLUMN	0:	DOWN	RULE	DOUBLE;

 Effect There will be a double rule between the stub and the first data column.

	 Format 544

Table 2. Households by sex and education level
of householder

Total
Sex of Householder

Male Female

Educational Attainment
of Householder

8 years or less 3,986 2,517 1,469
High school, 1 to 3

years 3,699 2,352 1,347
High school, 4 years 10,875 7,512 3,363
College, 1 to 3 years 5,059 3,554 1,505
College, 4 years 3,466 2,629 837
College, 5 or more

years 2,915 2,257 658

Referring to a Rule that Follows a Deleted Column
If you have deleted a column or range of columns and want to change the
appearance of the following down rule, you will need to include the deleted
column(s) in a range in the FOR clause for the DOWN RULE statement.

 Examples Column 5 is deleted and and a weight is specified for the down rule fol-
lowing column 4.

FOR	COLUMN	5:	DELETE	COLUMN;
FOR	COLUMNS	4	TO	5:	DOWN	RULE	WEIGHT	=	1;

Columns 6 to 9 are deleted and a weight is specified for the down rule fol-
lowing column 5.

FOR	COLUMNS	6	TO	9:	DELETE	COLUMNS;
FOR	COLUMNS	5	TO	9:	DOWN	RULE	WEIGHT	=	1;

 Restrictions The DOWN RULE statement has no effect if the divide character is set to
something other than the default divide character of | .

The rule weight value must be greater than or equal to zero. A rule weight
of 0 does not make the rule disappear. Instead, it results in the thinnest
line that is possible on your output device.

If the rule weight value is too large, the rules will be so thick that they will
make broad bands that overlay the columns. This is usually undesirable.
For example, the statement:

DOWN	RULE	WEIGHT	=	72;

	 Format 545

will create broad black bands that are 1 inch wide (1 pt. = 1/72", so 72
points = 1").

Table Title

Count

Hispanic Origin of Householder

Hispanic Not hispanic

Number of Earners
None 466 5,830
1 .. 854 9,085
2 .. 864 9,577
3 .. 189 2,137
4 .. 86 691
5 .. 12 151
6 .. 5 41
7 .. 3 7
8 .. 1 1

	 Format 546

EDITOR (UNIX Profile only)

 Windows The Windows version of TPL TABLES is linked to TED, the TPL editor.
EDITOR statements have no effect.

 UNIX There are two EDITOR statements. They are used only in profile.tpl and
are initially set at installation time if you have indicated that you would
like to have TPL TABLES linked to your editor. They are described below
in case you need to change or add them after installation.

 Format	 EDITOR	NAME	=	editor_name;
EDITOR	FILE	=	editor_file;

 Meaning TPL TABLES has been designed so that you can use the text editor of your
choice to create codebooks, table requests and format requests. Any editor
that creates stand-alone ASCII text files is acceptable.

If you choose to link TPL TABLES to your editor, TPL TABLES will au-
tomatically transfer to your editor when a job stops because of an error.

Editor Name
The editor_name should be the name you use to start your editor. For
example, if you start your editor by entering ED, the editor name statement
in your profile should be:

EDITOR	NAME	=	ED;

Path names are allowed but not required.

Editor File
TPL TABLES assumes that you can start your editor with a command that
includes the name of the file to be edited. TPL TABLES uses a file name
of TPLTEMP when it transfers to your editor, so the EDITOR FILE state-
ment is:

EDITOR	FILE	=	TPLTEMP;

Some editors require a special extension such as DOC or TXT for any
file to be edited. If this is the case with your editor, include the required
extension in your EDITOR FILE statement. For example, if the required
extension is TXT, use the statement

EDITOR	FILE	=	TPLTEMP.TXT;

	 Format 547

EJECT

The following EJECT statements are the default settings for table and wa-
fer pagination. They are sometimes used explicitly in conjunction with the
SKIP AFTER TABLE and SKIP AFTER WAFER statements. See the
SKIP statements for details.

EJECT	AFTER	TABLE	[=	YES];
EJECT	AFTER	WAFER	[=	YES];

EJECT with NO gives the same result as the SKIP 0 LINES statement
described in SKIP AFTER TABLE and SKIP AFTER WAFER.

EJECT	AFTER	TABLE	=	NO;
EJECT	AFTER	WAFER	=	NO;

	 Format 548

EJECT AFTER ROW

 Format	 FOR	row specification:		EJECT	AFTER	ROW;

 Meaning This statement can only be used with a FOR clause that specifies the rows
where the page breaks should occur. The ROWS are data rows. At each
specified data row, the page will be completed and the table will continue
on the next page.

Precise control of page breaks can be useful when you want to prevent
page breaks in the middle of logical groupings of rows. In other cases,
you may want to start a new page for particular variables or values.

If you have a table that ends with a very small number of rows on the last
page, you may wish to improve the appearance of the last page by mov-
ing a few rows of data from the next-to-last page to the last page. You can
achieve this by specifying the row where you want the page break to occur.

Note that if any rows of the table are not printed because they are empty
(do not have any data) or because the rows are ranked, you cannot deter-
mine row numbers by counting data rows in the printed table. You can find
the row numbers for PRINTED ROWS in the OUTPUT file. If you refer-
ence an empty row in the FOR clause, the page break will occur before the
next row that has data.

 Note If you have ranked rows and reference an empty row, the EJECT AFTER
ROW statement will have no effect. For ranked rows, you need to refer-
ence a row that has data.

If you have used the command RETAIN EMPTY LINES and there is
no ranking, you can determine row numbers by looking at the tables. See
RETAIN EMPTY LINES for more information.

The following option is also available and is generally used with NO to
reverse a previous EJECT.

EJECT	AFTER	ROW	=	NO;	 	 (or	YES)

 Level Page breaks can be specified for individual rows.

 Default Page breaks are determined automatically based on the number of rows that
can fit on a page.

	 Format 549

 Example	 FOR	TABLE	1,	WAFER	2,	ROW	35:		EJECT	AFTER	ROW;

 Effect The page containing row 35 of the second wafer in the first table will end
after row 35. If row 35 is not printed because it has no data, then the page
eject will occur before the first printed row following row 35. The table
will continue on the next page. All other page breaks will be determined
automatically.

 Example	 FOR	ROWS	20	to	200	by	20:	EJECT	AFTER	ROW;
FOR	ROW	100	:	EJECT	AFTER	ROW	=	NO;

 Effect A page break will occur after rows 20, 40, 60 and so on to row 200 except
after row 100.

 Note Row numbering restarts with each wafer. For a table with multiple wafers,
if no wafer specification is included in the EJECT statement, the statement
will apply to all wafers.

 Restrictions If you use EJECT AFTER ROW without a FOR clause, you will get an er-
ror message.

EPS OUTPUT (UNIX only)

	 Format	 EPS	OUTPUT	=	YES	or	NO	or	PROMPT;

Normally, when you have created tables, TPL TABLES will prompt you at
the end of a job to find out if you would like to export the tables to other
formats. To prevent the prompt for EPS, and the other export statements,
you can use this statement and each of the other export statements with
YES or NO.

	 Format 550

EXTRA LEADING

 Format	 EXTRA	LEADING	=	n;

where n is a number. The word IS can be used in place of =. Both are
optional and can be left out altogether.

 Meaning This statement can be used to regulate the amount of space between lines
in tables. It has no effect on exported text tables.

 Note If you simply want to scale down the size of your table, see the SCALE
statement. With the SCALE statement, you can reduce the overall size
of everything in a table to a percentage of its original size and fit more of
your table on a page or other smaller space.

Leading (rhymes with "heading") is the space between lines of text or data.
TPL TABLES automatically adjusts this space in proportion to the font size
you have chosen. If this amount is not appropriate for your tables, you can
change the spacing with the EXTRA LEADING statement. Increasing the
leading number will increase the amount of space between lines; decreas-
ing the leading number will decrease the amount of space between lines.

A value of 0 for EXTRA LEADING will give the default spacing. Since
the default spacing is often too close for tables of data, TPL TABLES uses
an extra leading value of .15 to increase the spacing by a small amount.

The font sizes include the leading. For each line, most of the vertical
space will be occupied by the printed characters and part will be reserved
for the space between lines. For example, if the font size is 12 (points),
each line, including the leading, will take 12/72 = 1/6 inch of vertical
space. Thus, there will be 6 lines per inch. (A point is 1/72 inch).

In the EXTRA LEADING statement, the extra leading value is multiplied
by the font size to determine the extra amount of spacing. For example,
EXTRA LEADING = .5; will add .5 * font size to line spacing. If the
font size is 12, the extra leading will be .5 * 12 points or 6 points, and
each line will take 12 + 6 = 18 points of vertical space. 18 points = 1/4 ",
so there will be 4 lines per inch. The characters will be the standard char-
acter size for a font size of 12, but there will be much more space between
the lines.

	 Format 551

If there is more than one font size specification for a line, the extra leading
calculation will be based on the largest font size for the line.

 Level Extra leading can be controlled at the individual table level.

 Default	 EXTRA	LEADING	=	.15;

 Example	 FOR	TABLE	1:		EXTRA	LEADING	=	.2;

 Effect For the first table, line spacing will be increased beyond the standard
PostScript leading by .2 * font size. If the font size for a line is 10,
the extra space will be 2 points.

 Restrictions The EXTRA LEADING value cannot be less than 0.

	 Format 552

FONT

Print style and size can be specified with the FONT statement.

 Note The FONT statement is not supported for text table export.

 Format	 table-element	FONT	=	fontname		fontsize;

where fontname is the TPL TABLES abbreviation for the font name, and
fontsize is a number.

The word IS can be used in place of =. Both are optional and can be left
out altogether. Fontsize is optional for all except the DEFAULT FONT
statement.

Individual masks and labels, including titles, footnotes and page markers,
can contain FONT specifications that will override the FONT statements.
For more information, see the chapters on Masks, Labels and Footnotes.

 Example	 TITLE	FONT	=	HB	10;

 Effect The title font will be 10 pt Helvetica Bold.

 Level The DEFAULT font applies to the entire request, but fonts for other table
elements can be specified at the table level.

Table Elements
Fonts can be specified for the following table-elements. Note that there
is no font specification that applies to table cells only. To change the cell
font only, see the statement REPLACE MASK FONT.

DEFAULT	 The DEFAULT font applies to the table cells
 and any table elements not otherwise specified.
TITLE
TITLE	CONTINUATION
FOOTNOTE	TEXT
FOOTNOTE	SYMBOL		(or	SYMBOL)
HEADNOTE
WAFER	LABELS	
STUB	HEAD
CONDITION	LABELS
CONDITION	LABELS	IN	HEADING
CONDITION	LABELS	IN	STUB
VARIABLE	LABELS

	 Format 553

VARIABLE	LABELS	IN	HEADING
VARIABLE	LABELS	IN	STUB

Font Names
You can choose from any of the following fonts. Refer to them by
TPL TABLES abbreviation. For example, the following specifies
Times-BoldItalic.

TITLE	FONT	TBI;

Abbreviations Font names

	 C	 Courier
	 CB	 Courier-Bold
	 CI	 Courier-Oblique
	 CBI	 Courier-BoldOblique

	 T	 Times-Roman
	 TB	 Times-Bold
	 TI	 Times-Italic
	 TBI	 Times-BoldItalic

	 H	 Helvetica
	 HB	 Helvetica-Bold
	 HI	 Helvetica-Oblique
	 HBI	 Helvetica-BoldOblique

	 N	 Helvetica-Narrow
	 NB	 Helvetica-Narrow-Bold
	 NI	 Helvetica-Narrow-Oblique
	 NBI	 Helvetica-Narrow-BoldOblique

	 A	 AvantGarde-Book
	 AB	 AvantGarde-Demi
	 AI	 AvantGarde-BookOblique
	 ABI	 AvantGarde-DemiOblique

	 B	 Bookman-Light
	 BB	 Bookman-Demi
	 BI	 Bookman-LightItalic
	 BBI	 Bookman-DemiItalic

	 S	 NewCenturySchlbk-Roman
	 SB	 NewCenturySchlbk-Bold
	 SI	 NewCenturySchlbk-Italic
	 SBI	 NewCenturySchlbk-BoldItalic

	 P	 Palatino-Roman

	 Format 554

	 PB	 Palatino-Bold
	 PI	 Palatino-Italic
	 PBI	 Palatino-BoldItalic

	 Z	 ZapfChancery-MediumItalic
	 D	 ZapfDingbats*
	 Y	 Symbol*

* The Symbol and ZapfDingbats fonts are mainly useful for footnote symbols.

Font Sizes
Font sizes are specified in points. A point is 1/72", so there are 72 points
in one inch. The font size includes the space between the lines.

 Examples If the font size is 12, each line takes 12 points of vertical space or 12/72 =
1/6". With font size 12, there are 6 lines per inch.

If the font size is 8, each line takes 8 points of vertical space or 8/72 =
1/9". With font size 8, there are 9 lines per inch.

General Rule To get larger characters in your table, increase the font size;
to get smaller characters, decrease the font size.

A font size must be specified for the DEFAULT FONT. For all other fonts,
if no size is specified, it will be whatever size is already in effect for that
table element. For example, if the title font is set at H 12 (Helvetica 12)
in the profile and the statement TITLE FONT TBI; (Times-BoldItalic) is
included in the format request, the title will be printed in Times-BoldItalic
with a size of 12.

 Default Font defaults are initially set at installation time. A sample profile after
installation is:

Postscript	=	yes	;
Default	font	=	H	8;
Footnote	text	font	=	T	8;
Footnote	symbol	font	=	H	8;
Title	font	=	HB	10;
paper	=	LETTER;

You can edit the profile to change the defaults and/or you can override
them in your format request. If you usually use fonts that are different
from those that were established at installation time, you will probably
want to change the font statements in the profile.

	 Format 555

 Example Following is a sample format request with font specifications:

postscript	=	yes;
default	font	H	10;
title	font	TB	12;
footnote	text	font	T	8;
footnote	symbol	font	Y	7;
page	width	=	8.5	inches;
page	length	=	11	inches;
right	margin	=	.7	in;
left	margin	=	.7	in;

Adding Underline to Fonts

You can add underlining to any of the fonts by adding a U to the font
specification.

 Example In the following example, the default font is set to HIU for Helvetica Italic
Underline and the title font is set to HBIU for Helvetica Bold Italic Under-
line. The footnote text and symbol fonts are set to non-underlined fonts.

Default	font	=	HIU	10;
Title	font	=	HBIU	12;
Footnote	text	font	=	H	8;
Footnote	symbol	font	=	H	8;

Table F10: Amount of training and average age by sex.

Total

Sex

Female Male No
response

Total
Average Age 44 44 44 48
Employer Training High High High Low

Manufacturing
Average Age 46 1() 46 48
Employer Training High Medium Medium Low

Other
Average Age 43 43 43 –
Employer Training High High Medium –

1 Confidential
– Data not available.

TPL26831 date = 1/1/95 time = 7:05:10 PM Page 1

	 Format 556

Note that when built-in footnotes such as EMPTY apply to table cells, they
are set to the default font. Thus, the dash character for the EMPTY foot-
note is underlined in the table cells.

To underline rows across the entire data section of a table, see the state-
ment RETAIN RULE AFTER ROW UNDERLINE.

Using the Symbol and Zapf Dingbats Fonts

The character sets for the Symbol and ZapfDingbats fonts are shown in
the Appendix. As you will see if you look at these character tables, the
Symbol font includes numbers but the ZapfDingbats font does not. Neither
of these fonts can be used to print alphabetic characters.

For Footnote Symbols
If you use Symbol as the font for footnote symbols (FOOTNOTE SYM-
BOL FONT Y;), you can use the special characters in the Symbol font for
some footnote symbols and numbers for other footnote symbols.

If you choose ZapfDingbats characters for footnote symbols (FOOTNOTE
SYMBOL FONT D;), you cannot also have numbered footnote symbols.
In addition, some of the symbols used for built-in footnotes do not exist
is the ZapfDingbats font. Unless you want to select all footnote sym-
bols yourself, the best approach is to choose one of the other fonts in the
FOOTNOTE FONT statement and include the ZapfDingbats font specifica-
tions in the footnote symbol part of the SET FOOTNOTE statement. See
the footnote chapter for additional information on including font specifica-
tions in SET FOOTNOTE.

For Labels
Since the Symbol and ZapfDingbats fonts do not contain the usual alpha-
betic characters, these fonts should not be used for FONT statements other
than FOOTNOTE SYMBOL. To use characters from these fonts in labels,
add the FONT specifications to individual labels. This technique is de-
scribed in the labels chapter.

Although most of the characters in these special fonts are not on your key-
board, you can enter them in labels and footnote symbol strings by typing
\nnn where nnn is the 3 digit decimal code for the character. The character
set tables in the Appendix show the 3 digit code for each character.

 Example	 FOOTNOTE	SYMBOL	FONT	=	D	10;
FOOTNOTE	TEXT	FONT	=	T	12;
SET	FOOTNOTE	1	SYMBOL	'\098'	TEXT	"Sample	footnote";

	 Format 557

 Effect	 b		Sample	footnote

Note that most Symbol and ZapfDingbats characters cannot be printed
when a text table export is selected. They will print as blanks or other
characters, depending on your printer's character set.

Matching the Footnote Symbol Font to the Adjacent Font

You can use the word MATCH as a font specification for footnote symbols
when you want the footnote symbol font to match that of the adjacent text
or data value. The format for this special FONT statement is:

FOOTNOTE	SYMBOL	FONT	=	MATCH;

When the footnote symbol is used in a data cell, it matches the font in ef-
fect for that cell. When used in a label, it matches the font that is active at
the point where the footnote is referenced in the label. When used with the
footnote text at the bottom of a page, the symbol matches the font used at
the beginning of the footnote text.

Spaces in Proportional Fonts

With a proportional font, a blank space cannot be the same width as all
other characters, because the character widths vary. In general, a blank is
approximately one half the width of a number in the same font -- or one
half the average width of a letter. Thus, with a proportional font, you will
need about twice the number of blanks to get the same amount of blank
space you would get with a non-proportional font.

Recommendation

Helvetica is the recommended font for the body of a table, especially when
a small font (below 10 point) is used. Other fonts can be used effectively
for the title and footnote text. Bold or italics may be used to emphasize
certain data values.

	 Format 558

FOOTNOTE COLUMNS

 Format	 FOOTNOTE	COLUMNS	=	n		[JUSTIFIED	};								or

FOOTNOTE	COLUMNS	=	n		[UNJUSTIFIED	};

where n is a number. The word IS can be used in place of =. Both are
optional and can be left out altogether. The specification of JUSTIFIED or
UNJUSTIFIED is optional. JUSTIFY and UNJUSTIFY are synonyms for
these words.

For text tables, this statement is ignored.

 Meaning If you specify the number of columns for footnotes, the footnotes printed
at the end of a table will be justified within the number of columns you
request. By "justified", we mean that blank space will be added between
words so that all lines in a column will have the same width.

Justification will not take place for the last line of a footnote text (even if
followed by one or more slash characters), because the last line of text is
often short and does not look good if justified. For the same reason, justi-
fication will not take place for lines that are followed by a blank line. This
would be the case, for example, where a segment of footnote text was fol-
lowed by two slash characters (//) to cause double spacing after the line .

If you do not want to have the footnotes jusified, add the word UNJUSTI-
FIED to the statement.

FOOTNOTE COLUMNS also applies to notes created with SET NOTE
statements.

 Level FOOTNOTE COLUMNS can be specified at the individual table level.

 Default	 FOOTNOTE	COLUMNS	=	1	UNJUSTIFIED;

	 Example	 FOOTNOTE	COLUMNS	=	1;

 Effect For all tables, footnotes will be justified in a single column that spans
across the full table width.

 Example	 FOOTNOTE	COLUMNS	=	2	UNJUSTIFIED;

	 Format 559

 Effect Footnotes will be displayed unjustified in double column format for all
tables.

 Tip If you have a short line that is not at the end of a footnote text and you
wish to prevent justification of the line, you can do so by calculating the
width of the footnote column and adding SPACE TO and a blank character
at the end of the line. This forces unused space at the end of the line to
be filled with blanks and prevents justification of the text. The following
example illustrates this technique. The SPACE TO location is slightly less
that the footnote column width to allow for the blank at the end of the line.

FOOTNOTE	COLUMNS	=	2;

SET	FOOTNOTE	multi	TEXT	"Sorry.		This	footnote	doesn’t	"	
	 "really	go	with	the	accompanying	table,	but	it	does	illustrate	"
	 "the	point!.....		 Incidence	rates	for	number	of	 injuries	and	"
	 "illnesses	per	10,000	workers	can	be	calculated	as:	"
	 "((N/EH)	x	20,000,000)	where"	//
INDENT	.25	in	"N"	
SPACE	TO	1	in	"="
SPACE	TO	1.15	in	"number of injuries"
SPACE	TO	2.7	in	"	"	/	"EH"	
SPACE	TO	1	in	"="
SPACE	TO	1.15	in	"total hours worked"
SPACE	TO	2.7	in	"	"	/
SPACE	TO	1.15	in	"in the calendar year"
SPACE	TO	2.7	in	"	"	/	"20,000,000"	
SPACE	TO	1	in	"="
SPACE	TO	1.15	in	"base for 10,000"
SPACE	TO	2.7	in	"	"	/
SPACE	TO	1.5	in	"working hours per week."	/	;

	 Format 560

Table 86. Plan1 administration: Percent of full-time participants in selected benefits by
type of plan sponsor, medium and large firms

Plan sponsor Health insurance Life insurance
Sickness and

accident
insurance

Dental insurance

All participants 100 100 100 100

Single employer 96 97 87 43
Multiemployer2 4 3 2 34
Mandated benefits3 – – 11 23
Employer association4 5() 5() – –

1 Does not include supplemental plans.
2 Sorry. This footnote doesn’t really go with the

accompanying table, but it does illustrate the point!.....
Incidence rates for number of injuries and illnesses per
10,000 workers can be calculated as: ((N/EH) x
20,000,000) where

N = number of injuries
EH = total hours worked

in the calendar year
20,000,000 = base for 10,000

working hours per week.

3 The majority of the participants with mandated
sickness and accident insurance benefits were covered
by State temporary disability plans.

4 Band of small employers in a common trade or
business, for example, savings and loan associations.
The plan sponsored by the association is not negotiated
with the employees.

5 Less than 0.5 percent.
NOTE: Because of rounding, sums of individual items

may not equal totals. Dash indicates no employees in
this category.

TPL2094 date = 1/18/95 time = 11:22:24 AM

	 Format 561

FOOTNOTES ON EACH PAGE / WAFER

 Format	 FOOTNOTES	ON	EACH	PAGE;		 or
FOOTNOTES	ON	EACH	WAFER;	 or
FOOTNOTES	ON	LAST	PAGE;

The word ON is optional.

This statement also applies to notes created with SET NOTE statements.

 Meaning All footnotes that apply to a page or wafer of the table will be printed at
the bottom of that page or wafer. For footnotes that have automatically
assigned footnote numbers, the numbering will start at the beginning of the
table and continue to the end. For example, if a footnote in the table title
is assigned the number 1 for the footnote symbol, that footnote will keep
the number 1 throughout the table.

 Default	 FOOTNOTES	ON	LAST	PAGE;

All footnotes are saved for display on the last page of the table. Pages
other than the last page have the built-in footnote SEE_END with the
text:

See	footnotes	at	end	of	table.

 Level Footnote placement can be controlled at the individual table level.

 Example	 FOOTNOTES	EACH	PAGE;
FOR	TABLE	3:		FOOTNOTES	ON	LAST	PAGE;

 Effect For all tables except the third, footnotes will be displayed at the bottom of
each page. For the third table, footnotes for the entire table will be dis-
played on the last page.

 Note If a title continuation contains a footnote reference and you have requested
FOOTNOTES EACH PAGE, the footnote from the continuation will be
displayed at the bottom of the first page even though the continuation is
not added to the title until the second and subsequent pages.

	 Format 562

FOOTNOTE SEQUENCE

 Format	 FOOTNOTE	SEQUENCE	=	f1,	f2,	fn;

where f1, f2, fn are footnote names.

The word IS can be used in place of =. Both are optional and can be left
out altogether. Commas between footnote names are also optional.

This statement also applies to notes created with SET NOTE statements.

 Meaning The FOOTNOTE SEQUENCE statement can be used to control the order
in which footnotes are displayed at the end of the table. The listed foot-
notes will be displayed in the order shown in the statement rather than in
default order. Footnotes that are not listed in the statement will be dis-
played in default order, but following all of the listed footnotes.

 Level Footnote sequence can be controlled for individual tables.

 Default Footnotes are displayed in the default footnote order. Footnotes with
numeric symbols are printed first. Footnotes with alphabetic or special
characters in the symbols are sorted according to the footnote symbols and
printed next. Footnotes that do not have symbols are printed last.

 Example	 FOR	TABLE	1:	FOOTNOTE	SEQUENCE	=	
	 	 	 SMALL,	FN_ONE,FN_TWO;

FOR	TABLE	2:	FOOTNOTE	SEQUENCE	=	
	 EMPTY,	SMALL,	SOURCE;

 Effect At the end of the first table, footnotes will be displayed in the order:
SMALL, FN_ONE, FN_TWO, then any other footnotes in default order.
Similarly, at the end of the second table, footnotes will be displayed with
the footnotes EMPTY, SMALL and SOURCE preceding any other foot-
notes. For all other tables, footnotes will be displayed in default order.

	 Format 563

GAP IN HEADER

 Format GAP	IN	HEADER;
GAP	IN	HEADER	=	FALSE;	
GAP	IN	HEADER	EXCEPT	BOTTOM;

	 Meaning When	down	rules	are	deleted	in	a	table,	 it	 is	sometimes	difficult	to	
match	up	the	columns	with	their	header	labels.		This	is	especially	
true	if	the	header	is	complicated.		GAP	IN	HEADER	leaves	gaps	in	
the	cross	rules	in	the	headings	where	the	deleted	down	rules	would	
have	crossed.		If	GAP	IN	HEADER	EXCEPT	BOTTOM	is	used,	the	
results	are	the	same	as	GAP	IN	HEADER	except	the	bottom	rule	of	
the	header	does	not	have	gaps.		This	usually	produces	a	better	looking	
table	than	having	gaps	in	the	bottom	rule.

 Level GAP IN HEADER can be specified for individual tables.

 Default	 GAP	IN	HEADER	=	FALSE;

 Examples	

The	following	is	a	typical	table	with	the	bottom	row	of	labels	right	aligned

Race of Householder Type of Household

White Black Other

Married
couple

Other
family

Nonfamily
household

Hispanic Origin of Householder

Hispanic Not
hispanic Hispanic Not

hispanic Hispanic Not
hispanic

Average Income
Regions
Northeast 21,358 36,708 19,330 24,514 38,577 37,267 44,222 25,561 21,666
Midwest 23,091 31,161 24,466 20,306 13,724 30,468 37,722 21,376 18,403

If we also use DELETE DOWN RULES START IN HEADER we get:

	 Format 564

Race of Householder Type of Household

White Black Other

Married
couple

Other
family

Nonfamily
household

Hispanic Origin of Householder

Hispanic Not
hispanic Hispanic Not

hispanic Hispanic Not
hispanic

Average Income
Regions
Northeast 21,358 36,708 19,330 24,514 38,577 37,267 44,222 25,561 21,666
Midwest 23,091 31,161 24,466 20,306 13,724 30,468 37,722 21,376 18,403

If we add GAP IN HEADER we get

Race of Householder Type of Household

White Black Other

Married
couple

Other
family

Nonfamily
household

Hispanic Origin of Householder

Hispanic Not
hispanic Hispanic Not

hispanic Hispanic Not
hispanic

Average Income
Regions
Northeast 21,358 36,708 19,330 24,514 38,577 37,267 44,222 25,561 21,666
Midwest 23,091 31,161 24,466 20,306 13,724 30,468 37,722 21,376 18,403

If we change to GAP IN HEADER EXCEPT BOTTOM we get

	 Format 565

Race of Householder Type of Household

White Black Other

Married
couple

Other
family

Nonfamily
household

Hispanic Origin of Householder

Hispanic Not
hispanic Hispanic Not

hispanic Hispanic Not
hispanic

Average Income
Regions
Northeast 21,358 36,708 19,330 24,514 38,577 37,267 44,222 25,561 21,666
Midwest 23,091 31,161 24,466 20,306 13,724 30,468 37,722 21,376 18,403

	 Format 566

HEADING SPACE

 Format HEADING	SPACE		=		n;

where n is a decimal number that is a multiplier of the font size.

The word HEAD can be used in place of the word HEADING.

 Meaning HEADING SPACE can be used to increase or decrease the space above
and below the heading labels. The most common use is to decrease the
space so that the heading will take less vertical space on the page. This
statement has no effect on text tables.

 Note If you simply want to scale down the size of your table, see the SCALE
statement. With the SCALE statement, you can reduce the overall size
of everything in a table to a percentage of its original size and fit more of
your table on a page or other smaller space.

The HEADING SPACE number is a multiplier of the font size. It changes
the space between the top label characters in a heading box and the top of
the heading box and between the bottom label characters and the bottom of
the heading box. The number n is split between the top and bottom of the
heading box.

The minimum recommended heading space is .2.

If a heading box contains a label that splits into multiple lines, the space
between the lines is not affected by the HEADING SPACE statement. See
the statement EXTRA LEADING to change the space between lines.

See also TABLE SPACE to change the vertical space between elements
throughout the table rather than only in the heading.

 Level HEADING SPACE can be specified for individual tables.

 Default	 HEADING	SPACE	=	1.15;

The default value of 1.15 is split between the top and bottom so that the
space is a little more than 1/2 character above and below the label charac-
ters in the heading.

 Example Following are two tables, the first with the default heading space of 1.15
and the second with heading space of .3:

	 Format 567

Table with default heading space.

Total

Sex

Female Male No
response

Total 160 88 70 2
Age
14 72 45 27 –
15 69 33 36 –
16 19 10 7 2

– Data not available.

TPL32362 date = 6/25/96 time = 4:43:59 PM Page 1

FOR	TABLE	2:		HEADING	SPACE	=	.3;

Table with heading space reduced to .3.

Total
Sex

Female Male No
response

Total 160 88 70 2
Age
14 72 45 27 –
15 69 33 36 –
16 19 10 7 2

– Data not available.

TPL32362 date = 6/25/96 time = 4:43:59 PM Page 2

 Example See also the SPANNER HEADING statement for another illustrated ex-
ample.

	 Format 568

HTML ACCESS

 Format HTML	ACCESS;

 Meaning When this option is set, HTML generated by TPL TABLES can be read by
HTML screen readers. This makes the tables accessible to visually im-
paired or blind individuals and fulfills the requirements of Section 508 of
the US Government Rehabilitation Act.

When HTML ACCESS is specified, the appearance of an HTML table in a
browser differs very little from that of an HTML table created without the
ACCESS statement. The biggest differences are that the stub and head-
ing labels are always bold and footnote references become links to their
footnote text. If you click on a footnote symbol on a page, you will jump
to the footnote text at the bottom of the page or to the footnotes at the end
of the table as appropriate. The HTML source also changes. Each label
in the table is given an identifier and each cell of the table is given a list of
the label identifiers which are logically associated with it. When a person
selects a table cell, the screen reader reads all of the labels associated with
the cell.

 Level This option applies at the request level only.

 Default The default HTML tables do not have the special accessibility features.

 Note TPL TABLES makes the associations on the basis of the TPL code rather
than on the basis of the physical appearance of the table. So a TPL user
can produce misleading results. Consider the following table and the
circled data cell:

	 Format 569

Total Under
$5,000

$5,000 to
$9,999

$10,000
to

$14,999

$15,000
to

$19,999

All households 46,333 3,105 5,184 4,846 4,776

Type of Residence
Inside metropolitan areas 35,752 2,160 3,708 3,517 3,413
Outside metropolitan areas 10,581 946 1,476 1,329 1,362

Race and Hispanic Origin of
Householder

White 39,969 2,082 4,172 4,059 4,115
Black 5,162 932 872 671 560
Hispanic 2,908 308 474 435 330

Type of Household and Sex of
Householder

Male householder
Married couple 24,967 446 1,114 1,916 2,340

It appears as though the cell depends on the three labels:

Total Under
$5,000

$5,000 to
$9,999

$10,000
to

$14,999

$15,000
to

$19,999

All households 46,333 3,105 5,184 4,846 4,776

Type of Residence
Inside metropolitan areas 35,752 2,160 3,708 3,517 3,413
Outside metropolitan areas 10,581 946 1,476 1,329 1,362

Race and Hispanic Origin of
Householder

White 39,969 2,082 4,172 4,059 4,115
Black 5,162 932 872 671 560
Hispanic 2,908 308 474 435 330

Type of Household and Sex of
Householder

Male householder
Married couple 24,967 446 1,114 1,916 2,340

In fact TPL exports that the cell depends upon only the two labels:

	 Format 570

Total Under
$5,000

$5,000 to
$9,999

$10,000
to

$14,999

$15,000
to

$19,999

All households 46,333 3,105 5,184 4,846 4,776

Type of Residence
Inside metropolitan areas 35,752 2,160 3,708 3,517 3,413
Outside metropolitan areas 10,581 946 1,476 1,329 1,362

Race and Hispanic Origin of
Householder

White 39,969 2,082 4,172 4,059 4,115
Black 5,162 932 872 671 560
Hispanic 2,908 308 474 435 330

Type of Household and Sex of
Householder

Male householder
Married couple 24,967 446 1,114 1,916 2,340

To see why this is the case we must look at the table request. In the table
it appears as though White, Black and Hispanic are all conditions of Race
and Hispanic Origin of Householder. When we look at parts of the table
request, we have:

define	hh_race	/'Race	and	Hispanic	Origin	of	Householder'	on	race;
			 'White'		 if	1;
			 'Black'			 if	 	2;

define	hh_hispanic	on	hispanic_origin;
			 'Hispanic'	 if	1;
...

stub	all_hh_lab	then	residence		then	hh_race	then
			hh_hispanic	then	hh_sex	by	hh_type	then	hh_age	;

Hispanic is in fact not a category of hh_race. So the variable label for
hh_race does not apply. The solution to this is to modify the request so
that White, Black and Hispanic are all conditions of the same variable:

Compute	combined:
			1	if	race	=	1	and	hispanic_origin	=	1;	/*	White	Hispanic	*/
			2	if	race	=	1	and	hispanic_origin	=	2;	/*	White	non-Hispanic	*/
			3	if	race	=	2	and	hispanic_origin	=	1;	/*	Black	Hispanic	*/
			4	if	race	=	2	and	hispanic_origin	=	2;	/*	Black	non-Hispanic	*/
			5	if	hispanic_origin	=	1;				 /*	Other	Hispanic	*/

	 Format 571

	define	hh_race1	/'Race	and	Hispanic	Origin	of	Householder'	
	 on	combined;
			 'White'				 	 if	1	to	2;
			 'Black'				 	 if	3	to	4;
			 'Hispanic'		if	1;
													 	 if	3;
														 	 if	5;
...

stub	all_hh_lab	then	residence		then	hh_race	then
				hh_sex	by	hh_type	then	hh_age	;

HTML OUTPUT (UNIX only)

 Format	 HTML	OUTPUT	=	YES	or	NO	or	PROMPT;

Normally, TPL TABLES will prompt you at the end of a job to find out
if you would like to export the tables to other formats. To prevent the
prompt for HTML, and the other export statements, you can use this state-
ment and each of the other export statements with YES or NO.

In addition to specifying whether HTML should be output, there are sev-
eral options to specify how the HTML is to be formatted.

 Format HTML	OUTPUT	=	SINGLE	or	MULTIPLE;

If Single is specified, all of the tables are place in a single HTML file
though the table page breaks occur as they would normally. Default is
Multiple.

 Format HTML	OUTPUT	=	NAVIGATION	or	NONAVIGATION;

If Navigation is specified, each page of a multi-page table has a navigation
bar placed at the top which allows a user of the tables to move from one

	 Format 572

table to the next. The HTML files must be placed in the same directory for
this feature to work.

 Format HTML	OUTPUT	=	AUTOSIZE;

A paper table is normally limited to the size of the paper. Web pages are
assumed to be of unlimited size. This option takes advantage of this by
creating a single "page" which is wide enough to hold all columns of the
table and long enough to hold all rows. Page breaks caused by change
of table do result in page breaks unless Skip 0 lines between ... is speci-
fied. Other breaks such as Eject After Row are ignored. Also requests for
banking are ignored. When a table has multiple wafers, the wafer labels are
switched to spanner labels and the wafers are combined into a single page.

	 Format 573

KEEP

The following statements without rule-options are defaults. They are iden-
tical to the RETAIN statements. See the RETAIN statements for details.

KEEP	ALL	RULES	rule-options;
KEEP	BANK	DIVIDER	rule-options;
KEEP	BOTTOM	RULE	rule-options;
KEEP	COLUMNS;
KEEP	DOWN	RULES	rule-options;
KEEP	EMPTY	COLUMNS;
KEEP	END	RULE	rule-options;
KEEP	HEADER	BOTTOM	RULE	rule-options;
KEEP	HEADER	CROSS	RULE	rule-options;
KEEP	HEADING;
KEEP	HEADNOTE;
KEEP	LAST	RULE	rule-options;
KEEP	LEADING	ZEROS;
KEEP	ROW;
KEEP	RULE	AFTER	ROW	rule-options;
KEEP	RULE	AFTER	STUB	rule-options;
KEEP	STUB;
KEEP	SPANNER	RULE	rule-options;
KEEP	TABLES;
KEEP	TITLE;
KEEP	TOP	RULE	rule-options;
KEEP	WAFER;
KEEP	WAFER	LABEL;

KEEP DATA FOOTNOTE

KEEP DATA FOOTNOTE can be used with REPLACE MASK to change
the format of data values without removing footnotes. See REPLACE
MASK for details.

	 Format 574

KEEP FOOTNOTE

 Format	 KEEP	FOOTNOTE	(name);

where name is a footnote name. The parentheses around the footnote
name are optional.

 Meaning The KEEP FOOTNOTE statement is used to force printing of a footnote
at the end of a table, even though the footnote does not apply to any label
or mask that is used in the table. If the footnote has no explicit footnote
symbol, only the footnote text is printed.

The most common use of KEEP FOOTNOTE is to print a note at the end
of a table without referencing the footnote in a label or mask. See also the
SET NOTE statement as an alternate way of accomplishing the same result.

Footnotes that do not have symbols are printed before any other footnotes,
unless you have changed the order of footnote printing with a FOOTNOTE
SEQUENCE statement.

 Level Footnotes can be kept for individual tables.

 Default If a footnote is not referenced in a table, it is not printed. If a footnote has
no explicit footnote symbol, a footnote number is generated for use as the
symbol.

 Example	 SET	FOOTNOTE	COMMERCE
	 TEXT		"Source:		Department	of	Commerce";
KEEP	FOOTNOTE	COMMERCE;

 Effect The text of the footnote called COMMERCE will print at the end of all
tables. No footnote symbol will be printed. Since there is no footnote
symbol and no indentation in the text, the footnote text will begin printing
at the left edge of the table with no indentation.

 Restrictions The FORMAT statements DELETE FOOTNOTE, RETAIN FOOTNOTE
and KEEP FOOTNOTE can apply to the same footnote. If they do, and
there is a conflict between them, the last one encountered by the system
will win.

If both the symbol and the text for a footnote are null strings (''), the foot-
note cannot be kept in the table.

	 Format 575

LINE

This statement has been replaced by
BOLD RULE WEIGHT = n
and
RULE rule-options;

	 Format	 [BOLD]	LINE	WEIGHT	=	n;	 or
[BOLD]	LINE	DOUBLE;		 or
[BOLD]	LINE	SINGLE;	 	 or
[BOLD]	LINE	WEIGHT	=	n				DOUBLE	or	SINGLE;

 Meaning RULE is a synonym for LINE in these statements. See the RULE state-
ments for more information.

	 Format 576

MARGINS (LEFT, RIGHT, TOP, BOTTOM)

 Format There are four MARGIN actions.

LEFT	MARGIN	=	amount		[unit];
RIGHT	MARGIN	=	amount		[unit];
TOP	MARGIN	=	amount		[unit];
BOTTOM	MARGIN	=	amount		[unit];

where amount is a number and unit is optional. If no unit is specified,
characters are assumed. If a unit is specified, the amount can be a deci-
mal number and unit can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning Leave a margin of the size indicated by n. One or more of the margins can
be changed for a table. The margins do not have to be the same size. The
table is positioned (centered or aligned left or right) within the space re-
maining after the left and right margins sizes are subtracted from the page
width. The table begins on the first line after the top margin and breaks at
the bottom margin if it is longer than one page.

 Level Margins can be controlled at the individual table level. Margins cannot
change within a table.

 Default	 LEFT	MARGIN	=	5;
RIGHT	MARGIN	=	5;
TOP	MARGIN	=	6;
BOTTOM	MARGIN	=	6;

 TED Note There are additional options for adjusting margins when printing tables
directly from TED. In the Print menu, you can set different print margins
for odd and even pages. This can be particularly useful if you need wider
margins on alternate pages for binding the table pages together.

 Example	 TOP	MARGIN	=	2	cm;
BOTTOM	MARGIN	=	3	cm;
LEFT	MARGIN	=	0;
RIGHT	MARGIN	=	0;

 Effect Set the top margin to 2 cm and the bottom margin to 3 cm. Remove the
left and right margins by setting them to 0.

	 Format 577

To remove ALL margins, set all margins to 0. This is not recommended

 Restrictions The page must be wide enough to hold the stub + the margins + the widest
column.

The default margins will work correctly in most cases. If you want to
change the margins with the MARGIN statement, we recommend that you
express margin sizes in terms of inches, cm or points so that their absolute
sizes for printing will not depend on the font size in effect. If margin sizes
are expressed in terms of characters, the results will sometimes be accept-
able, but they will often be something other than what you intended and, at
worst, you will get table output that looks "buggy". If parts of a table are
"lost" at the top or right edges of the paper, check your margin specifica-
tions.

For most laser printers, a margin size of at least .25 inches is required. If
you try to print something that fills the paper to the edges, you may lose
part if it.

	 Format 578

MAXIMUM FOOTNOTE SYMBOL WIDTH

 Format	 MAXIMUM	FOOTNOTE	SYMBOL	WIDTH	=	n;

where n is an integer that indicates a number of characters. MAX can be
substituted for the word MAXIMUM.

 Meaning MAXIMUM FOOTNOTE SYMBOL WIDTH controls the spacing between
the left edge of a table and the footnote symbols at the bottom of the table.

If you have footnote symbols of different widths in the same table, they
may look best at the bottom of the table if the footnote symbols are right-
aligned with each other. In order to assure this, the maximum number of
characters in footnote symbols must be known. If the maximum number
specified is too large, you will get more space between the symbols and
the left edge of the table than you probably want. If the maximum number
specified is too small, the footnote symbols will not be right-aligned.

 Note Most fonts have characters of varying widths. For example, the letter O is
wider than the letter I. If you have several wide characters in a footnote
symbol, you may need to use a larger number (greater than the number of
characters) for your maximum symbol width.

By default, footnote symbols are right-aligned within a space of 3. Thus, if
all of your footnote symbols are only one character wide, the symbols will
be indented when displayed at the bottom of a table. If you do not want
them to indent, you can set the maximum footnote symbol width to 1.

 Level Footnote symbol width can be specified for individual tables.

 Default	 MAXIMUM	FOOTNOTE	SYMBOL	WIDTH	=	3;

Aligning Footnote Symbols of Varying Widths

 Examples Following is a set of footnote statements and a table that displays these
footnotes using the default footnote symbol width of 3. Note that KEEP
FOOTNOTE causes two of the footnotes to be displayed even though they
are not referenced in the table.

set	footnote	sum	symbol	font	h	 's'
				 text	 'The	total	 is	 less	than	the	sum	of	the	individual	 '
'items	because	many	workers	participate	in	plans	with	more	'

	 Format 579

'than	one	feature.';

set	footnote	dental
				 text	 'Participants	who	elected	dental	coverage	only	 '
'were	not	included	in	this	tabulation.';

set	footnote	df		text	 'Data	collected	for	the	month	of	March.';

set	footnote	src		symbol	 'Source:'		 text	 'Department	of	Health.';

set	footnote	nt	symbol	 'Note:'
				 text	 'This	table	shows	footnotes	with	defaul	alignment.';

keep	footnote	src;
keep	footnote	nt;
footnote	sequence	src	nt	sum	df	dental;

Health care benefits: Percent of full-time participants by
coverage with selected cost containment features, medium
and large firms, 20051

Cost containment feature All par-
ticipants

Technical
and clerical
participants

Production
participants

Total2,s 100 100 100

Incentive to seek second surgical
opinion .. 35 40 28

Higher payment for generic
prescription drugs 7 7 6

Separate deductible for hospital
admission 9 9 7

Urging prehospitalization testing 47 52 43
Preadmission certification requirement 16 15 16
Incentive to audit hospital statement 2 2 1

Source: Department of Health.
Note: This table shows footnotes with default alignment.

s The total is less than the sum of the individual items because many workers
participate in plans with more than one feature.

1 Data collected for the month of March.
2 Participants who elected dental coverage only were not included in this

tabulation.

TPL1 date = 8/4/05 time = 6:24:23 PM

The footnote symbols vary from 1 to 7 characters in width, so the texts are
starting at different points, giving a somewhat ragged effect. We can add
the following statement to the width of the widest symbol:

MAXIMUM FOOTNOTE SYMBOL WIDTH = 7;

	 Format 580

Health care benefits: Percent of full-time participants by
coverage with selected cost containment features, medium
and large firms, 20051

Cost containment feature All par-
ticipants

Technical
and clerical
participants

Production
participants

Total2,s 100 100 100

Incentive to seek second surgical
opinion .. 35 40 28

Higher payment for generic
prescription drugs 7 7 6

Separate deductible for hospital
admission 9 9 7

Urging prehospitalization testing 47 52 43
Preadmission certification requirement 16 15 16
Incentive to audit hospital statement 2 2 1

Source: Department of Health.
Note: This table shows footnotes with a maximum footnote width setting.

s The total is less than the sum of the individual items because many
workers participate in plans with more than one feature.

1 Data collected for the month of March.
2 Participants who elected dental coverage only were not included in this

tabulation.

If you have widely varying widths for symbols and also have footnote texts
that wrap to multiple lines, you may wish to indent the wrapped lines of
the long footnote texts so that they line up with the others. You can do
this by inserting an INDENT in the texts near but after the beginning of
the text. The extra indent will apply to all lines following the first line of
the text. Use an INDENT amount that is one higher than the maximum
symbol width.

MAXIMUM	FOOTNOTE	SYMBOL WIDTH = 7;

set	footnote	sum	symbol	font	h	 's'
				 text	 'The	total	 '	 INDENT 8	 'is	 less	than	the	sum	of	the	individual	 '
'items	because	many	workers	participate	in	plans	with	more	'
'than	one	feature.';

set	footnote	dental
				 text	 'Participants'	INDENT 8	 '	who	elected	dental	coverage	only	 '
'were	not	included	in	this	tabultion.';

Following is the table with all lines of footnote text starting at the same
point.

	 Format 581

Health care benefits: Percent of full-time participants by
coverage with selected cost containment features, medium
and large firms, 20051

Cost containment feature All par-
ticipants

Technical
and clerical
participants

Production
participants

Total2,s 100 100 100

Incentive to seek second surgical
opinion .. 35 40 28

Higher payment for generic
prescription drugs 7 7 6

Separate deductible for hospital
admission 9 9 7

Urging prehospitalization testing 47 52 43
Preadmission certification requirement 16 15 16
Incentive to audit hospital statement 2 2 1

Source: Department of Health.
Note: This table shows footnotes with a maximum footnote width setting.

s The total is less than the sum of the individual items because many
workers participate in plans with more than one feature.

1 Data collected for the month of March.
2 Participants who elected dental coverage only were not included in this

tabulation.

TPL1 date = 8/9/05 time = 6:42:20 PM

Aligning Footnotes to the Left

 Example Following is a set of NOTE and FOOTNOTE statements. All of the
footnote symbols are one character wide. At the bottom of the table, the
notes will be aligned to the left edge of the table and the footnotes will be
indented to allow for the default maximum symbol size of 3. If we want
to align all footnotes to the left so that they line up with the notes, we can
specify a maximum symbol width of 1.

 Note If you want the footnotes to be slightly indented but less than the default
amount, you can use a maximum symbol size of 2.

set	footnote	sum	symbol	font	h	 's'
				 text	 'The	total	 is	 less	than	the	sum	of	the	individual	 '
'items	because	many	workers	participate	in	plans	with	more	'
'than	one	feature.';

set	footnote	dental
				 text	 'Participants	who	elected	dental	coverage	only	 '
'were	not	included	in	this	tabulation.';

set	footnote	df		text	 'Data	collected	for	the	month	of	March.';

	 Format 582

set	note	src		 'Source:	Department	of	Health.';

set	note	nt	 'Note:	This	table	shows	footnotes	with	a	maximum	footnote	'
'width	setting.';

footnote	sequence	src	nt	sum	df	dental;

MAXIMUM	FOOTNOTE	SYMBOL	WIDTH	=	1;

Health care benefits: Percent of full-time participants by
coverage with selected cost containment features, medium
and large firms, 20051

Cost containment feature All par-
ticipants

Technical
and clerical
participants

Production
participants

Total2,s 100 100 100

Incentive to seek second surgical
opinion .. 35 40 28

Higher payment for generic
prescription drugs 7 7 6

Separate deductible for hospital
admission 9 9 7

Urging prehospitalization testing 47 52 43
Preadmission certification requirement 16 15 16
Incentive to audit hospital statement 2 2 1

Source: Department of Health.
Note: This table shows footnotes with a maximum footnote width setting.
s The total is less than the sum of the individual items because many workers
participate in plans with more than one feature.
1 Data collected for the month of March.
2 Participants who elected dental coverage only were not included in this
tabulation.

TPL1 date = 8/10/05 time = 11:25:41 AM

ODS OUTPUT (UNIX only)

 Format	 ODS	OUTPUT	=	YES	or	NO	or	PROMPT;

Normally, TPL TABLES will prompt you at the end of a job to find out
if you would like to export the tables to other formats. To prevent the
prompt for ODS, and the other export statements, you can use this state-
ment and each of the other export statements with YES or NO.

	 Format 583

PAGE LENGTH

 Format	 PAGE	LENGTH	=	amount		[unit];

where amount is a number and unit is optional. If no unit is specified,
lines are assumed. If a unit is specified, the amount can be a decimal num-
ber and unit can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning The table is divided into pages according to the number of lines per page
specified by amount. The number of lines available for the table is de-
termined by subtracting the top and bottom margins from the page length.
For the second and following pages of a table, the title, wafer label (where
applicable) and heading labels are repeated. Stub labels may be repeated
for the first data row if required to properly identify the data.

 Level Page length is controlled at the request level. All tables within the same
table request will use the same page length specification.

 Default The system default is set at installation time and stored in the file called
profile.tpl. When the system is installed, profile.tpl is stored in the TPL
TABLES system directory.

You can change the system default by editing the PAGE LENGTH specifi-
cation in profile.tpl and saving the result back in the system directory.

If you want to leave the system default as is but change the default for a
set of table requests, you can do so by making a copy of profile.tpl with a
different PAGE LENGTH specification and saving it in the directory where
you are running your table jobs.

 Example	 PAGE	LENGTH	=	50;
TOP	MARGIN	=	3;
BOTTOM	MARGIN	=	2;

	 Format 584

 Effect Tables will be divided into pages of length 50. The top and bottom mar-
gins will use a total of 5 lines, leaving 45 lines per page for the tables.

 Restrictions The page must be long enough to hold 1 row of data plus the margins,
table title, wafer label (where applicable), heading, footnotes (where ap-
plicable), and stub label nesting required to identify a row of data.

You should express page length in something other than lines. This is be-
cause you can choose different character sizes. If page length is expressed
in lines, the length of the page will vary as the character size changes.
This result is usually undesirable. Specify page length in inches, cm or
points, or use the PAPER statement to select a page size.

	 Format 585

PAGE LENGTH AUTOMATIC

This statement has been replaced by text export with the autosize option.

 Format	 PAGE	LENGTH	=	AUTOMATIC;

The word IS can be used in place of =. Both are optional and can be left
out altogether. AUTO can be used as an abbreviation for AUTOMATIC.

 Meaning This statement can only be used with text tables. The page length will be
set at the length needed to contain all tables in the request without page
breaks. This statement should not be used with banked tables. If your
table is wide, make sure that the page width is large enough to hold all col-
umns without banking.

PAGE LENGTH AUTOMATIC; is most useful in the following two
cases:

1. If you are customizing your table output for use with other software
and want to get an unbroken stream of data rows.

2. If you are reviewing a table on the screen and want to look at it as one
long page, uninterrupted by the extra space, title and heading labels
that would otherwise appear at each page break. For this purpose, you
may find it convenient to use PAGE WIDTH = AUTOMATIC; to
prevent banking of a wide table. The combination of automatic page
length and automatic page width will allow you to review tables on the
screen without the tables being split into sections as would be required
for printing on a particular size of paper.

 Level Page length is controlled at the request level. All tables within the same
table request use the same page length specification.

 Default Tables break at the end of each page.

 Example	 PAGE	LENGTH	=	AUTOMATIC;

 Effect Each table will be formatted as one long page. If there are multiple tables
in the request, there will be one long page containing all of the tables.

 Restrictions This statement should not be used with banked tables.

	 Format 586

If this statement is used for tables that have wafers, all wafer titles will be
retained. If you do not want them to intersect the table, you can nest the
wafer expression into the top of the stub instead of using a separate wafer
specification.

	 Format 587

PAGE MARKER

 Format	 PAGE	MARKER	=	marker	specification;
BOTTOM	PAGE	MARKER	=	marker	specification;

Normally, there can be only one PAGE MARKER for a table. If both
PAGE MARKER and BOTTOM PAGE MARKER are used, there can
be one marker at the top of the page and another at the bottom. For text
tables BOTTOM PAGE MARKER is not supported.

The marker specification can be one or more of the following:

NUMBER
COUNT
START	=	n
TOP
BOTTOM
RIGHT
LEFT
RIGHT	THEN	LEFT
LEFT	THEN	RIGHT
DATE
TIME
JOB
ODD
EVEN
label	segments

The word IS can be used in place of =. Both are optional and can be left
out altogether. The specifications can be in any order.

 Meaning PAGE MARKER is used to add identifying information to table pages.
The page marker can contain any combination of page number, date, time,
job id and label segments. Starting page number can also be set.

 Level PAGE MARKER can be specified for each table separately. However, start
number and marker location will carry forward to following tables unless
they are explicitly reset. Further, the start number and marker location are
independent of marker text even though they may appear in the same FOR-
MAT statement.

 Example	 PAGE	MARKER	=	TOP	LEFT	NUMBER	START	3;
FOR	TABLE	2:	PAGE	MARKER	=	START	5	"Page	"	NUMBER;

	 Format 588

The result will be that all page markers will be in the top left corner of
the page. Table 1 will just have numbers starting at 3. Table 2 will have
"Page " and numbers starting at 5. Table 3 and following tables will just
have numbers, but the numbers will start where table 2 left off since there
is no new START term for table 2.

 Default Tables do not have page markers. If PAGE MARKER is specified, the
default page start is START = 1 and the default marker location is TOP
CENTER. A BOTTOM PAGE MARKER is always at the bottom of the
page with a default alignment of CENTER.

Page Numbering

PAGE MARKER = NUMBER; will produce page numbers that are cen-
tered vertically and horizontally within the top margin of a page. PAGE
MARKER = NUMBER START 5; will cause the first table to start num-
bering at 5. Succeeding tables will continue the numbering unless a new
PAGE MARKER = START n; is specified.

 Example	 FOR	TABLE	1:		PAGE	MARKER		RIGHT		 'A'		NUMBER;	
FOR	TABLES	2	AND	3:		
	 PAGE	MARKER		RIGHT		 'B'	NUMBER		START	1;

 Effect This example uses a combination of a letter and a page number to mark
groups of table pages. Thus, for example, if the first table is to be inserted
in Section A of a document, the page markers can be "A1", "A2", "A3",
etc. If the second and third tables are to be inserted in Section B of the
same document, they can have markers of "B1", "B2", "B3", etc. Since
START 1 is included in the marker, the numbering for the second and
third tables will restart at 1 on the first page of the second table; the num-
bering will continue on through the third table. All page markers will be
in the top right corner of the page.

ODD and EVEN
When a page marker for a table includes both NUMBER and ODD, the
page numbers for that table will all be odd. For example, if ODD is speci-
fied for the first table, its pages will be numbered 1,3,5,7,...

Use of EVEN will result in even numbered table pages.

If a table would normally begin with an even number but ODD is speci-
fied, then one is added to its starting number so that it will begin with an
odd number.

	 Format 589

 Example	 FOR	TABLE	2:		
	 PAGE	MARKER	=	"PAGE	"	NUMBER	START	7	EVEN;

 Effect Page numbering for table 2 will begin with 8, the first even number after
the specified start number.

ODD and EVEN are useful when a document has tables on every other
page or when wide tables are displayed as facing page pairs. This latter is
done in TPL TABLES by creating two tables with corresponding stubs and
the heading split across the two tables. (See the entry for STUB RIGHT
for more details on this.) The first table should have a page marker which
includes EVEN while the second should have the same starting page but
should include ODD in its page marker.

Page Count

COUNT can be used to get a page count. It specifies the total number
of table pages produced by a job. It is not affected by START or by the
presence of multiple Page Markers in the job. An example of a statement
using COUNT is:

 Example	 PAGE	MARKER	=	"Page	"	NUMBER	"	of	"		COUNT;

If there are 10 pages of table output in the job, the marker for the first page
will be "Page 1 of 10"; the marker for the second page will be "Page 2 of
10"; and so on to the last page with a marker of "Page 10 of 10".

Marker Location

The location of page markers can be controlled by using TOP, BOTTOM,
LEFT, RIGHT, or CENTER. CENTER is the default location. If LEFT
is specified, the marker will start on the left page margin. If RIGHT is
specified, the marker will end on the right margin. If TOP is specified, the
marker will be placed 1/2 of the top margin down from top of page. If
BOTTOM is specified, the marker will be placed 1/2 of the bottom margin
above the bottom of the page.

If you are using TOP or BOTTOM, you may wish to increase the top or
bottom margin specification beyond the standard 1 inch to keep the mark-
ers from appearing too near the top or bottom edge of the paper. This
is especially important if you are using a multiline marker with a laser
printer, since laser printers do not print on the top and bottom 1/4 inches of
the paper.

	 Format 590

If you want marker locations to alternate between left and right pages, use
LEFT THEN RIGHT or RIGHT THEN LEFT.

As with START number, the marker location will continue across tables
unless a new location is specified. For example, if you begin with RIGHT
THEN LEFT for the first table, the marker location will alternate be-
tween right and left pages for all following tables unless an explicit LEFT,
RIGHT, or CENTER is specified in a FORMAT statement for a later table.

Multiple Page Markers

If there are multiple PAGE MARKER statements for a table, each one will
override the preceding one so that there will be only one marker. For Post-
Script tables, you can have two markers, one at the top of the table and one
at the bottom, by using both a PAGE MARKER and a BOTTOM PAGE
MARKER. The same options are available for both the top and bottom
markers.

 Example PAGE	MARKER	RIGHT	THEN	LEFT	"Research	Bulletin	ATN-05";
BOTTOM	PAGE	MARKER	"Page	"	NUMBER;

 Effect The text "Research Bulletin ATN-05" will be displayed at the top right of
the first page, the top left of the second page, and so on. The first page
will also have "Page 1" centered at the bottom, the second page "Page 2",
and so on.

 Notes If you specify BOTTOM in a regular page marker and also have a BOT-
TOM PAGE MARKER statement for the same table, both markers will go
at the bottom with one possibly overlaying part of the other.

Alignments and Spacing within Page Markers

LEFT, RIGHT, or CENTER can only be used at the beginning of a marker,
before any label segments. This alignment applies to the entire page mark-
er. If you want more control of spacing within the marker, see SPACE and
SPACE TO in the chapter called "Labels".

Other Options

In addition to or instead of page numbers, a page marker can contain
anything allowed in a label except a footnote. Also there are some built-in
special items. These are DATE, TIME, and JOB.

	 Format 591

 Example	 PAGE	MARKER	=	TOP	LEFT	THEN	RIGHT
"Page	"	NUMBER	"	for	 job	"	JOB
"	run	on	"	DATE	"	at	"	TIME;

 Effect If job TPL873 is run on March 4, 2003 at 11:24 A.M., the output will be:

Page	1	for	job	TPL873	run	on	3/4/03	at	11:24:00	AM

which will appear in the upper left corner of Page 1. Page 2 will have its
marker in the upper right corner of the page.

Note that the format of date and time will be affected by the COUNTRY
statement. The examples in this section are shown in the format for the
default country, COUNTRY = US;.

Since page markers are vertically centered within their margin, use of
slashes at the start of a page marker specification will push the marker text
down while slashes at the end of the page marker specification will raise
the marker.

 Example If you request that TPL TABLES convert your tables to encapsulated Post-
Script for inclusion in a desktop publishing document, TPL TABLES will
create one file for each table page. Assume a table request with 3 tables,
where the first table has two pages and the other tables have a single page.
The following will produce page markers which contain the job number
and the file names created for the table pages.

FOR	TABLE	1:	PAGE	MARKER	=	JOB	"	P"	NUMBER	"T1.EPS";
FOR	TABLE	2:	PAGE	MARKER	=	JOB	"	P"	NUMBER	"T2.EPS";
FOR	TABLE	3:	PAGE	MARKER	=	JOB	"	P"	NUMBER	"T3.EPS";

 Effect If the job is TPL345, then the markers for the four pages will be:

TPL345	P1T1.EPS
TPL345	P2T1.EPS
TPL345	P3T2.EPS
TPL345	P4T3.EPS

These page markers will be automatically deleted if the pages are imported
into a desktop publishing system.

Windows Note
If you are exporting encapsulated PostScript from TED in a script or using
the ENCAPS program, the default file names are as shown in the above
example. If you are exporting encapsulated PostScript interactively from

	 Format 592

TED, the naming convention for the exported files is different. See the
Script appendix or TED Help for naming conventions and options.

UNIX Note
Under UNIX, the encapsulated PostScript files have the lower case suffix
.eps.

4-Digit Year

You can choose to have year displayed with 4 digits by editing the file
called country.tpl. This file is installed in the TPL system directory, but
you may also have customized copies in other directories where you run
TPL jobs.

The country.tpl file is a simple ascii text file. The following options for
date format are shown near the top of the file:

*			date	format	code
*					0	->	mm/dd/yy
*					1	->	dd/mm/yy
*					2	->	yy/mm/dd
*					3	->	mm/dd/yyyy
*					4	->	dd/mm/yyyy
*					5	->	yyyy/mm/dd

To choose 4-digit year as your standard, edit the entry for your country by
changing the value in the fourth column to the number that matches the
date format you want.

All current dates displayed in your TPL jobs will show the year in four
digits. These include run dates in the output file as well as dates that are
specified with the PAGE MARKER statement.

UNIX Users: Add a COUNTRY statement in your profile.tpl file if you
do not already have one. For example:

COUNTRY	=	US;

Windows Users: If you make changes to country.tpl, add a COUNTRY
statement to your profile, or change a COUNTRY statement in your profile,
you need to restart TPL to activate the changes.

	 Format 593

PAGE WIDTH

 Format	 PAGE	WIDTH	=	amount		[unit];

where amount is a number and unit is optional. If no unit is specified,
characters are assumed. If a unit is specified, the amount can be a deci-
mal number and unit can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning The table is formatted to fit within a page width of n characters. The table
is aligned within the space remaining after the left and right margins are
subtracted. If the table is too wide for the space, it is divided into as many
partitions as necessary with each partition beginning on a new page. The
stub labels are repeated in each partition.

 Level Page width is controlled at the request level. All tables within the same
table request will use the same page width specification.

 Default The system default is set at installation time and stored in the file called
profile.tpl. When the system is installed, profile.tpl is stored in the TPL
TABLES system directory.

You can change the system default by editing the PAGE WIDTH specifica-
tion in profile.tpl and saving the result back in the system directory.

If you want to leave the system default as is but change the default for a
set of table requests, you can do so by making a copy of profile.tpl with a
different PAGE WIDTH specification and saving it in the directory where
you are running your table jobs.

 Example	 PAGE	WIDTH	=	100;
LEFT	MARGIN	=	2;

 Effect The table will be formatted within a page width of 100 characters. It will
be centered within the 96 character space remaining after the left and right
margins are subtracted from the page width.

 Restrictions You should express page width in something other than characters. This is
because you can choose different character sizes. If page width is ex-
pressed in characters, the width of the page will vary as the character size

	 Format 594

changes. This result is usually undesirable. Specify page width in inches,
cm or points, or use the PAPER statement to select a page size.

PAGE WIDTH AUTOMATIC

This statement has been replaced with text table export with the autosize
option.

 Format	 PAGE	WIDTH	=	AUTOMATIC;

The word IS can be used in place of =. Both are optional and can be left
out altogether. AUTO can be used as an abbreviation for AUTOMATIC.

 Note This statement can only be used with text tables.

 Meaning TPL TABLES calculates the page width to be the sum of the stub width,
the widths of all columns, and the left and right margins.

 Level Page width is controlled at the request level. All tables within the same
table request will use the same page width specification.

 Default The system default is set at installation time and stored in the file called
profile.tpl. When the system is installed, profile.tpl is stored in the TPL
TABLES system directory.

 Example (for a table with 6 columns):

PAGE	WIDTH	=	AUTOMATIC;
LEFT	MARGIN	=	4;
RIGHT	MARGIN	=	4;
STUB	WIDTH	=	30;
COLUMN	WIDTH	=	15;

 Effect The table will be formatted for a page width of 128 characters
(4 + 4 + 30 + 15 * 6).

	 Format 595

PAPER

 Format	 PAPER	=	papersize;

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning PAPER can be used to select one of the standard built-in paper sizes. Op-
tions are:

LETTER	 (8.5	in		x		11	in)
LEGAL		 (8.5	in		x		14	in)
A3	 	 (42.0	cm		x		29.7	cm)
A4	 	 (21.0	cm		x		29.7	cm)
B5	 	 (18.2	cm		x		25.7	cm)

The PAPER statement is used in place of the combination of PAGE
WIDTH and PAGE LENGTH. For example, the statement

PAPER	=	LETTER;

gives the same result as the pair of statements

PAGE	WIDTH	=	8.5	IN;
PAGE	LENGTH	=	11	IN;

To determine the amount of space available for the table, deduct the mar-
gins from the page size. The tables will begin on the first line after the top
margin and will be aligned within the left and right margins.

The default paper size is set at installation time and stored in the file called
profile.tpl in the TPL TABLES system directory. You can change the de-
fault paper size after installation by editing profile.tpl.

 Level Paper size is controlled at the request level. All tables within the same
table request will be formatted for the same page size.

 Windows Default PAPER = LETTER;

 UNIX Default At installation time, you will be given a choice of paper sizes.

	 Format 596

 Example	 PAPER	=	A4;

 Effect All tables will be formatted for the A4 paper size (21.0 cm x 29.7 cm).

PDF OUTPUT (UNIX only)

 Format	 PDF	OUTPUT	=	YES	or	NO	or	PROMPT;

Normally, when you have created tables, TPL TABLES will prompt you at
the end of a job to find out if you would like to export the tables to other
formats. To prevent the prompt for PDF, and the other export statements,
you can use this statement and each of the other export statements with
YES or NO.

POSTSCRIPT

Postscript = no; is no longer recommended.
Text table output can be obtained in Postscript mode by using an export option.

	 Format	 POSTSCRIPT	=	YES;	 or

POSTSCRIPT	=	NO;

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning If you specify

POSTSCRIPT	=	YES;

table output will be coded in PostScript.

If you specify

POSTSCRIPT	=	NO;

	 Format 597

your tables will be formatted as ASCII text. FORMAT statements that ap-
ply only to PostScript will be ignored.

In PostScript mode, you can choose from any of the PostScript fonts listed
in the FONT statement section of this chapter. Most of the fonts are
proportional. This means that the character widths vary from character
to character. For example, the letter "i" takes up less space than the let-
ter "m". TPL TABLES will do all of the format adjustments needed for
proper alignment with proportional fonts.

You can change the overall line spacing with the EXTRA LEADING state-
ment. Line spacing for a particular line will also be affected by the fonts
used for different parts of the line. For labels, spacing is determined by
the largest font used in the label. For data rows, if the DEFAULT FONT
is larger than any of the label fonts used for the row, the DEFAULT FONT
will determine the line spacing.

You can also print your tables sideways on the page. See the ROTATE
statement for details.

Interaction of Size Specifications with PostScript

Following is a list of the size specifications that can be affected by a
change to PostScript mode. If these sizes are expressed in terms of charac-
ters or lines, rather than in centimeters, inches or points, the absolute sizes
for printing will depend on the font size in effect.

PAGE	LENGTH	=	size;
PAGE	WIDTH	=	size;
COLUMN	WIDTH	=	size;
STUB	WIDTH	=	size;
STUB	CONTINUATION	=	size;
STUB	INCREMENT	=	size;
STUB	START	=	size;
STUB	STOP	=	size;
TOP	MARGIN	=	size;
BOTTOM	MARGIN	=	size;
LEFT	MARGIN	=	size;
RIGHT	MARGIN	=	size;

Size can be specified as a number followed by:

inch
inches
in

	 Format 598

ins
cm
points
pt
pts

Fractional sizes must be specified as decimal numbers. For example,

STUB	WIDTH	=	2.5	IN;

In general, if you will be switching between PostScript and non-PostScript
modes, sizes other than page and margin size will work well in both modes
if they are expressed in characters. If you are using a proportional font
in PostScript, you will often be able to get more characters within a given
width. The most common exception is when you have a label in upper
case letters. Upper case letters are often wider in a proportional font.

Sizes specified in inches, centimeters or points will work for text tables as
well as in PostScript tables. If you are not requesting PostScript output,
the measures will be converted to 12 pt equivalents in characters. With 12
pt type, 1 inch can contain 10 characters in the horizontal direction and 6
lines in the vertical direction.

Page and Margin Sizes
In PostScript mode, page and margin sizes should be expressed in terms of
centimeters, inches or points so that their absolute sizes for printing will
not depend on the font size in effect. In the case of page size, you can
also use the PAPER statement to pick a standard paper size.

The system default margins will work correctly in PostScript mode. If you
want to change the margins with the MARGIN statement, we recommend
that you express margin sizes in terms of inches, cm or points.

If your table is not positioned properly on the paper or if parts of the table
are "lost" at the top or right edges of the paper, check your page and mar-
gin specifications.

Treatment of Footnote Symbols in PostScript

Built-in Footnotes

(EMPTY, SMALL, ERROR, NO_FIT, ZERO and SEE_END)

	 Format 599

At the bottom of a table, the footnote symbol font is used and the symbol
is raised. In data cells, the default font is used so that the symbol has the
same font as the data, and the symbol is not raised.

All Other Footnotes
The footnote symbol font is always used and the symbol is always raised.
When the footnote symbol is alone in a data cell, it is enclosed in paren-
theses. The parentheses are always in the default font.

If multiple footnotes occur at the same point in a label, the symbols are
displayed side by side, separated by commas.

 Level PostScript is controlled at the request level. If PostScript is specified, all
tables in the request will be created in PostScript mode.

 Windows Default POSTSCRIPT = YES;

The statement is put in profile.tpl at installation time along with some
FONT defaults. You can change any of these defaults after installation by
editing profile.tpl, or you can override them with FORMAT statements in
your format requests.

 UNIX Default The default is set at installation time.

If you are working with a PostScript printer and would like to have Post-
Script defaults entered in your system profile, you can set these defaults
when you install TPL TABLES. See the UNIX Installation Instructions for
details. You can change any of these defaults after installation by editing
profile.tpl, or you can override them with FORMAT statements in your
format requests.

 Example	 POSTSCRIPT	=	YES;
FOR	TABLE	2:		ROTATE;

 Effect All tables will be prepared in PostScript format. The second table will
be rotated to print sideways on the page. All other tables will be printed
upright.

 Restrictions Most laser printers require a margin. If you try to print something that
fills the paper to the edges, you may lose part if it. Therefore, we do not
recommend margin sizes of 0 when using PostScript.

The DATA TABLES and PAGE LENGTH AUTOMATIC statements cannot
be used in PostScript mode.

	 Format 600

PRINT (UNIX only)

Normally, TPL TABLES will prompt you at the end of a job to find out
whether you want to print your OUTPUT file or your tables. You can use
the following statements to select the print options in advance.

 Format	 PRINT	OUTPUT	=	YES	or	NO	or	PROMPT;
PRINT	TABLES	=	YES	or	NO	or	PROMPT;

The default for both statements is PROMPT.

PRINT COMMAND (UNIX profile only)

 Format	 PRINT	COMMAND		=		 'command'	;

where command is a UNIX print command.

 Meaning TPL TABLES will direct its output to the default printer for your computer.
If you wish to change this, you may modify the PRINT COMMAND state-
ment in the profile.

 Level The command takes effect for the entire table request.

 Default	 PRINT	COMMAND	=	'lp';

 Example	 PRINT	COMMAND	=	'lp	-dpost';

where post is the name of your PostScript printer.

 Effect Output and tables will be directed to the PostScript printer.

 Note Unlike most FORMAT statements, PRINT COMMAND will only work if
it is placed in the profile, not in the FORMAT request. If different people
wish to use different printers, they should create local profiles with differ-
ent print statements.

	 Format 601

RAISE FOOTNOTE SYMBOL

 Format	 RAISE	FOOTNOTE	SYMBOL	=	amount;

where amount is a number. The word IS can be used in place of =. Both
are optional and can be left out altogether.

 Meaning This statement can be used to adjust the height of a footnote symbol rela-
tive to the footnote text and the labels or data values being footnoted. The
amount specifies a fraction of the height of adjacent numbers or text. The
statement is ignored in text table export.

RAISE FOOTNOTE SYMBOL 0; will prevent the footnote symbols
from being raised. In other words, they will be printed at the same level as
the adjacent numbers or text.

 Level Footnote height can be specified for individual tables.

 Default	 RAISE	FOOTNOTE	SYMBOL	.3;

 Example	 RAISE	FOOTNOTE	SYMBOL	.2;

 Effect All footnote symbols will be raised 2/10 of the height of adjacent numbers
or text. This is slightly lower than the default height.

 Restrictions The amount must be greater than or equal to zero.

In general, you will not want to raise the footnote above the default amount
unless you have added extra leading (see the FORMAT statement called
EXTRA LEADING) or have selected a very small footnote symbol font
relative to the other fonts used in your tables. If the footnote symbols are
raised substantially, they will overlay the lines above in an undesirable way.

	 Format 602

RANK ON VALUES

	 Format	 RANK	ON	VALUES;
RANK	ON	VALUES	SMALLEST	IS	1;
RANK	ON	VALUES	BIGGEST	IS	1;
DO	NOT	RANK	ON	VALUES;	

where VALUES can be singular or plural. The = sign can be used in place
of IS. Both are optional and can be left out altogether. ONE, FIRST, or
any other word you prefer can be used in place of 1.

 Meaning TPL TABLES has two different ways of specifying and displaying ranking
in tables. Both apply only to values in a column.

The first is specified in the table request using a statement similar to a
DEFINE to create a RANK control variable which is nested in the stub.
The results are displayed by rearranging the rows of the table in rank order.
The rank variable may be nested below another control variable so that the
table will have separate subrankings. It is also possible to rank only the
largest (or smallest) values and then aggregate all of the other values into a
single subcategory. See the RANK statement for more details.

The second method of displaying ranking is specified by the Format state-
ment RANK ON VALUES. One or more columns of the table are picked,
and the values in those columns are replaced by a rank number for the
values. Values can be excluded from the ranking but the values cannot be
broken into subrankings. This representation of ranking is especially useful
if you wish to rank more than one column of values in the same table.

If there is no specification of SMALLEST or BIGGEST in the RANK
ON VALUES statement, it is assumed that BIGGEST IS 1 and the biggest
value in the column will be replaced with the number 1.

 Notes Empty cells are not included in the ranking. If you wish to exclude cells
from the ranking you may do so by setting the cell values for these cells to
NULL. (See the REPLACE VALUE statement.)

For a table with multiple wafers, the ranking will be applied to all wafers if
there is no wafer specification in the RANK ON VALUES statement. The
ranking will restart at the beginning of each wafer.

When two or more values are the same, they will be replaced by the same
rank number and the rank number following will be adjusted upward. For

	 Format 603

example, if a column has the values 15, 18 and 18, the rank numbers for
biggest to smallest will be 3, 1, and 1.

 Level Ranking can be specified for individual columns.

	 Default	 DO	NOT	RANK	ON	VALUES;

 Example The following table statement produces a table with three identical col-
umns.

Table	R1	'Average	Income	Per	Person	with	Ranking':
Stub	TOTAL	then	HOUSEHOLD_SIZE;
Head	AVG_INCOME	then	AVG_INCOME	then	AVG_INCOME;

The following format statements leave the 1st column unchanged. They
rank the 2nd and third columns in opposite directions and label them ap-
propriately. Total values in the first row are replaced with NULL so that
they will not be included in the rankings.

For	Table	R1	Row	1	Columns	2	and	3:	Replace	value	with	NULL;

For	Table	R1	Column	2:	Rank on Values;
For	Table	R1	Column	3:	Rank on Values Smallest is 1;

For	Table	R1	Column	2	Variable	AVG_INCOME:
	 Replace	label	with	"Rank	Top	to	Bottom";
For	Table	R1	Column	3	Variable	AVG_INCOME:
	 Replace	label	with	"Rank	Bottom	to	Top";

 Effect The values in columns 2 and 3 are replaced by rank numbers. For column
2, the biggest value gets a rank of 1. For column 3, the smallest value gets
a rank of 1.

	 Format 604

Average Income Per Person with Ranking

Avg Rank Top
to Bottom

Rank
Bottom to

Top

Total 13,841 – –
Size of Household
1 in Household 17,617 1 16
2 in Household 15,860 2 15
3 in Household 12,213 3 14
4 in Household 10,455 4 13
5 in Household 8,027 5 12
6 in Household 6,422 6 11
7 in Household 5,532 7 10
8 in Household 5,414 8 9
9 in Household 4,283 9 8
10 in Household 2,908 12 5
11 in Household 3,345 10 7
12 in Household 1,886 14 3
13 in Household 3,202 11 6
15 in Household 609 16 1
18 in Household 1,512 15 2
21 in Household 2,269 13 4

 Restrictions RANK ON VALUES can only be applied to columns.

Only one ranking can apply to a column. Subrankings are not supported.

Column rankings may be restricted by setting the cells to NULL, but the
FOR clause used for the restrictions must be at the cell (or perhaps row
or column) level. It cannot be specified for Variables or Control variable
conditions.

If RANK ON VALUES is applied to a table that was created using a
RANK variable in the table request, RANK ON VALUES will override
the ranking specified in the table request and rows will be displayed in the
original, unranked order instead of being reordered by rank value.

REPLACE COLOR

REPLACE COLOR is useful when pre-viewing color tables on a mono-
chrome printer, because it lets you replace colors with special fonts. See
the FORMAT statement called COLOR = NO for details.

	 Format 605

REPLACE DIVIDE CHARACTER

This statement has largely been replaced by:
DELETE DOWN RULES;

 Format	 REPLACE	DIVIDE	CHARACTER	WITH	'char';
REPLACE	DIVIDE	CHARACTER	WITH	'char'	EXCEPT	ZERO;

 Meaning Replace the column dividers from the top of the heading to the bottom of
the table with the single character enclosed in quotes.

The most common use of the statement is to replace the column dividers
with blank. In this case, the horizontal lines in the heading will be "bro-
ken" with a blank at any point where the column divider passes through the
heading.

If you want to have a solid line at the bottom of the heading, add the
words EXCEPT ZERO (for row 0 of the table) to the statement. For
example:

REPLACE	DIVIDE	CHARACTER	WITH	'	 '	EXCEPT	ZERO;

If you want all horizontal heading lines to be solid, replace the divide char-
acter with a null character as follows:

REPLACE	DIVIDE	CHARACTER	WITH	'';	

The divide character can only be replaced with a blank or null character.
If any other character is specified, the statement is ignored and the default
character '|' is used. For text tables, other characters may be used.

 Level The divide character can be controlled at the individual table level. The
divide character cannot change within a table.

 Default	 REPLACE	DIVIDE	CHARACTER	WITH	'|';

 Example	 REPLACE	DIVIDE	CHARACTER	WITH	'*';

 Effect If you are producing a text table, the column dividers will be replaced with
vertical lines of the character *. Otherwise the statement will be ignored.

 Example	 REPLACE	DIVIDE	CHARACTER	WITH	'	 ';

	 Format 606

 Effect The column dividers will be replaced with blanks from the top of the
heading to the bottom of the table. This statement is similar to DELETE
DOWN RULES; but applies to the heading in addition to the data section
of the table.

 Restrictions If this statement is used with DELETE DOWN RULES, the divide charac-
ter will only apply to the heading.

	 Format 607

REPLACE FILLER CHARACTER

 Format	 REPLACE	FILLER	CHARACTER	WITH	'characters';

The word FILL can be used in place of the word FILLER.

 Meaning The character or multiple matching characters enclosed in quotes will be
repeated between the stub label and the data section of the table for each
line that has data.

If a single dot or other non-blank filler character is included within the
quotes, then the character is repeated to fill the stub line. If there is not
enough space for at least 2 filler characters, then no filler character is
added to the line.

If a dot or other non-blank filler character is repeated n times, then the
stub will be broken to a new line if necessary to allow enough space for
n filler characters. In other words, there will always be a minimum of n
filler characters between the stub label and the data section.

 Level The filler character can be controlled at the individual table level. The
filler character cannot change within a table.

 Default	 REPLACE	FILLER	CHARACTER	WITH	'.';

The default '.' character repeated in the stub is sometimes called a dot
leader.

 Example	 REPLACE	FILLER	CHARACTER	WITH	'	 ';

 Effect The dotted line that normally follows the stub label on data lines will be
replaced with blank space.

 Example	 REPLACE	FILLER	CHARACTER	WITH	'....';

 Effect There will always be a minimum of four dots between the end of the stub
label and the data section of the table.

	 Format 608

REPLACE FOOTNOTE / NOTE

The REPLACE FOOTNOTE statement allows you to modify the text or
symbol for a footnote for an individual table.

 Format REPLACE	FOOTNOTE footnote-name	TEXT	WITH	 label;
REPLACE	NOTE	 footnote-name	TEXT	WITH label;
REPLACE	FOOTNOTE	SYMBOL	WITH	symbol-specification;

where symbol-specification may include a footnote symbol string, font,
color and an alignment.

	 Example	 Set	Footnote	Prelim	text	"Preliminary	Results"	symbol	 'p';
For	Table	2	:	Replace	footnote	Prelim	text	"Final	Results";
Replace	footnote	prelim	symbol	right	color	red	'f'	 font	HB	6;

 Effect For all tables except table 2, cells or labels containing footnote prelim will
be marked with a p and Preliminary Results will appear at the end of the
tables. For table 2, the marked cells and labels will have an f and Final
Results will appear at the end of the table.

 Level Replace Note and Replace Footnote apply at the wafer level if Footnotes
Each Wafer is set. Otherwise it applies at the table level.

 Note REPLACE FOOTNOTE is like SET FOOTNOTE except:

• A footnote must already have been created
by a SET FOOTNOTE before a REPLACE
FOOTNOTE can be used.

• REPLACE FOOTNOTE can be applied to an
individual table.

• REPLACE FOOTNOTE TEXT and
REPLACE FOOTNOTE SYMBOL cannot be
combined into a single statement

	 Format 609

REPLACE HEADNOTE

 Format	 REPLACE	HEADNOTE	WITH	label;	 or
REPLACE	HEAD	NOTE	WITH	label;

 Meaning The headnote is placed at the top of the table between the table title and
the top of the heading. If there is also a wafer label, the headnote is
placed below the wafer label. The order is shown in the table below:

Table Title

Wafer Label

Headnote

Stub Head Heading

Row label Data
Value

If no alignment is specified, the headnote will be aligned with the left edge
of the table. Alignment can be controlled by adding LEFT, RIGHT or
CENTER to the headnote.

If multiple banks or wafers appear on the same page, the table title and
headnote are not repeated after the first bank or wafer on the page.

 Level Headnotes can be specified at the table level.

 Default There are no headnotes. The default alignment when a headnote is speci-
fied is LEFT.

 Example	 REPLACE	HEADNOTE	WITH		 '[Numbers	in	thousands.]';

 Effect The headnote [Numbers in thousands.] will be placed above the heading
at the left edge of the table.

 Note You can choose type style and size for headnotes by including FONT
specifications in individual headnote labels. See the chapter on labels for
details. A default headnote font can be set with the HEADNOTE FONT
statement. For example,

HEADNOTE	FONT		HB	6;

	 Format 610

REPLACE LABEL

Replacing a Variable Label

 Format A FOR clause is required to identify the variable for which the label will
be replaced.

(1)		FOR	VARIABLE	variable-name:		REPLACE	LABEL	WITH	label;
(2)		FOR	ROW	n	VARIABLE	variable-name:	
	 	 REPLACE	LABEL	WITH	label;
(3)		FOR	COLUMN	n	VARIABLE	variable-name:
	 	 REPLACE	LABEL	WITH	label;

 Meaning	 (1) For all occurrences of the named variable, replace its label
 with a new one.
 (2) For the named variable, if it occurs in the stub in row n,
 replace its label with a new one.
 (3) For the named variable, if it occurs in the heading starting in
 column n, replace its label with a new one.

 Level	 (1) Variable labels can be controlled at the table level.
 (2) An individual label in the stub can be changed. The change
 can be applied to selected wafers. If the table has banks, the
 corresponding label will be changed in each bank.
 (3) An individual occurrence of a variable label can be changed in
 the heading. If the table has wafers, the corresponding
 occurrence of the label will be changed in all wafers, even if
 one or more specific wafers are specified in the FOR clause.

 Note If a row is specified and the variable does not appear attached to that row,
the format statement will be silently ignored. If a column is specified and
the variable does not start in that column, the format statement will be
silently ignored. It is sometimes tedious to figure out the exact row or col-
umn desired. You may specify a range of rows or columns which include
the required row; e.g. instead of specifying

FOR	COLUMN	7	VARIABLE	AGE:	REPLACE	LABEL	
	 WITH	'Age	of	Person';	

you may specify

FOR	COLUMNS	5	TO	10	VARIABLE	AGE:	REPLACE	LABEL
	 WITH	'Age	of	Person';	

	 Format 611

 Default The default variable label is determined when the variable is described in
the codebook or defined in the table request.

 Example	 FOR	TABLE	1	VARIABLE	Employees:		
	 REPLACE	LABEL	WITH	'Count	of	Workers';
FOR	TABLE	2	VARIABLE	TOTAL:
	 REPLACE	LABEL	WITH	'All	Workers';

 Effect In the first table, the label for the variable Employees will be replaced with
the label Count of Workers. In the second table, the label for the variable
TOTAL will be replaced with the label All Workers.

 Example Normally, if adjacent labels in the heading of a table exactly match, the la-
bels are collapsed into a single label. In the following heading, the variable
SEX has a label "Sex of Householder" in adjacent heading boxes and they
are collapsed into a single spanning box.

HEADING	TENURE	BY	SEX;

TABLE 1

Tenure

Owner Renter No cash rent

Sex of Householder

Male Female Male Female Male Female

This is usually an acceptable format for the heading but, in some cases,
you might want to prevent this collapsing. You can do so by modifying
one of the labels so that it does not exactly match the others. A change
which will not affect the appearance of the table is to add an optional
hyphen to the label. In this example, if we change the middle instance of
the SEX label, it will not match the SEX labels on either side of it. The
middle instance of the SEX label begins in column 3.

FOR	COLUMN	3	VARIABLE	SEX:
	 REPLACE	LABEL	WITH	"Sex	of	Householder"	-;	

The resulting heading is:

	 Format 612

TABLE 1

Tenure

Owner Renter No cash rent

Sex of Householder Sex of Householder Sex of Householder

Male Female Male Female Male Female

Replacing a Condition Value Label

 Format A FOR clause is required to identify the control variable condition for
which the label will be replaced.

(1)	 FOR	CONDITION	variable-name(n):	
	 	 REPLACE	LABEL	WITH	label;
	 FOR	CONDITION	variable-name(condition	name):
	 	 REPLACE	LABEL	WITH	label;
(2)	 FOR	ROW	n	CONDITION	variable-name(n):
	 	 REPLACE	LABEL	WITH	label;
	 FOR	ROW	n	CONDITION	variable-name(condition	name):
	 	 REPLACE	LABEL	WITH	label;
(3)	 FOR	COLUMN	n	CONDITION	variable-name(n):
	 	 REPLACE	LABEL	WITH	label;
	 FOR	COLUMN	n	CONDITION	variable-name(condition	name):
	 REPLACE	LABEL	WITH	label;

 Meaning	 (1) For all occurrences of the named control variable, replace the
 label of the referenced condition with a new one. In the first
 format, it is the nth condition; in the second format, the
 condition is referenced by condition name.
 (2) For the condition value specified, if its label occurs in row n
 of the stub, replace the label.
	 	 (3) For the condition value specified, if its label begins in column n

	 Format 613

 of the heading, replace the label.

 Note If the control variable is described in the codebook with the clause
DISPLAY AS SORTED, then the condition numbers will be deter-
mined by the sort order of the condition values.

	 Level	 (1) Condition labels can be controlled at the table level.
 (2) An individual label in the stub may be changed. The change
 can be applied to selected wafers. If the table has banks, the
 corresponding label will be changed in each bank.
 (3) An individual occurrence of a condition label can be changed in
 the heading. If the table has wafers, the corresponding
 occurrence of the label will be changed in all wafers, even if
 one or more specific wafers are specified in the FOR clause.

 Note If a row is specified and the condition does not appear attached to that
row, the format statement will be silently ignored. If a column is specified
and the condition does not start in that column, the format statement will
be silently ignored. It is sometimes tedious to figure out the exact row
or column desired. You may specify a range of rows or columns which
include the required row. For example, instead of specifying:

FOR	COLUMN	7	CONDITION	SEX(2):	REPLACE	LABEL	WITH	"Men";	

you may specify:

FOR	COLUMNS	5	TO	10	CONDITION	SEX(2):
	 REPLACE	LABEL	WITH	"Men";

 Default The default condition labels are determined when the variable is described
in the codebook or defined in the table request.

 Example	 FOR	CONDITION	sex(2):		REPLACE	LABEL	WITH	'Second	Sex';
FOR	CONDITION	sex(3):		REPLACE	LABEL	WITH	'Unknown';
FOR	VARIABLE	avg_age:		REPLACE	LABEL	WITH	'Average	Age';
FOR	VARIABLE	TOTAL:		REPLACE	LABEL	WITH	'Student	Count';
COLUMN	WIDTH	=	15;

 Effect The second and third condition labels for the variable Sex will be re-
placed with the labels Second Sex and Unknown. The variable labels for

	 Format 614

avg_age and TOTAL will also be replaced. In addition, the COLUMN
WIDTH statement is used to increase the column width as shown below.

Before

Total AVG AGE

Total 160 15
Sex
Female 88 15
Male 70 15
No response 2 16

After

Student Count Average Age

Student Count 160 15
Sex
Female 88 15
Second Sex 70 15
Unknown 2 16

 Example Consider the following table statement:

TABLE	A1		 'Table	A1.		Average	pay	by	industry	for	each	state':
	 WAFER	STATE,	STUB	INDUSTRY,	HEADING	AVG_PAY;

This table has a wafer for each state. For most states, mining and con-
struction appear as separate industries. In Hawaii, mining and construc-
tion are combined and the data are contained within mining. Thus, for the
Hawaii wafer, there will be no row for construction, and we would like to
label the condition for "Mining" as "Mining and construction". We would
also like to add an explanatory footnote to that one instance of the label
and display it at the bottom of that wafer. Assuming that Hawaii has a
STATE code of 39, we can do this with the following statements:

SET	FOOTNOTE	COMB		TEXT	'In	Hawaii,	mining	and	construction	are	
combined	and	the	data	are	contained	within	mining.';
FOOTNOTES	EACH	PAGE;
FOR	TABLE	A1	WAFER	39	ROW	1	CONDITION	INDUSTRY(1):
	 REPLACE	LABEL	WITH
	 'Mining	and	Construction'	FOOTNOTE	COMB;

Wafers for three states, including Hawaii, are shown below.

	 Format 615

Table A1. Average pay by
industry for each state

Alabama

Average
Pay

Mining $21.50
Construction 25.35
Manufacturing 18.72

This sample table was prepared using TPL Tables.

QQQ Software, Inc. Arlington, Virginia USA
703-528-1288 voice 703-528-1289 fax

info@qqqsoft.com email www.qqqsoft.com web

Table A1. Average pay by
industry for each state —
Continued

Alaska

Average
Pay

Mining $22.43
Construction 28.80
Manufacturing 23.62

This sample table was prepared using TPL Tables.

QQQ Software, Inc. Arlington, Virginia USA
703-528-1288 voice 703-528-1289 fax

info@qqqsoft.com email www.qqqsoft.com web

Table A1. Average pay by
industry for each state —
Continued

Hawaii

Average
Pay

Mining and Construction1 $24.20
Manufacturing 19.25

1 In Hawaii, mining and construction are
combined and the data are contained within
mining.

This sample table was prepared using TPL Tables.

QQQ Software, Inc. Arlington, Virginia USA
703-528-1288 voice 703-528-1289 fax

info@qqqsoft.com email www.qqqsoft.com web

	 Format 616

REPLACE MASK

 Format	 REPLACE	MASK	WITH	mask		[DISPLAY	DECIMAL	direction	n];

	 	 KEEP	DATA	FOOTNOTE;		(can	be	paired	with	REPLACE	MASK)

The DISPLAY DECIMAL clause is optional. The direction can be LEFT
or RIGHT; n is a number.

 Meaning Replace the mask with a new one. The new mask can be any valid TPL
TABLES mask. If no FOR clause is used, the mask will apply to all cells
in all tables. You can restrict the application of the mask either by loca-
tion OR by variable but not both. In addition to replacing standard data
masks, you can replace masks with TEXT masks.

You can add a DISPLAY DECIMAL clause to move the decimal point to
the left or right before values are formatted for output. This clause can be
added to a mask in a codebook or table request but is most commonly used
in a REPLACE MASK statement.

Keeping Data Footnotes

If you are replacing the mask for cells that contain footnotes assigned in
conditional Post Compute statements, the new mask may override these
footnotes. If you use KEEP DATA FOOTNOTE; with the REPLACE
MASK statement, you can change the format of the data values without
losing the footnotes.

KEEP DATA FOOTNOTE; must immediately follow the REPLACE
MASK statement that would remove the footnotes.

 Example	 POST	COMPUTE	THOUSANDS	''	=
WEIGHT	/	1000	MASK	9,999	IF	WEIGHT	/	1000	>=	100;
WEIGHT	/	1000	MASK	9,999	FOOTNOTE	LESS_100	IF	OTHER;

SET	FOOTNOTE	LESS_100
	 TEXT	'Values	less	than	100	should	not	be	published.';

The statements above would assign a footnote to any cell that had a value
of less than 100. The following statements will replace the mask with
another that will right-align the data, but also retain the footnotes assigned
in the conditional Post Compute.

	 Format 617

REPLACE	MASK	WITH	RIGHT	9,999;
KEEP	DATA	FOOTNOTE;

 Restriction KEEP DATA FOOTNOTE; cannot be used when replacing the mask for a
variable. It can only be used when replacing a mask by location, such as
for all tables, for particular rows or columns, or for a particular cell.

Replacing Mask by Location

To replace masks for particular table cells, use a FOR clause with the ap-
propriate row, column and/or wafer location.

If there are 9's in the replacement mask, built-in footnotes such as EMPTY
or ERROR will not be replaced. If there are no 9's in the replacement
mask, these footnotes will be replaced.

 Level The location for mask replacement can be specified at the individual cell
level.

 Example	 FOR	COLUMN	2:		REPLACE	MASK	WITH	$999,999.99;

 Effect The mask will be replaced to show dollars and cents in the second column
of all tables.

 Example	 FOR	TABLES	2	AND	3	ROWS	3	TO	6:		
REPLACE	MASK	WITH	999.99	RIGHT;

 Effect The values in rows 3 through 6 of tables 2 and 3 will be right-adjusted in
the columns and displayed to show two decimal places.

 Example	 FOR	TABLE	B1	COLUMN	2:		REPLACE	MASK	WITH	99.9	RIGHT;
FOR	TABLE	B1	COLUMN	1	ROW	4:		
	 REPLACE	MASK	WITH	'Secret';

 Effect The values in column 2 of table B1 will be right-adjusted and displayed
showing one decimal place. The value in the cell found at the intersection
of row 2 and column 3 will be replaced by the word Secret.

	 Format 618

Before

B1

Total AVG AGE

Total 160 15
Sex
Female 88 15
Male 70 15
No response 2 16

After

B2

Total AVG AGE

Total 160 14.7
Sex
Female 88 14.6
Male 70 14.7
No response Secret 15.8

Replacing Mask by Variable

To replace the mask for an observation variable, use a FOR clause with the
variable name.

 Level Variable masks can be replaced for individual tables.

 Example	 FOR	VARIABLE	INCOME:		REPLACE	MASK	WITH	$999,999.99;

 Effect The mask for the observation variable INCOME will be replaced in any
tables where INCOME is used.

 Example	 FOR	TABLES	2	AND	3,	VARIABLE	INCOME:
	 REPLACE	MASK	WITH	9,999.99	RIGHT;

 Effect The INCOME values in tables 2 and 3 will be right-adjusted in the col-
umns and displayed to show two decimal places. If INCOME is used in
any other tables, the mask will not be replaced for those tables.

	 Format 619

 Restrictions Mask replacement by variable will not override:

1. built-in footnotes such as EMPTY or ERROR;

2. conditional masks or footnotes that have been as-
signed in conditional post compute statements.

3. masks specified by row, column or wafer.

Since masks can only be used with observation variables, masks cannot be
replaced for control variables and conditions.

 Default The default mask is established when an observation variable is described
in the codebook or computed in a table request. If no mask is associated
with an observation variable, its final cell values are displayed right-aligned
and rounded to the nearest whole integer with no other special symbols
except commas.

Treatment of Conflicting Masks

Mask replacement cannot be specified both by variable and by row, column
or wafer location:

1. If the two types of specification are used in the same FOR clause, any
location specification other than table will be ignored and the mask will
be replaced wherever the variable is used.

2. If the same table location would be affected by two different RE-
PLACE MASK statements, where one is specified by variable and the
other is specified by row, column and/or wafer, the statement with the
variable specification will be ignored. This rule applies regardless of
the order of the statements.

Moving the Decimal Point before Display

You can add a DISPLAY DECIMAL clause to to move the decimal point
to the left or right before values are formatted for output.

			 	 Example	 FOR	TABLE	1:		REPLACE	MASK	WITH	999	
	 	 	 DISPLAY	DECIMAL	LEFT	3;

Assume that the table contains average income values in dollars. For each
value, the decimal point will be shifted left three positions and the value
will be displayed as a whole number. The effect is to show the average
income values in thousands of dollars. For the value 75724.36, the decimal
point will be moved left three positions. The resulting value of 75.72436

	 Format 620

will then be rounded to a whole number according to the mask of 999 and
will be displayed as 76.

DISPLAY DECIMAL can be added to any mask, in the codebook, table
request or format request. The mask can be a regular mask or a TEXT
mask. Regardless of where it is entered, it is used only for display pur-
poses and does not affect tabulation or other computations.

 Restriction The DISPLAY DECIMAL clause will not be applied in any cell where you
have replaced the value using the FORMAT statement REPLACE VALUE.

Replacing Masks with Text

TEXT masks give you much more flexibility than the simple character
strings that can be part of a standard data mask. The text can include any
of the options associated with other types of labels, such as font specifica-
tions, indents and alignments. You can also include the original numeric
cell value in the text by using the word VALUE, but note that the values
are not aligned as they would be with a standard mask. Rather, they are
included in the text at the specified place. If VALUE is used, you can add
an optional decimal indicator in parentheses to specify the number of deci-
mal places for display.

 Example	 FOR	ROW	10	COLUMN	1:		REPLACE	MASK	WITH
	 TEXT	'No	Response	'	VALUE(2)	 '%'	LEFT;

 Effect If the value in row 10, column 1 is 5.148, cell contents will be displayed
as:

No response 5.15%

where the value is rounded to two decimal places.

 Effect The cell in column 1, row 2 will contain '50	%	responding' .

If we reverse the order of the two REPLACE statements, the "new" value
of 50 will subsequently be replaced by the TEXT mask that contains the
original cell value.

	 Format 621

Interaction with REPLACE VALUE

If you are both replacing the mask for a cell with a TEXT mask that
contains the word VALUE and replacing the value for the cell in the same
format request, you must put the REPLACE MASK statement before the
REPLACE VALUE statement. Otherwise, the "new" value will not be
used.

 Example	 FOR	COLUMN	1	ROW	2:		
	 REPLACE	MASK	WITH	TEXT		VALUE	'	%	responding';
	 REPLACE	VALUE	WITH		50;

 Effect The cell in column 1, row 2 will contain '50	%	responding' .

If we reverse the order of the two REPLACE statements, the "new" value
of 50 will subsequently be replaced by the TEXT mask that contains the
original cell value.

	 Format 622

REPLACE MASK COLOR

 Format	 REPLACE	MASK	COLOR	WITH		color-name;
REPLACE	MASK	COLOR	WITH		r	g	b;

where

r, g and b are numbers between 0 and 100 (inclusive) which specify red,
green, and blue components of color;

color-name is the name of a color defined in the color.tpl file.

The word CELL is a synonym for the word MASK.

 Meaning This statement lets you replace the color of a mask without disturbing any
other specifications in the mask and without re-entering the entire mask.

 Level Mask color can be replaced at the level of individual cells or for observa-
tion variables.

 Example	 FOR	ROW	1:		REPLACE	MASK	COLOR	WITH	RED;
FOR	ROW	1	COLUMN	1:		REPLACE	MASK	COLOR	WITH	BLUE;
FOR	VARIABLE	INCOME:		REPLACE	MASK	COLOR	WITH	GREEN;

 Effect The mask color for the first row will be red except in column 1 where the
mask color will be blue. The rows and/or columns containing INCOME
values will have a mask color of green.

 Note A REPLACE MASK statement that follows a REPLACE MASK COLOR
statement will nullify the MASK COLOR setting if applied to the same
cell(s).

 Restrictions This statement cannot be used to replace the mask color for TEXT masks,
since TEXT masks can contain multiple colors.

	 Format 623

REPLACE MASK FONT

 Format	 REPLACE	MASK	FONT	WITH		font-name		[n];

where

font-name is a font identifier such as H or TB and

n is a number indicating a font size.

 Meaning This statement lets you replace the font of a mask without disturbing any
other specifications in the mask and without re-entering the entire mask. If
you replace the mask font for all cells, you get the effect of changing the
DEFAULT FONT for cells without affecting the DEFAULT FONT as ap-
plied to any other parts of tables.

 Level Fonts can be replaced at the level of individual cells or for observation
variables.

 Example	 FOR	ROW	1:		REPLACE	MASK	FONT	WITH	B	12;
FOR	ROW	1	COLUMN	1:		REPLACE	MASK	FONT	WITH	HB	10;
FOR	VARIABLE	INCOME:		REPLACE	MASK	FONT	WITH	B;

 Effect The font for the first row will be Bookman 12 except in column 1 where
the font will be Helvetica Bold 10. The rows and/or columns containing
INCOME values will have a mask font of Bookman, and the size will be
whatever font size is already specified for these cells.

 Example	 DEFAULT	FONT	=	H	12;
REPLACE	MASK	FONT	WITH	H	11;

 Effect The font Helvetica 12 will be used for all parts of the tables except the
cells. The MASK FONT Helvetica 11 will be used for all cells.

 Note A REPLACE MASK statement that follows a REPLACE MASK FONT
statement will nullify the MASK FONT setting if applied to the same
cell(s). If a font is specified in the REPLACE MASK statement, that font
will be used. If not, the default font will be used.

 Restrictions This statement cannot be used to replace the mask font for TEXT masks,
since TEXT masks can contain multiple fonts.

	 Format 624

REPLACE MASK FOONOTE

 Format	 REPLACE	MASK	FOOTNOTE	WITH		footnote-name;

where

footnote-name is the name of a previously created footnote.

 Meaning This statement lets you replace the footnote part of a mask without disturb-
ing any other specifications in the mask The table cells, rows, columns or
variables need not already have a mask.

 Level Mask footnotes can be replaced at any level.

 Example	 FOR	COLUMNS	1:	REPLACE	MASK	WITH	$9,999.99;
FOR	ROWS	3	COLUMNS	1:	REPLACE	MASK	FOOTNOTE	WITH	
REVISED;
FOR	ROWS	4	COLUMNS	1:	REPLACE	MASK	WITH	FOOTNOTE	
REVISED;

 Effect The REPLACE MASK WITH FOOTNOTE REVISED replaces the entire
mask while REPLACE MASK FOOTNOTE WITH REVISED only replac-
es (adds) the footnote to the mask.

TABLE 1

Average
Income

Educational Attainment of
Householder

8 years or less $16,786.96
High school, 1 to 3 years 21,337.58
High school, 4 years r 28,977.97
College, 1 to 3 years r()
College, 4 years $44,858.95
College, 5 or more years 55,087.44

r revised

	 Format 625

REPLACE MASK MARKER

 Format	 	 REPLACE	MASK	MARKER	WITH	"string";

 Meaning A Mask Marker is a raised string which is placed to the left of the value
displayed in a cell. It does not affect the centering of the values in a cell.
This statement lets you add or replace the marker string of a mask with-
out disturbing any other specifications in the mask The table cells, rows,
columns or variables need not already have a mask.

 Level Mask Markers can be replaced at the level of rows, columns, individual
cells or for observation variables.

 Notes Mask markers are similar to footnote symbols except they do not have
footnote text associated with them. They are useful when you wish to
mark multiple cells with different symbols but want common footnote text
to refer to all of them. They are used to display the results of some statis-
tical tests.

 Example	 Keep	footnote	STAT0;
For	row	1	column	2:	Replace	mask	marker	with	"a";
For	row	2	column	2:	Replace	mask	marker	with	"b";
For	row	3	column	2:	Replace	mask	marker	with	"b";
For	row	4	column	2:	Replace	mask	marker	with	"a";

Set	Footnote(STAT0)	Symbol	default	Text	=	"Different	letters	indicate	
significant	differences	between	mean	soores	at	the	"	"5%	level.";

TABLE 1

Value Mean

Test 1 107 a5
Test 2 154 b8
Test 3 171 b9
Test 4 110 a6
Total 542 7

Different letters indicate significant differences
between mean scores at the 5% level.

	 Format 626

REPLACE STUB CONTINUATION

 Format	 REPLACE	STUB	CONTINUATION	WITH	label;

CONTINUE and CONTINUED are synonyms for CONTINUATION.

 Meaning Replace the default continuation indicator for stub labels with the specified
label. The continuation indicator can be any valid TPL TABLES label.

For pages after the first page of a table, the continuation indicator will be
added to all variable and condition labels that are "in the nest" when a page
break occurs. These labels are repeated from the previous page because of
the page break. If any of them contain the keyword CONTINUATION, the
continuation indicator will be inserted at that point. Otherwise, it will be
added at the end of the label.

 Level Stub continuation can be controlled at the table level.

 Default The default is no continuation indicator.

 Example	 REPLACE	STUB	CONTINUATION	WITH	'	(Cont.)';

 Effect The continuation indicator ' (Cont.)' will be added to all stub labels "in the
nest" on pages following the first page. If the stub label

Industry	Code

applies to data rows at the end of one page and also to lines at the begin-
ning of the next page, it will be repeated with the continuation indicator as
follows:

Industry	Code	(Cont.)

 Example	 REPLACE	STUB	CONTINUATION	WITH	'	-	Continued';
FOR	TABLE	2:		REPLACE	STUB	CONTINUATION	WITH	'';

 Effect The stub continuation indicator will be suppressed for table 2 but the
indicator ' - Continued' will be added to continued stub labels in all other
tables.

	 Format 627

 Note If a stub continuation contains a footnote reference and you have requested
FOOTNOTES EACH PAGE, the footnote from the continuation will be
displayed at the bottom of the first page even though the continuation is
not added to stub labels until the second and subsequent pages.

	 Format 628

REPLACE STUB HEAD

 Format	 REPLACE	STUB	HEAD	WITH	label;

 Meaning The box that precedes the heading labels in the upper left corner of the
table can contain a STUB HEAD label. The label can be any valid TPL
TABLES label and will appear in the stub head box for each page of the
table. It is always centered within the box.

 Level Stub head can be controlled at the wafer level.

 Default The stub head box is empty.

 Example	 REPLACE	STUB	HEAD	WITH	'All'	 /	 'Employees';

 Effect The stub head box will contain the label as shown below.

Sample Table

All
Employees BOSTON ST LOUIS

WHITE COLLAR 2 2
BLUE COLLAR 1 3

	 Format 629

REPLACE TITLE

 Format	 REPLACE	TITLE	WITH	label;

 Meaning Replace the table title established in the TABLE Statement with a new title.
The title can be any valid TPL TABLES label.

 Level The table title can be controlled at the table level.

 Default The default table title is the one specified in the TABLE Statement. If no
table title is specified in the TABLE Statement, the table name is used as
the default table title.

 Example	 REPLACE	TITLE	WITH	CENTER		'Average	Family	Income	by	City.';

 Effect The table title is replaced by a centered title

Average Family Income by City

	 Format 630

REPLACE TITLE CONTINUATION

 Format	 REPLACE	TITLE	CONTINUATION	WITH	label;

CONTINUE and CONTINUED are synonyms for CONTINUATION.

 Meaning Replace the default continuation indicator for the table title with a label. It
will be added to the title on all pages after the first page of the table. The
continuation indicator can be any valid TPL TABLES label.

If the title contains the keyword CONTINUATION, the continuation indica-
tor will be inserted at that point. Otherwise, it will be added at the end of
the title.

 Level Title continuation can be controlled at the table level.

 Default The default continuation indicator is ' - Continued'.

 Example	 REPLACE	TITLE	CONTINUATION	WITH	'	(Cont.)';

 Effect The continuation indicator ' (Cont.)' will be added to the table title on
pages following the first page. If the table title is:

Average	Family	Income	by	City.

then the result on the second and following pages will be:

Average	Family	Income	by	City	(Cont.)

 Example	 REPLACE	TITLE	CONTINUATION	WITH	'';

 Effect The title continuation indicator will be suppressed.

 Note If a title continuation contains a footnote reference and you have requested
FOOTNOTES EACH PAGE, the footnote from the continuation will be
displayed at the bottom of the first page even though the continuation is
not added to the title until the second and subsequent pages.

	 Format 631

REPLACE VALUE

 Format	 REPLACE	VALUE	WITH	n;

where n is a number, or

REPLACE	VALUE	WITH	NULL;

 Meaning This statement can be used to replace a tabulated cell value with a number
or with a value of NULL. If NULL is used, the result will be the same as
for an empty table cell. The symbol for the built-in footnote called EMP-
TY will be placed in the cell unless the EMPTY footnote has been deleted.
In that case, a 0 value will be placed in the cell.

The replacement value is displayed according to the mask in effect for the
table cell.

 Level Values can be replaced for individual table cells.

 Default The original tabulated value is displayed in the cell.

 Example	 REPLACE	MASK	WITH	9,999;
FOR	TABLE	2	COLUMN	2,	ROW	5:	
	 REPLACE	VALUE	WITH	5023.2;

 Effect All table cells will be displayed using the mask 9,999. In table 2, column
2, row 5, the cell value will be replaced with the value 5023.2 . Since
the mask is 9,999 with no decimal places, the replaced cell value will be
rounded and displayed as 5023.

 Example	 FOR	TABLE	1	COLUMN	3:		REPLACE	VALUE	WITH	NULL;

 Effect All table cells in table 1, column 3 will be displayed as if they were empty.
The symbol for the built-in footnote called EMPTY will be displayed in
the cell unless this footnote has been deleted. If it has been deleted, the
cell value will be 0.

	 Format 632

Interaction with VALUE in TEXT Mask

If you are both replacing the mask for a cell with a TEXT mask that
contains the word VALUE and replacing the value for the cell in the same
format request, you must put the REPLACE MASK statement before the
REPLACE VALUE statement. Otherwise, the "new" value will not be
used.

 Example	 FOR	COLUMN	1	ROW	2:		
	 REPLACE	MASK	WITH	TEXT		VALUE	'	%	responding';
	 REPLACE	VALUE	WITH		50;

 Effect The cell in column 1, row 2 will contain '50	%	responding' .

If we reverse the order of the two REPLACE statements, the "new" value
of 50 will subsequently be replaced by the TEXT mask that contains the
original cell value.

 Restrictions REPLACE VALUE WITH NULL; cannot be used to make an entire row
empty such that it will be deleted from the table as an empty row unless
the row is already empty. Likewise, if all values in a column are replaced
with NULL using this statement, the column cannot be deleted with the
statement, DELETE EMPTY COLUMNS; Although the displayed values
have been replaced with NULL, the underlying original tabulated values
still exist. To delete rows or columns, see the statements DELETE ROW;
and DELETE COLUMN;

REPLACE VALUE cannot be used to put a value in an empty cell.

	 Format 633

REPLACE WAFER LABEL

 Format	 REPLACE	WAFER	LABEL	WITH	label;

 Meaning Replace the wafer label with a new one. If this action is applied to a table
with more than one wafer, a FOR clause should be used to specify which
wafer is to have its label replaced. Otherwise, all wafers in the table will
have the same label.

 Level Wafer labels can be controlled at the individual wafer level.

 Default The default wafer label is determined by the TABLE Statement.

 Example	 FOR	TABLE	2	WAFER	1:		REPLACE	WAFER	LABEL	WITH
	 'Median	Hourly	Wage	for	Employees';
FOR	TABLE	2	WAFER	2:		REPLACE	WAFER	LABEL	WITH
	 'Average	Hourly	Wage	for	Employees';

 Effect The wafer labels for the first two wafers of table 2 will be replaced with
the new labels specified. All other wafer labels will be determined by the
TABLE Statement(s).

Average Hourly Wage for Employees

Regions of U.S.A.

Northeast North
central South West

Head of Family Class
of Work

White collar worker $4.01 $3.32 $4.13 $2.48
Blue collar worker 4.09 3.67 4.62 3.78
Service industry

workers 3.65 4.33 2.88 3.99

Median Hourly Wage for Employees

Regions of U.S.A.

Northeast North
central South West

Head of Family Class
of Work

White collar worker $4.01 $3.32 $4.13 $2.48
Blue collar worker 4.09 3.67 4.62 3.78
Service industry

workers 3.65 4.33 2.88 3.99

	 Format 634

REPORT ROWS

 Format	 REPORT	ROWS;
DO	NOT	REPORT	ROWS

 Meaning For requests which produce a very large number of rows, the output file
can be quite large because of the list of printed rows. DO NOT REPORT
ROWS suppresses this list and makes the output file more easily reviewed.

 Level This statement works at the request level.

 Default REPORT ROWS;

RETAIN ALL RULES

 Format	 DELETE	/	RETAIN	ALL	RULES	rule-properties;

 Meaning If DELETE all horizontal and vertical lines (called rules) will be deleted
from the table, including the table heading. Any rules added with the
RULE AFTER ROW statement will be deleted. Rules associated with
SPANNER labels will be deleted.

 Level Deletion of rules can be controlled at the individual table level.

 Default	 RETAIN	ALL	RULES;

All rules are displayed unless the current divide character is blank. In that
case, the vertical lines will be replaced with blanks.

 Example	 FOR	TABLE	3:		DELETE	ALL	RULES;

 Effect All rules will be deleted from the third table, but they will be retained for
other tables.

	 Format 635

Characteristics of Households, by Income [Numbers in thousands]

Characteristics Total Under
$5,000

$5,000 to
$9,999

$10,000
to

$14,999

$15,000
to

$19,999

$20,000
to

$29,999

All households 46,333 3,105 5,184 4,846 4,776 8,470

Tenure
Owner 29,791 1,136 2,350 2,494 2,711 5,341
Renter 15,672 1,836 2,667 2,229 1,968 2,986
No cash rent 871 133 167 123 97 143

Region
Northeast 10,020 579 1,190 879 920 1,736
Midwest 11,543 812 1,343 1,218 1,239 2,080
South 15,469 1,288 1,693 1,778 1,631 2,918
West 9,302 425 959 971 987 1,736

Data values printed in red should be suppressed before publication.

The	same	table	with	rules	removed.

Characteristics of Households, by Income [Numbers in thousands]

Characteristics Total Under
$5,000

$5,000 to
$9,999

$10,000
to

$14,999

$15,000
to

$19,999

$20,000
to

$29,999

All households 46,333 3,105 5,184 4,846 4,776 8,470

Tenure
Owner 29,791 1,136 2,350 2,494 2,711 5,341
Renter 15,672 1,836 2,667 2,229 1,968 2,986
No cash rent 871 133 167 123 97 143

Region
Northeast 10,020 579 1,190 879 920 1,736
Midwest 11,543 812 1,343 1,218 1,239 2,080
South 15,469 1,288 1,693 1,778 1,631 2,918
West 9,302 425 959 971 987 1,736

Data values printed in red should be suppressed before publication.

	 Format 636

RETAIN BANK DIVIDER

 Format DELETE / RETAIN BANK DIVIDER rule-properties
where available rule-properties are:
 SOLID
 DOT
 DASH
 DOUBLE

 COLOR = color

 WEIGHT = weight [weight in pts - 1/72 inches]
 BOLD
 STANDARD
(See rule properties for details)

 Meaning When a table is row banked with multiple banks side by side on a page,
rules are usually added between the banks to divide them. This command
controls the properties of that divider.

 Level Bank dividers can be controlled at the individual table level.

	 Default	 RETAIN	BANK	DIVIDER	DOUBLE	WEIGHT	.5;	

	 Example	 Below	is	a	banked	table	followed	by	the	same	table	with	the
format	statements:	
	
KEEP	BANK	DIVIDER	COLOR	RED	DOT;	
RULE	MARGIN	=	1;		(This just makes output look better)

	 Format 637

Table Q1. Selected Characteristics of Households, by Total Money Income
[Numbers in thousands]

Characteristics Under
$5,000

$5,000 to
$9,999

$10,000
to

$14,999

All households 3,105 5,184 4,846

Tenure
Owner 1,136 2,350 2,494
Renter 1,836 2,667 2,229
No cash rent 133 167 123

Region
Northeast 579 1,190 879
Midwest 812 1,343 1,218
South 1,288 1,693 1,778
West 425 959 971

Characteristics Under
$5,000

$5,000 to
$9,999

$10,000
to

$14,999

Type of Household
and Sex of
Householder

Male householder
Married couple .. 446 1,114 1,916
Other family 87 138 151
Nonfamily

household ... 578 858 736
Female

householder
Married couple .. 39 96 95
Other family 814 939 775

Data values printed in red should be suppressed before publication.

Table Q1. Selected Characteristics of Households, by Total Money Income
[Numbers in thousands]

Characteristics Under
$5,000

$5,000
to

$9,999

$10,000
to

$14,999

All households 3,105 5,184 4,846

Tenure
Owner 1,136 2,350 2,494
Renter 1,836 2,667 2,229
No cash rent 133 167 123

Region
Northeast 579 1,190 879
Midwest 812 1,343 1,218
South 1,288 1,693 1,778
West 425 959 971

Characteristics Under
$5,000

$5,000
to

$9,999

$10,000
to

$14,999

Type of Household
and Sex of
Householder

Male householder
Married couple .. 446 1,114 1,916
Other family 87 138 151
Nonfamily

household ... 578 858 736
Female

householder
Married couple .. 39 96 95
Other family 814 939 775

Data values printed in red should be suppressed before publication.

	 Format 638

RETAIN BOTTTOM RULE

 Format	 DELETE	BOTTOM	RULES;
RETAIN	BOTTOM	RULES rule-properties;

 Meaning BOTTOM is a synonym for LAST in these statements. See the RETAIN
LAST RULE statements for more information.

	 Format 639

RETAIN CELLFILE

 Important This statement only works if it is included in the profile or in a FORMAT
request that is used when the tables are first produced. If it is added for a
rerun, it will have no effect.

 Format	 RETAIN	CELLFILE;

 Meaning When the statement is used, the cellfile output from the job is retained so
that it can be merged with the output from one or more other jobs.

See the section called "Merging Output from Multiple Runs to Create a
Single Output" in the chapter called "Data" for complete details on using
this statement.

 Level This statement works at the request level. It applies to all tables in the
request.

 Default The cellfile is deleted at the end of the job.

	 Format 640

RETAIN COLUMNS

 Format	 DELETE	/	RETAIN	COLUMNS;

 Meaning DELETE COLUMNS usually only makes sense if used with a FOR clause
that restricts the number of columns deleted. The heading structure is ad-
justed so that it looks as if the deleted columns were never there.

Deletion of columns will be reflected in the listing of printed columns in
the OUTPUT file of the TPL subdirectory created for your job. If you
have deleted some columns and you need to do other column-specific
changes to a table, you can use this listing to identify the remaining col-
umns.

 Level Deletion of columns can be specified for individual columns but is con-
trolled at the table level. When a column is deleted from a table, it is
deleted throughout the table.

 Default RETAIN	COLUMNS;

 Example	 FOR	TABLE	3	COLUMN	1:		DELETE	COLUMN;

 Effect The first column of the third table will be deleted. The format of the table
heading will be adjusted accordingly.

	 Format 641

RETAIN DOWN RULES

 Format	 RETAIN	DOWN	RULES	rule-properties;
DELETE	DOWN	RULES;	
DELETE	DOWN	RULES	START	IN	HEAD	

where available rule-properties are:
 SOLID
	 DOT	
	 DASH	
	 DOUBLE

	 COLOR	=	color

 WEIGHT	=	weight [weight	 in	pts	-	1/72	inches]
	 BOLD	
	 STANDARD	
	 (See rule properties for details)

 Meaning DELETE DOWN RULES: The column dividers will be deleted from the
bottom of the heading to the bottom of the table.

DELETE DOWN RULES START IN HEAD: The column dividers will
be deleted from the top of the heading to the bottom of the table.

DELETE DOWN RULES; can be restricted to specific columns. This is
useful, for example, if you wish to delete most of the down rules but retain
them between sections of a table. When columns are specified in the FOR
clause, the down rules that follow the specified columns are the ones that
are changed.

The down rule that separates the stub from the body of the table is speci-
fied as column 0. Alternately it can be controlled by RETAIN RULE
AFTER STUB. This is true even if you have specified STUB RIGHT.

 Level Deletion of down rules can be specified at the individual column level.

 Default	 RETAIN	DOWN	RULES;

All down rules are displayed.

 Example	 FOR	TABLE	3:		DELETE	DOWN	RULES;

	 Format 642

 Effect All column dividers will be deleted from the third table, except in the
heading. Down rules will be retained for other tables.

 Example	 FOR	TABLE	2	COLUMN	3:		DELETE	DOWN	RULE;

 Effect In the second table, the down rule following column 3 will be deleted.

 Example	 STUB	RIGHT;
DELETE	DOWN	RULES;
FOR	COLUMNS	2	4	AND	0:		RETAIN	DOWN	RULES;

 Effect The stub will be on the right side of the table. All down rules will be
deleted except those following columns 2, 4 and 0. In deleting or retain-
ing down rules, column 0 always refers to the down rule between the table
body and the stub. Since, in this example, the stub is on the right, the
down rule after the last column is retained by the reference to column 0.

	 Format 643

RETAIN EMPTY COLUMNS

 Format	 DELETE	/	RETAIN	EMPTY	COLUMNS;

 Meaning If DELETE selected, delete the table columns that do not have data.
Adjust the structure of the table heading so that it looks as if the empty
columns were never there.

Note that there is a listing of printed columns in the OUTPUT file in the
TPL subdirectory created for each job. If you have deleted empty columns
and you need to do other column-specific changes to a table, you can use
this listing to identify the remaining columns.

 Level Deletion of empty columns can be controlled at the individual table level.

 Default	 RETAIN	EMPTY	COLUMNS;

 Example	 FOR	TABLES	2	AND	3:		DELETE	EMPTY	COLUMNS;

 Effect For the second and third tables, columns that do not have data will be
deleted. For all other tables in the request, empty columns will not be
deleted.

 Restrictions In order for a column to be considered "empty", it must not have any data
in any part of the table. For example, if a column has no data in wafers 1
to 5 of a table but does have data in one row of wafer 6, the column is not
considered to be empty. It will be retained.

	 Format 644

RETAIN EMPTY LINES

 Important This statement only works if it is included in the profile or in a FORMAT
request that is used when the tables are first produced. If it is added for a
rerun, it will have no effect.

 Format	 RETAIN	EMPTY	LINES;

 Meaning When TPL TABLES formats a table, it does not include data rows that do
not have data. We call these "empty lines". If you want the empty lines
to be included in your tables, you can use the statement RETAIN EMPTY
LINES;

All empty lines will be retained, even for wafers in which all lines are
empty. If you find that you have wafers that have no data and wish to re-
move them, you can reformat the table output using the DELETE WAFER
statement to remove the wafers that have no data.

You may find it useful to use RETAIN EMPTY LINES; with the DATA
TABLES; statement when you need to have a predictable number of lines
in the output.

You can also use RETAIN EMPTY LINES; to get a preview of table
formats without processing a full data file. You need only one valid record
of each record type in your data file to successfully complete a job.

 Note If your table stub has nestings of control variables with many values (e.g.
state by city), the number of lines generated by RETAIN EMPTY LINES;
could be huge.

 Level This statement works at the request level. It applies to all tables in the
request.

 Default DELETE EMPTY LINES;

	 Format 645

RETAIN END RULE

 Format	 RETAIN	/	DELETE	END	RULE	rule-properties;

where available rule-properties are:
 SOLID
	 DOT	
	 DASH	
	 DOUBLE	

	 COLOR	=	color

 WEIGHT	=	weight [weight	 in	pts	-	1/72	inches]
	 BOLD	
	 STANDARD	
	 --	
	 ROW	SPAN	
	 DATA	SPAN	
	 (See rule properties for details)

 Meaning Use the DELETE option of this statement to delete the horizontal rule at
the end of the last page of a table. RETAIN LAST RULE controls the rule
at the bottom of pages other than the last page of a table.

 Level Deletion of rules can be controlled at the individual table level.

 Default	 RETAIN	END	RULE;

The table finishes with a horizontal line all the way across the bottom.

 Example	 FOR	TABLE	3:		DELETE	END	RULE;

 Effect The horizontal line at the end of the third table will be deleted. For all
other tables, it will be retained.

 Example See also the SPANNER HEADING statement for an illustrated example.

	 Format 646

RETAIN FOOTNOTE

 Format	 DELETE	/	RETAIN	FOOTNOTE	(name);					or
DELETE	/	RETAIN	FOOTNOTES	ALL;

where name is a footnote name. The parentheses around the footnote name
are optional.

 Meaning The named footnote will be deleted. If there is no FOR clause specifying
tables, the footnote will be deleted from all tables. If you wish to delete
all footnotes, including the built-in ones, use DELETE FOOTNOTES
ALL;

If you delete built-in footnotes that apply to table cells, the values in those
cells will be zero.

 Level Footnotes can be deleted for individual tables.

 Default	 RETAIN	FOOTNOTES;

 Example	 FOR	TABLE	1:	DELETE	FOOTNOTE	SMALL;

 Effect The built-in footnote SMALL will be deleted from the first table. Zero
values will be printed in any cells that would have been footnoted as con-
taining small values (i.e. values that round to zero).

RETAIN HEADER BOTTOM RULE

 Format	 DELETE	HEADER	BOTTOM	RULE;

RETAIN	HEADER	BOTTOM	RULE	rule-properties;
where available rule-properties are:
 SOLID
	 DOT	
	 DASH	
	 DOUBLE	

	 COLOR	=	color

 WEIGHT	=	weight [weight	 in	pts	-	1/72	inches]
	 BOLD	

	 Format 647

	 STANDARD	
	 (See rule properties for details)

 Meaning Use this statement to delete the horizontal line (called a rule) at the bottom
of the header

 Level The header bottom rule can be deleted for individual tables.

 Default	 RETAIN	HEADER	BOTTOM	RULE;

	 Example	 FOR	TABLE	1:		RETAIN	HEADER	BOTTOM	RULE	DASH	COLOR	=	
RED;

Table Title

Hispanic Origin of
Householder

Hispanic Not
hispanic

Number of Earners
None 466 5,830
1 .. 854 9,085
2 .. 864 9,577
3 .. 189 2,137
4 .. 86 691
5 .. 12 151
6 .. 5 41
7 .. 3 7
8 .. 1 1

RETAIN HEADER CROSS RULE

 Format	 DELETE	HEADER	CROSS	RULES;

RETAIN	HEADER	CROSS	RULES	rule-properties;
where available rule-properties are:
 SOLID
	 DOT	
	 DASH	
	 DOUBLE	

	 COLOR	=	color

	 Format 648

 WEIGHT	=	weight [weight	 in	pts	-	1/72	inches]
	 BOLD	
	 STANDARD	
	 (See rule properties for details)

 Meaning Use this statement to delete the horizontal line (called a rule) in the header
except the top and bottom rule of the header

 Level All of the header cross rules can be deleted for individual tables. Individu-
al cross rules in the header cannot be modified.

 Default	 RETAIN	HEADER	CROSS	RULE;

 Example	 RETAIN	HEADER	CROSS	RULE	COLOR	=	RED;

TABLE 1

Race of Householder Type of Household

White Black

Married
couple

Other
family

Hispanic Origin of Householder

Hispanic Not
hispanic Hispanic Not

hispanic

Average Income
Regions
Northeast 21,358 36,708 19,330 24,514 44,222 25,561
Midwest 23,091 31,161 24,466 20,306 37,722 21,376
Southeast 24,598 31,954 41,863 19,019 36,981 20,122
West 24,944 33,865 15,421 22,543 38,856 22,709

RETAIN HEADING

Format	 DELETE	/	RETAIN	HEADING;	 	 or
DELETE	/	RETAIN		HEADER;	 	 or
DELETE	/	RETAIN	HEAD;

 Meaning DELETE HEADER results in the table heading being removed from the
table. The table title is immediately followed by the horizontal line at the
top of the data portion of the table.

 Level Heading deletion can be specified for individual wafers.

	 Format 649

 Default	 RETAIN	HEADING;

 Example	 FOR	TABLE	1:	DELETE	HEADING;

Table Title

Hispanic Origin of
Householder

Hispanic Not
hispanic

Number of Earners
None 466 5,830
1 .. 854 9,085
2 .. 864 9,577
3 .. 189 2,137
4 .. 86 691
5 .. 12 151
6 .. 5 41
7 .. 3 7
8 .. 1 1

Table Title

Number of Earners
None 466 5,830
1 .. 854 9,085
2 .. 864 9,577
3 .. 189 2,137
4 .. 86 691
5 .. 12 151
6 .. 5 41
7 .. 3 7
8 .. 1 1

 Effect The table heading will be removed from the first table in the request
All of the other tables will be formatted with the heading labels present.

RETAIN HEADNOTE

 Format	 DELETE	/	RETAIN	HEADNOTE;

 Meaning The tables are formatted without headnotes. This statement would usu-
ally be used with a FOR statement so that it only applies to one or more
selected tables.

 Level Headnote deletion can be controlled at the table level.

 Default	 RETAIN	HEADNOTE;

 Example	 REPLACE	HEADNOTE	WITH	'Final	tabulations	for	New	York.'
FOR	TABLES	2	AND	3:		DELETE	HEADNOTES;

 Effect The headnote 'Final tabulations for New York' will appear above the table
heading for all tables except tables 2 and 3.

	 Format 650

RETAIN LAST RULES

 Format	 DELETE	LAST	RULE;

RETAIN	LAST	RULE	rule-properties
DELETE	BOTTOM	RULE;	

RETAIN	BOTTOM	RULE	rule-properties
where available rule-properties are:
 SOLID
	 DOT	
	 DASH	
	 DOUBLE	

	 COLOR	=	color

 WEIGHT	=	weight [weight	 in	pts	-	1/72	inches]
	 BOLD	
	 STANDARD	

	 ROW	SPAN	
	 DATA	SPAN
(See rule properties for details)

 Meaning Use this statement to delete the horizontal line (called a rule) at the bottom
of each page of the table except the last page of the table. See the state-
ment DELETE END RULE; to delete the rule on the last page of a table.

By default, the bottom rule on the last page of the table extends all the way
across the table. On pages before the last, the bottom rule extends only
across the data part of the table. Thus, there is automatically a distinction
between the last page and the earlier pages.

For text tables, the bottom rule for each page of table is a horizontal line
that extends all the way across the bottom of the table. If you specify
DELETE LAST RULES; they will be deleted for all but the last page of
the table. This provides an additional way of indicating that the table is
continued on the next page.

 Level Deletion of rules can be controlled at the individual table level.

 Default	 RETAIN	LAST	RULE;

Each page of table finishes with a horizontal line.

 Example	 FOR	TABLE	3:		DELETE	LAST	RULE;

	 Format 651

 Effect The horizontal line at the bottom of each page of the third table will be de-
leted for all pages except the last. For all other tables, it will be retained.

	 Format 652

RETAIN LEADING ZEROS

 Format DELETE	/	RETAIN	LEADING	ZEROS;
DELETE	LEADING	ZEROS	EXCEPT	FIRST;

ZEROES can be used in place of ZEROS.

 Meaning When decimal values between 0 and 1 are printed, no leading zeros are
printed to the left of the decimal point. For example, the number 0.45 will
print as .45 with no zero to the left of the decimal point. Similarly, when
decimal values between -1 and 0 are printed, no leading zeros are printed
to the left of the decimal point. For example, the number -0.45 will print
as -.45 with no zero to the left of the decimal point.

You can use the EXCEPT FIRST option, if you want to retain the leading
zero for the first value in each column. More precisely, if the first non-
empty cell in a column is a decimal value less than 1, the leading zero will
be displayed for that value. For example, the value .53 will be displayed
as 0.53 if it is the first value in the column. Leading zeros will not be
displayed for other values in the column unless you have SPANNER labels
or have used FORMAT statements to insert horizontal rules (lines) in the
data section of the tables. If spanners or horizontal rules are present, the
treatment of leading zeros will restart after each spanner or rule. (Note
that this treatment is similar to that of the characters $ and % when they
are specified in print masks associated with heading variables.)

The counterpart statement RETAIN LEADING ZEROS EXCEPT FIRST;
is treated the same as the statement RETAIN LEADING ZEROS; In other
words, all leading zeros are retained.

 Level Deletion of leading zeros can be specified for individual tables.

 Default RETAIN	LEADING	ZEROS;

 Example	 DELETE	LEADING	ZEROS	EXCEPT	FIRST;

 Effect 0.16	 	 2.05
	 	 2.05	 		 	.16
	 	 		.53			 	.53
	 	 		.94				 .94

	 Format 653

RETAIN ROWS

 Format	 DELETE	/	RETAIN	ROWS;

 Meaning DELETE ROWS usually makes sense only when used with a FOR clause
that restricts the number of rows deleted. The ROWS are data rows.
When a ROW is deleted, the stub labels are adjusted accordingly. Since
a data row can have more than one line of stub labels associated with it,
deletion of a data row may result in deletion of more than one line from
the table.

Note that empty rows (rows that do not have any data) are automatically
removed from tables by default. Thus if you are referencing rows by row
number in the FOR clause, you may need to check the OUTPUT file list-
ing of PRINTED ROWS in order to pick the correct row numbers.

 Level Row deletion can be specified for individual rows but is controlled at the
wafer level. The rows to be deleted can vary from one wafer to another.

 Default Rows that have data are retained. Empty rows are deleted.

 Example	 FOR	TABLE	2	ROWS	3	6	9	12:		DELETE	ROWS;

 Effect In the second table, data rows 3, 6, 9, and 12 will be deleted. All other
data rows will be retained unless they are empty (have no data).

	 Format 654

RETAIN RULE AFTER ROW

	 Format	 RETAIN/DELETE	RULE	AFTER	ROW;	 or
RETAIN/DELETE	RULE	AFTER	ROW	RULE rule specs;
where	available	rule-properties	are:
	 SOLID	
	 DOT	
	 DASH	
	 DOUBLE	

	 COLOR	=	color

 WEIGHT	=	weight 						 [weight in	pts	-	1/72	inch]
 BOLD
STANDARD	

ROW	SPAN	
DATA	SPAN	

SPACE	=	n 	[n	unit	 is	standard	height	of	a	data	row.]
UNDERLINE

(See rule properties for details)

 Meaning RETAIN RULE AFTER ROW can be used to insert horizontal rules (lines)
in a table. If used with a FOR clause, it will insert rules after selected
rows. If used without a FOR clause, it will insert a rule after every row of
every table.

 Note If the $ or % characters are used in masks that apply to the data columns,
then, for any column with these masks, the $ or % character will be re-
peated in the first non-empty cell following each inserted rule.

 Note If any rows of a table do not appear in the table because they are empty
(do not have any data) or because the rows are ranked, you cannot deter-
mine row numbers by counting data rows in the printed table. You can
findthe row numbers for PRINTED ROWS in the OUTPUT file. If you
reference an empty row, the RETAIN RULE AFTER ROW statement will
have no effect.

 Level RETAIN RULE AFTER ROW can be specified for individual rows.

 Default Tables are formatted without extra rules. If rules are specified, they are
single with a default rule weight of .5, which is the same as the default
weight for other non-bold rules in tables.

	 Format 655

 Example FOR	ROW	3:	RETAIN	RULE	AFTER	ROW	DOUBLE	WEIGHT	=	.75	
ROW	SPAN;	

 Effect A double horizontal rule will be inserted after row 3. The rule will be
somewhat thicker than the default weight of .5 and will span across the
entire width of the table.

Households by sex and education of head of
household

Educational Attainment of
Householder Total

Sex of Householder

Male Female

8 years or less 3,986 2,517 1,469
High school, 1 to 3 years 3,699 2,352 1,347
High school, 4 years 10,875 7,512 3,363

College, 1 to 3 years 5,059 3,554 1,505
College, 4 years 3,466 2,629 837
College, 5 or more years 2,915 2,257 658

Example FOR	TABLE	1,	ROW	6,	13,1,28,36,43:	RETAIN	RULE	AFTER	ROW;

	 Format 656

Percentile Distribution of Salaries for Senior High
Principals, 1988-89

ALL
REPORTING

SYSTEMS

ENROLLMENT GROUP

25,000
OR

MORE

10,000
TO

24,999

2,500
TO

9,999

300
TO

2,499

AVERAGE SALARY PAID

SALARY DISTRIBUTION

90TH PERCENTILE $65,747 $71,470 $65,479 $67,432 $60,121
80TH PERCENTILE 63,798 65,588 63,782 63,660 55,818
75TH PERCENTILE 62,829 65,579 63,434 62,277 55,325
70TH PERCENTILE 62,016 64,152 62,829 60,763 53,887
60TH PERCENTILE 60,058 61,233 61,973 59,549 51,480
50TH PERCENTILE 58,527 59,829 59,822 58,209 48,484

40TH PERCENTILE $55,858 $58,985 $57,633 $56,269 $47,500
30TH PERCENTILE 53,887 57,084 55,583 54,416 42,225
25TH PERCENTILE 51,624 55,116 54,426 53,740 42,056
20TH PERCENTILE 49,843 54,621 52,638 51,500 42,000
10TH PERCENTILE 45,317 46,901 48,765 45,317 40,312

NUMBER RESPONDING 149 26 65 36 22
MEAN 57,159 59,839 58,586 57,644 48,983

LOW $33,966 $43,235 $43,594 $42,115 $33,966
HIGH 74,428 73,526 68,208 74,428 65,747

LOWEST SALARY PAID

SALARY DISTRIBUTION

90TH PERCENTILE $65,448 $71,470 $64,260 $67,432 $60,121
80TH PERCENTILE 61,464 65,448 62,016 60,505 55,818
75TH PERCENTILE 60,505 61,656 61,464 60,308 55,325
70TH PERCENTILE 59,674 60,452 60,690 59,674 51,624
60TH PERCENTILE 57,805 56,789 59,099 56,269 50,849
50TH PERCENTILE 55,504 55,377 57,924 55,489 48,484

40TH PERCENTILE $53,870 $53,991 $55,583 $54,216 $47,500
30TH PERCENTILE 50,849 51,610 53,094 51,687 42,225
25TH PERCENTILE 48,826 49,788 50,974 50,572 42,056
20TH PERCENTILE 47,517 48,714 49,650 48,826 42,000
10TH PERCENTILE 43,411 42,778 46,861 44,712 40,312

NUMBER RESPONDING 158 29 71 36 22
MEAN 55,032 56,052 56,224 55,639 48,844

LOW $33,966 $37,843 $37,685 $42,115 $33,966
HIGH 74,428 71,910 68,178 74,428 65,747

HIGHEST SALARY PAID

SALARY DISTRIBUTION

90TH PERCENTILE $68,178 $71,910 $67,498 $68,543 $60,121
80TH PERCENTILE 65,627 70,552 65,799 65,205 56,000
75TH PERCENTILE 64,637 67,121 65,485 64,608 55,818
70TH PERCENTILE 63,716 65,595 63,864 63,448 55,325
60TH PERCENTILE 62,016 64,443 62,477 60,763 51,480
50TH PERCENTILE 60,465 63,500 61,678 59,536 48,484

40TH PERCENTILE $57,711 $61,857 $60,690 $57,186 $47,500
30TH PERCENTILE 55,583 59,712 57,662 54,827 42,225
25TH PERCENTILE 54,128 59,544 55,971 53,809 42,056
20TH PERCENTILE 51,015 57,041 55,470 53,581 42,000
10TH PERCENTILE 47,500 50,880 50,613 45,317 40,312

NUMBER RESPONDING 158 29 71 36 22
MEAN 58,842 62,629 60,387 58,687 49,122

LOW $33,966 $45,535 $44,466 $42,115 $33,966
HIGH 76,269 76,269 69,621 74,428 65,747

	 Format 657

RETAIN RULE AFTER STUB

 Format	 RETAIN	RULE	AFTER	STUB	rule-options;
DELETE	RULE	AFTER	STUB	RULES;	
DELETE	RULE	AFTER	STUB	START	IN	HEAD	

where available rule-properties are:
 SOLID
	 DOT	
	 DASH	
	 DOUBLE	

	 COLOR	=	color

 WEIGHT	=	weight [weight	 in	pts	-	1/72	inches]
	 BOLD	
	 STANDARD	
	 (See rule properties for details)

 Meaning DELETE RULE AFTER STUB: The rule between the stub and the first
column will be deleted from the bottom of the heading to the bottom of the
table. This applies even when STUB RIGHT is specified.

DELETE RULE AFTER STUB START IN HEAD: The rule between the
stub and the first column will be deleted from the top of the heading to the
bottom of the table. This applies even when STUB RIGHT is specified.

 Level Deletion rule after stub can be specified at the individual table level.

 Default	 RETAIN	RULE	AFTER	STUB;

The rule between the stub and the body of the table is displayed.

 Example	 STUB	RIGHT;
RETAIN	RULE	AFTER	STUB	COLOR	=	RED;

Table Q1. Selected Characteristics of Households [In thousands]

CharacteristicsTotal Under
$5,000

$5,000 to
$9,999

$10,000
to

$14,999

$15,000
to

$19,999

$20,000
to

$29,999

$30,000
to

$39,999

All households........46,333 3,105 5,184 4,846 4,776 8,470 6,751

Tenure
Owner........29,791 1,136 2,350 2,494 2,711 5,341 4,788
Renter........15,672 1,836 2,667 2,229 1,968 2,986 1,868
No cash rent........871 133 167 123 97 143 95

	 Format 658

RETAIN SPANNER RULES

 Format DELETE	/	RETAIN	SPANNER	RULES;

The word SPAN can be used in place of the word SPANNER.

 Meaning If Delete is used, the horizontal rules above and below spanner labels in
the body of the table. These can be labels in the stub that have the SPAN-
NER attribute, or they can be wafer labels used with one of the WAFER
LABEL SPANNER statements in the format request or profile.

 Note If the spanning labels are created with the statements:

WAFER	LABELS	=	DATA	(or	ROW)	SPANNER;
SKIP	0	LINES	AFTER	WAFERS;

you must also add the statement:

DELETE	LAST	RULES;	

to delete the rule after each spanning wafer label.

 Note You may also need to use the statement:

DELETE	DOWN	RULES;

especially with wafer label spanners. Otherwise, the down rules may in-
trude on the spanner space

 Level DELETE SPANNER RULES can be specified for individual tables.

 Default	 RETAIN	SPANNER	RULES;

 Example	 WAFER	LABEL	=	ROW	SPANNER;
SKIP	0	LINES	AFTER	WAFERS;
DELETE	SPANNER	RULES;
DELETE	LAST	RULES;
DELETE	DOWN	RULES;

	 Format 659

Does relationship with the mother affect
nervousness with members of the opposite
sex?

Nervous with opposite sex?

Total Nervous Not
nervous

Female

Get along with Mom?
Yes 60 37 23
No 3 1 2
So-So 23 12 11
N/A 1 1 –
Total 87 51 36

Male

Get along with Mom?
Yes 54 22 32
No 2 – 2
So-So 11 4 7
N/A 2 2 –
Total 69 28 41

Both sexes

Get along with Mom?
Yes 114 59 55
No 5 1 4
So-So 34 16 18
N/A 3 3 –
Total 156 79 77

– Data not available.

See also the SPANNER HEADING statement for another illustrated ex-
ample.

	 Format 660

RETAIN STUB

 Format	 DELETE	/	RETAIN	STUB;

 Meaning If Delete is chosen, the table stub, including SPANNER labels, the stub
head and the down rule that normally separates the stub labels from the
rest of the table, are removed.

 Level Stub deletion can be controlled at the table level.

 Default	 RETAIN	STUB;

 Example	 DELETE	STUB;

 Effect The stub labels will be removed from all tables in the request.

	 Format 661

RETAIN TABLES FILE

 This statement is not needed. You can use export to add a text table
to a directory which already has a tables in other formats.

 Format RETAIN TABLES FILE;

 Meaning Normally, text table output is saved in the output subdirectory in either
text table format (a file called tables) or default format (a file called tables.
ps). With the statement RETAIN TABLES FILE; you can save both. First,
run in one of the two modes and then rerun in the other mode so that both
types of table output are saved.

As long as this FORMAT statement is present, both the tables and the
tables.ps files will be retained in the output subdirectory once they have
been created. If you subsequently remove the statement and do a rerun
with the same output subdirectory, the system will revert to the default and
keep only one of the two files.

 Level This statement applies to all tables in a request.

 Default	 DELETE	TABLES	FILE;

 Example	 RETAIN	TABLES	FILE;

 Effect If you run the job in PostScript mode, then rerun it in non-PostScript
mode), both the tables.ps file and the tables file will be saved in the output
subdirectory.

 Note If you have also created encapsulated PostScript files (.eps), they will be
retained as long as the .ps file is retained.

	 Format 662

RETAIN TABLES

 Format	 DELETE	TABLES;

 Meaning If not used with a FOR clause, DELETE TABLES will cause all tables to
be deleted from the output. If it is used with a FOR clause that specifies
which tables should be deleted, only the specified tables will be deleted
from the table output.

 Level Table deletion can be controlled at the individual table level.

 Default	 RETAIN	TABLES;

 Example	 FOR	TABLES	2	AND	3:		DELETE	TABLES;

 Effect The second and third tables will be deleted. All others will be retained.

 Example	 DATA	TABLES;
FOR	TABLES	ALL:		DELETE	TABLES;
FOR	TABLE	3:		RETAIN	TABLE;

 Effect The third table will be formatted as a data file. All other tables will be
deleted.

RETAIN TITLE

 Format	 DELETE	TITLE;

 Meaning Tables are formatted without title lines at the top of each page.

 Level Title deletion can be controlled at the table level.

 Default	 RETAIN	TITLE;

 Example	 FOR	TABLE	2:		DELETE	TITLE;

 Effect The second table will be formatted without title lines at the top of each
page.

	 Format 663

RETAIN TOP RULE

 Format	 DELETE	TOP	RULE;

RETAIN	TOP	RULE	rule-properties
where available rule-properties are:
 SOLID
	 DOT	
	 DASH	
	 DOUBLE	

	 COLOR	=	color

 WEIGHT	=	weight [weight	 in	pts	-	1/72	inches]
	 BOLD	
	 STANDARD	
	 (See rule properties for details)

 Meaning Use this statement to delete the horizontal line (called a rule) at the top of
each page of the table. By default, the top rule of the table extends all the
way across the table.

 Level Deletion of rules can be controlled at the individual table level.

 Default	 RETAIN	TOP	RULE;

Each page of table starts with a horizontal line.

 Example	 FOR	TABLE	3:		DELETE	TOP	RULE;

 Effect The horizontal line at the top of each page of the third table will be de-
leted. For all other tables, it will be retained.

RETAIN WAFER

 Format	 DELETE	WAFER;

 Meaning DELETE WAFER usually only makes sense if used with a FOR clause.
The wafers specified in the FOR clause will be deleted.

	 Format 664

If the first wafer of a table is deleted, the first printed wafer will not have
a title continuation. In other words, it will look like it is the first wafer of
the table.

If there are footnotes with automatic numbering in the table, the number-
ing will apply only to the footnotes in printed wafers. If footnotes are to
be printed at the end of the table, they will be printed at the end of the last
printed wafer. Footnotes that apply only to deleted wafers will be omitted.

 Level Wafer deletion can be specified for individual wafers.

 Default	 RETAIN	WAFER;

 Example	 FOR	TABLE	2,	WAFERS	2	TO	4:		DELETE	WAFERS;

 Effect The second through fourth wafers will be deleted from the second table.

RETAIN WAFER LABEL

	 Format	 DELETE	WAFER	LABEL;

 Meaning Tables are formatted without wafer labels at the top of each wafer.

 Level Wafer labels can be deleted for individual wafers.

 Default	 RETAIN	WAFER	LABEL;

 Example	 FOR	TABLE	3		WAFER	2:		DELETE	WAFER	LABEL;

 Effect The second wafer of the third table will be formatted without a wafer label.

	 Format 665

ROTATE

 Note ROTATE has no effect for exports other than eps.

 Format	 ROTATE;

 Meaning The tables are formatted to print sideways on the page. This format is
sometimes called "Landscape". Table margins are rotated along with the
tables, so that the terms, top, bottom, left and right are relative to the orien-
tation of the table rather than the page.

If you have a table with many columns, you may be able to get all the
columns on one page by using the ROTATE statement to turn the table
sideways.

 Level Rotation can be specified at the individual table level.

 Default Tables are printed upright.

 Example FOR	TABLES	2:		ROTATE;

 Effect Table 2 will be rotated to print sideways. All other tables will print up-
right.

ONE

BOSTON ST LOUIS

WHITE COLLAR 2 2
BLUE COLLAR 1 3

T
W

O

B
O

S
T

O
N

S
T

 L
O

U
IS

W
H

IT
E

 C
O

LL
A

R
...

...
...

..
2

2
B

LU
E

 C
O

LL
A

R
...

...
...

...
.

1
3

	 Format 666

ROUND

 Format	 ROUND	=	UP;	 or

	 	 ROUND	=	EVEN;

The = sign is optional and can be omitted.

 Note	 Do not use a FOR clause with ROUND. If you do, you will get a syntax
error message.

 Meaning By default, when final data values need to be rounded, the rounding is
done according to the "round even" rule as described in the "Masks" chap-
ter. A value that ends with 5 is rounded up or down depending on the digit
to the left of the 5. If the digit to the left of the 5 is even, the value is
rounded down. If the digit to the left is odd, the value is rounded up.

To override the default and always round up, use the ROUND = UP; state-
ment.

 Level The ROUND specification applies to the entire request.

 Default	 ROUND	=	EVEN;

 Example	 ROUND	=	UP;

 Effect All data values ending with 5 will be rounded up.

	 Format 667

ROW BANKS PER PAGE

 Format	 ROW	BANKS	PER	PAGE	=	n;

where n is a number. The word IS can be used in place of =. Both are
optional and can be left out altogether.

 Meaning This statement does not affect to text tables. If you have a narrow table,
you can use row banking to break the table into sections that can fit side
by side on a page. For a table that is longer than a page, the table will be
broken at the bottom of the page and continue at the top of the same page
instead of going to a new page. Optionally, you can specify an earlier
break point with a BANK AFTER ROW statement (equivalent to EJECT
AFTER ROW). If there is no ROW BANKS PER PAGE statement, the
BANK AFTER ROW statement will cause a page break but there will be
no banking.

If there is not enough space on the page to contain the specified number of
banks or if the number of banks is set to 1, no banking will take place.

Banks are separated by a double line. For other options, see BANK DI-
VIDER.

On the last page of banking, for example the end of a wafer or end of
a table, if there are not enough rows to fill out all the banks, the banks
will not be balanced automatically. This is illustrated in the first example
below. There are only enough rows for about 1 1/4 banks, so one bank
is shorter than the other. See the next sections for ways to balance the
number of rows in each bank. It’s also possible to have no right bank. In
the example below, if we asked for 3 banks per page, we would only get 2,
because there are not enough rows to make a third bank. In that case the
title and the footnotes will still be formatted at the full width of 3 banks.

 Level The number of banks is controlled at the table level.

 Default	 ROW	BANKS	PER	PAGE	=	1;

 Example	 ROW	BANKS	PER	PAGE	=	2;

 Effect The following table, that would normally be broken into two pages, is
banked on a single page.

	 Format 668

Table Q1. Median family incomes for selected
characteristics

Median
Income

U.S. Total $25,800

Owner 31,400
Renter 17,610
No cash rent 15,500

Male householder 30,925
Female householder 15,000

New England 30,461

Owner 37,480
Renter 21,233
No cash rent 16,100

Male householder 36,490
Female householder 18,574

Mid Atlantic 28,150

Owner 35,230
Renter 19,415
No cash rent 18,600

Male householder 34,300
Female householder 16,673

North Central 25,438

Owner 30,538
Renter 15,693
No cash rent 18,711

Male householder 30,352
Female householder 13,075

South Atlantic 22,974

Owner 27,200
Renter 16,760
No cash rent 13,780

Male householder 28,476
Female householder 14,555

South Central 22,500

Owner 28,256
Renter 14,964
No cash rent 11,829

Male householder 28,060
Female householder 11,787

Mountain 24,452

Owner 29,178
Renter 17,051
No cash rent 11,000

Male householder 27,869

Median
Income

Mountain
Female householder $16,112

Pacific 28,134

Owner 36,257
Renter 19,715
No cash rent 24,050

Male householder 32,836
Female householder 18,259

	 Format 669

Balancing Banks of Unequal Length

In the next example, the BANK AFTER ROW statement is used to break
the first bank before the bottom of the page.

 Example	 ROW	BANKS	PER	PAGE	=	2;
FOR	ROW	24:		BANK	AFTER	ROW;
FOR	CONDITION	REGION	(4)	:	
	 REPLACE	LABEL	WITH	"South	Atlantic";

 Effect The table is balanced with the same number of rows in each bank. Note
that the REGION labels in the original table all had a slash (/) at the begin-
ning to leave a blank line before each one. The REPLACE LABEL state-
ment is used to remove the extra space from the "South Atlantic" label at
the top of the second bank so that the rows will line up between banks.

Table Q1. Median family incomes for selected
characteristics

Median
Income

U.S. Total $25,800

Owner 31,400
Renter 17,610
No cash rent 15,500

Male householder 30,925
Female householder 15,000

New England 30,461

Owner 37,480
Renter 21,233
No cash rent 16,100

Male householder 36,490
Female householder 18,574

Mid Atlantic 28,150

Owner 35,230
Renter 19,415
No cash rent 18,600

Male householder 34,300
Female householder 16,673

North Central 25,438

Owner 30,538
Renter 15,693
No cash rent 18,711

Male householder 30,352
Female householder 13,075

Median
Income

South Atlantic $22,974

Owner 27,200
Renter 16,760
No cash rent 13,780

Male householder 28,476
Female householder 14,555

South Central 22,500

Owner 28,256
Renter 14,964
No cash rent 11,829

Male householder 28,060
Female householder 11,787

Mountain 24,452

Owner 29,178
Renter 17,051
No cash rent 11,000

Male householder 27,869
Female householder 16,112

Pacific 28,134

Owner 36,257
Renter 19,715
No cash rent 24,050

Male householder 32,836
Female householder 18,259

	 Format 670

Lining Up Rows with SKIP AFTER ROW

The SKIP AFTER ROW statement can be very useful in lining up rows
between row banks. For example, if you have a table with several wafers
and all wafers do not have the same number of data rows, you may wish
to skip space after some data rows so that the wafers can line up across the
banks.

See the SKIP AFTER ROW statement for more information and an ex-
ample.

Wafer Labels in Banked Wafers

The default location for wafer labels is the "headnote" position. When
more than one wafer is banked on a page, only the label for the first wafer
can be displayed in the headnote position as shown below. Even though
there are two wafers, one in each bank, the "New England" region label
is displayed in the headnote position and the wafer label for the second
region is missing.

Table W1. Wafer labels in headnote position

New England

Median Income

Total $30,461

Owner 37,480
Renter 21,233
No cash rent 16,100

Male householder 36,490
Female householder 18,574

Median Income

Total $28,150

Owner 35,230
Renter 19,415
No cash rent 18,600

Male householder 34,300
Female householder 16,673

To display all wafer labels, move them to the data spanner or row spanner
positions.

 Example	 WAFER	LABEL	=	DATA	SPANNER;

	 Format 671

Table W2. Wafer labels in DATA SPANNER position

Median Income

New England

Total $30,461

Owner 37,480
Renter 21,233
No cash rent 16,100

Male householder 36,490
Female householder 18,574

Median Income

Mid Atlantic

Total $28,150

Owner 35,230
Renter 19,415
No cash rent 18,600

Male householder 34,300
Female householder 16,673

Balancing Banks with Joined Wafers

ROW BANKS PER PAGE can be used with joined wafers. Note, however,
that EJECT or BANK AFTER ROW will not work for balancing banks if
you are trying to break after the last row of a wafer. Instead, use the state-
ment EJECT AFTER WAFER.

 Example	 WAFER	LABEL	=	DATA	SPANNER;
EJECT	AFTER	WAFERS	=	NO;
COLUMN	WIDTH	=	1	INCH;
ROW	BANKS	PER	PAGE		=		2;
FOR	WAFER	4:	EJECT	AFTER	WAFER;

 Effect This table is similar to the one in the previous table, but the REGION vari-
able is in the wafer. The wafers are joined together with 2 banks on the
page, and EJECT is specified for the 4th wafer so that the banks will be
equal in length.

	 Format 672

Table Q2. Median family incomes for selected characteristics

Median Income

U.S. Total

Total $25,800

Owner 31,400
Renter 17,610
No cash rent 15,500

Male householder 30,925
Female householder 15,000

New England

Total $30,461

Owner 37,480
Renter 21,233
No cash rent 16,100

Male householder 36,490
Female householder 18,574

Mid Atlantic

Total $28,150

Owner 35,230
Renter 19,415
No cash rent 18,600

Male householder 34,300
Female householder 16,673

North Central

Total $25,438

Owner 30,538
Renter 15,693
No cash rent 18,711

Male householder 30,352
Female householder 13,075

Median Income

South Atlantic

Total $22,974

Owner 27,200
Renter 16,760
No cash rent 13,780

Male householder 28,476
Female householder 14,555

South Central

Total $22,500

Owner 28,256
Renter 14,964
No cash rent 11,829

Male householder 28,060
Female householder 11,787

Mountain

Total $24,452

Owner 29,178
Renter 17,051
No cash rent 11,000

Male householder 27,869
Female householder 16,112

Pacific

Total $28,134

Owner 36,257
Renter 19,715
No cash rent 24,050

Male householder 32,836
Female householder 18,259

 Restrictions ROW BANKS PER PAGE can be used on joined tables, but you cannot
balance the banks by breaking between tables. The statements EJECT or
BANK AFTER ROW and EJECT AFTER TABLE will not give the desired
result.

	 Format 673

ROW SPAN

 Format	 ROW	SPAN;

 Meaning The SPAN specification controls the width of both SPANNER labels and
horizontal lines that have been inserted with the RETAIN RULE AFTER
ROW statement.

ROW SPAN; causes the SPANNER labels and lines to extend across the
entire table, including the stub.

DATA SPAN; is the default SPAN specification. It causes the SPANNER
labels and lines to extend across the data columns only.

 Level The SPAN specification applies to the entire request. All tables will be
formatted with the same SPAN style.

 Default	 DATA	SPAN;

 Example	 ROW	SPAN;

 Effect Any SPANNER labels or horizontal lines created with the RETAIN RULE
AFTER ROW statement will span across the entire table, including the
stub.

Row Span

ALL
REPORTING

SYSTEMS

ENROLLMENT GROUP

25,000
OR

MORE

10,000
TO

24,999

2,500
TO

9,999

300
TO

2,499

AVERAGE SALARY PAID

SALARY DISTRIBUTION

90TH PERCENTILE $65,747 $71,470 $65,479 $67,432 $60,121
80TH PERCENTILE 63,798 65,588 63,782 63,660 55,818
75TH PERCENTILE 62,829 65,579 63,434 62,277 55,325

70TH PERCENTILE $62,016 $64,152 $62,829 $60,763 $53,887
60TH PERCENTILE 60,058 61,233 61,973 59,549 51,480
50TH PERCENTILE 58,527 59,829 59,822 58,209 48,484

	 Format 674

Data Span

ALL
REPORTING

SYSTEMS

ENROLLMENT GROUP

25,000
OR

MORE

10,000
TO

24,999

2,500
TO

9,999

300
TO

2,499

AVERAGE SALARY PAID

SALARY DISTRIBUTION

90TH PERCENTILE $65,747 $71,470 $65,479 $67,432 $60,121
80TH PERCENTILE 63,798 65,588 63,782 63,660 55,818
75TH PERCENTILE 62,829 65,579 63,434 62,277 55,325

70TH PERCENTILE $62,016 $64,152 $62,829 $60,763 $53,887
60TH PERCENTILE 60,058 61,233 61,973 59,549 51,480
50TH PERCENTILE 58,527 59,829 59,822 58,209 48,484

 Restrictions This statement has no effect on the statement WAFER LABEL = ROW
SPANNER or DATA SPANNER or HEADNOTE.

	 Format 675

RULE

	 Format	 RULE rule-properties
where	available	rule-properties	are:
	 SOLID	
	 DOT	
	 DASH	
	 DOUBLE	

	 COLOR	=	color

 WEIGHT	=	weight [weight	 in	pts	-	1/72	inches]
(See rule properties for details)

 Meaning The RULE statement sets default properties for an entire table. If proper-
ties are set for specific rules or categories of rules, the more specific prop-
erty will override the values set by this statement.

 Level RULE statements can be specified for individual tables.

 Default RULE SOLID WEIGHT = .5 COLOR = BLACK;

 Example RULE DOUBLE COLOR = MAGENTA;

Table Q1. Selected Characteristics of Households [In thousands]

Characteristics Total Under
$5,000

$5,000 to
$9,999

$10,000
to

$14,999

$15,000
to

$19,999

$20,000
to

$29,999

$30,000
to

$39,999

All households 46,333 3,105 5,184 4,846 4,776 8,470 6,751

Tenure
Owner 29,791 1,136 2,350 2,494 2,711 5,341 4,788
Renter 15,672 1,836 2,667 2,229 1,968 2,986 1,868
No cash rent 871 133 167 123 97 143 95

	 Format 676

RULE AFTER ROW

This statement has been replaced by:
RETAIN RULE AFTER ROW rule-properties;

 Format	 RULE	AFTER	ROW;	 or
RULE	AFTER	ROW	RULE rule specs;

where rule specs can be one of the words DOUBLE or SINGLE, a weight
amount WEIGHT = n, or both.

 Meaning RULE AFTER ROW can be used to insert horizontal rules (lines) in a
table. If used with a FOR clause, it will insert rules after selected rows.
If used without a FOR clause, it will insert a rule after every row of every
table.

The word RULE can be repeated followed by a WEIGHT and/or DOU-
BLE specification.

DOUBLE (or SINGLE) can be used to specify whether the rules should be
double or single.

WEIGHT= n can be used to increase or decrease the thickness of the
rules. The value n is the number of points of thickness where each point
is 1/72 inches. Double rules have the same weight as they would have if
single.

The rules can be restricted to the data area or they can span the entire
width of the table including the stub. You can choose the style you want
using a FORMAT statement:

DATA SPAN; will cause the rules to extend only across the data columns.
DATA SPAN is the system default.

ROW SPAN; will cause the rules to extend across the entire table, includ-
ing the stub.

 Note The SPAN style will apply to both RULE AFTER ROW and SPANNER
labels.

If the $ or % characters are used in masks that apply to the data columns,
then, for any column with these masks, the $ or % character will be re-
peated in the first non-empty cell following each inserted rule.

	 Format 677

 Note If any rows of a table do not appear in the table because they are empty
(do not have any data) or because the rows are ranked, you cannot deter-
mine row numbers by counting data rows in the printed table. You can find
the row numbers for PRINTED ROWS in the OUTPUT file. If you refer-
ence an empty row, the RULE AFTER ROW statement will have no effect.

See also the statement RETAIN RULE AFTER ROW UNDERLINE if you
want to underline rows in the data area and do not want any space inserted
above the lines.

 Level RULE AFTER ROW can be specified for individual rows.

 Default Tables are formatted without extra rules. If rules are specified, they are
single with a default rule weight of .5, which is the same as the default
weight for other non-bold rules in tables.

 Example	 ROW	SPAN;
FOR	ROW	3:	RULE	AFTER	ROW		RULE	DOUBLE	WEIGHT	=	.75;

 Effect A double horizontal rule will be inserted after row 3. The rule will be
somewhat thicker than the default weight of .5 and will span across the
entire width of the table.

Households by sex and education of head of
household

Educational Attainment of
Householder Total

Sex of Householder

Male Female

8 years or less 3,986 2,517 1,469
High school, 1 to 3 years 3,699 2,352 1,347
High school, 4 years 10,875 7,512 3,363

College, 1 to 3 years 5,059 3,554 1,505
College, 4 years 3,466 2,629 837
College, 5 or more years 2,915 2,257 658

 Example	 FOR	TABLE	1,	ROWS		6,	13,	1,	28,	36,	43:		RULE	AFTER	ROW;

 Effect A horizontal rule will be inserted after rows 6, 13, 21, 28, 36, and 43.

	 Format 678

Percentile Distribution of Salaries for Senior High
Principals, 1988-89

ALL
REPORTING

SYSTEMS

ENROLLMENT GROUP

25,000
OR

MORE

10,000
TO

24,999

2,500
TO

9,999

300
TO

2,499

AVERAGE SALARY PAID

SALARY DISTRIBUTION

90TH PERCENTILE $65,747 $71,470 $65,479 $67,432 $60,121
80TH PERCENTILE 63,798 65,588 63,782 63,660 55,818
75TH PERCENTILE 62,829 65,579 63,434 62,277 55,325
70TH PERCENTILE 62,016 64,152 62,829 60,763 53,887
60TH PERCENTILE 60,058 61,233 61,973 59,549 51,480
50TH PERCENTILE 58,527 59,829 59,822 58,209 48,484

40TH PERCENTILE $55,858 $58,985 $57,633 $56,269 $47,500
30TH PERCENTILE 53,887 57,084 55,583 54,416 42,225
25TH PERCENTILE 51,624 55,116 54,426 53,740 42,056
20TH PERCENTILE 49,843 54,621 52,638 51,500 42,000
10TH PERCENTILE 45,317 46,901 48,765 45,317 40,312

NUMBER RESPONDING 149 26 65 36 22
MEAN 57,159 59,839 58,586 57,644 48,983

LOW $33,966 $43,235 $43,594 $42,115 $33,966
HIGH 74,428 73,526 68,208 74,428 65,747

LOWEST SALARY PAID

SALARY DISTRIBUTION

90TH PERCENTILE $65,448 $71,470 $64,260 $67,432 $60,121
80TH PERCENTILE 61,464 65,448 62,016 60,505 55,818
75TH PERCENTILE 60,505 61,656 61,464 60,308 55,325
70TH PERCENTILE 59,674 60,452 60,690 59,674 51,624
60TH PERCENTILE 57,805 56,789 59,099 56,269 50,849
50TH PERCENTILE 55,504 55,377 57,924 55,489 48,484

40TH PERCENTILE $53,870 $53,991 $55,583 $54,216 $47,500
30TH PERCENTILE 50,849 51,610 53,094 51,687 42,225
25TH PERCENTILE 48,826 49,788 50,974 50,572 42,056
20TH PERCENTILE 47,517 48,714 49,650 48,826 42,000
10TH PERCENTILE 43,411 42,778 46,861 44,712 40,312

NUMBER RESPONDING 158 29 71 36 22
MEAN 55,032 56,052 56,224 55,639 48,844

LOW $33,966 $37,843 $37,685 $42,115 $33,966
HIGH 74,428 71,910 68,178 74,428 65,747

HIGHEST SALARY PAID

SALARY DISTRIBUTION

90TH PERCENTILE $68,178 $71,910 $67,498 $68,543 $60,121
80TH PERCENTILE 65,627 70,552 65,799 65,205 56,000
75TH PERCENTILE 64,637 67,121 65,485 64,608 55,818
70TH PERCENTILE 63,716 65,595 63,864 63,448 55,325
60TH PERCENTILE 62,016 64,443 62,477 60,763 51,480
50TH PERCENTILE 60,465 63,500 61,678 59,536 48,484

40TH PERCENTILE $57,711 $61,857 $60,690 $57,186 $47,500
30TH PERCENTILE 55,583 59,712 57,662 54,827 42,225
25TH PERCENTILE 54,128 59,544 55,971 53,809 42,056
20TH PERCENTILE 51,015 57,041 55,470 53,581 42,000
10TH PERCENTILE 47,500 50,880 50,613 45,317 40,312

NUMBER RESPONDING 158 29 71 36 22
MEAN 58,842 62,629 60,387 58,687 49,122

LOW $33,966 $45,535 $44,466 $42,115 $33,966
HIGH 76,269 76,269 69,621 74,428 65,747

	 Format 679

RULE MARGIN

 Format	 RULE	MARGIN	=	n;
DATA	RULE	MARGIN	=	n;

where n is a decimal number.

 Meaning RULE MARGIN statements let you adjust the amount of space between
the contents of columns and the rules that divide the columns. The value
n indicates a number of characters. For example, 1.5 indicates 1.5 char-
acters. For a right-adjusted mask, n is the number of characters between
the mask and the down rule to its right. For a left-adjusted mask, n is the
number of characters between the mask and the down rule to its left.

If RULE MARGIN is used, the same margin applies to the columns labels.
In other words, both cell values and column labels will be spaced away
from the down rules by at least the distance of the rule margin.

If DATA RULE MARGIN is used instead of RULE MARGIN, then the
change in spacing occurs only in the part of the table where the data is.
No change in margin occurs in the heading.

One character is defined to be the width of the number 5 in the default font
and size for the request.

The space is actually the number of characters between the masks or labels
and the center of the down rule, but this detail is normally not significant.

 Note For text tables, the behavior of this statement as described here will be ap-
proximated within the constraints of fixed-width spacing.

 Level The statement applies at the table level.

 Default	 RULE	MARGIN	=	.5;

 Example	 REPLACE	MASK	WITH	99,999	RIGHT;
RULE	MARGIN	=	1.5;

 Effect Data values and column labels will have a margin of at least 1.5 charac-
ters from the down rules. In particular, there will be a 1.5 character space
between the right-aligned data and the down rule to the right.

 Example Assume that we want to align the data right with a rule margin of 1 in the
data part of the table but leave the heading unchanged. In addition, for

	 Format 680

cells that have no data, we want to align the dash symbol for the EMPTY
footnote with the right edge of any data values. By default, in a cell that
contains only a footnote symbol, the symbol is centered. We can align the
dash symbol with the right edge of any data values by specifying RIGHT
for the EMPTY footnote symbol.

REPLACE	MASK	WITH	999.99	RIGHT;
SET	FOOTNOTE	EMPTY	SYMBOL	RIGHT;
DATA	RULE	MARGIN	=	1;

All cell contents will be right-aligned but separated from the down rule by
1 character of space.

	 Format 681

RULE PROPERTIES

 Format rule-styles category
 SOLID
 DOT
 DASH
 DOUBLE
rule-color category
 COLOR = color
rule-weight category
 STANDARD
 BOLD
 WEIGHT = weight (in pts where 1 pt = 1/72 inches)
span-type category
 ROW SPAN
 DATA SPAN
vertical-space category
 UNDERLINE
 ROW SPACE = n (Value is standard height of a data row).

 Meaning The various rule properties apply to rules in a table. The RETAIN state-
ments tell which properties can be assigned to different rules. For example
span-type is not meaningful for down rules so it is not available for RE-
TAIN DOWN RULES. If an unsupported rule property is used, no warn-
ing message is issued. The rule property is just ignored. Only one prop-
erty from each category may be used. If multiple properties from the same
category are specified, the last one entered is applied.

SOLID: This is the default for most table rules.

DOT: The rule is a dotted line. Dotted rules may be used to group parts
of a table which are closely related. The spacing of the dots is not control-
lable by TPL. If you are using TED in the Windows version of TPL, the
spacing will be affected by the rule weight. If the rule weight is thick, the
rule may display in TED as a solid line. If you export to pdf or html, the
dots will appear.

DASH: The rule is a dashed line. Neither the length of the dashes nor
the space between is controllable by TPL. If you are using TED in the
Windows version of TPL, the spacing will be affected by the rule weight.
If the rule weight is thick, the rule may display in TED as a solid line. If
you export to pdf or html, the dashes will appear.

	 Format 682

DOUBLE: The rule is doubled. The width and height of a table is not
affected by a double rule. Instead the space available following the double
line is reduced. Double lines are the default for the rule between banks or
a row banked table. They can also be used to separate major sections of a
table.

COLOR: COLOR specifies the color of a rule. Available colors are listed
in the color.tpl file where TPL is installed. Additional colors may be
added to this file. For complete details, see the section called "General
Information about Color" in the Color chapter.

STANDARD: STANDARD specifies the standard weight or thickness of a
rule. The default for a standard rule is .5 pts where a pt is 1/72 inches.

BOLD: BOLD specifies a rule which is normally thicker than a standard
rule. The default for a bold rule is 1.2 pts.

WEIGHT = n: WEIGHT allows you to specify the thickness for a specific
rule. n is in pts.

ROW SPAN: A row span rule runs the entire length of a table.

DATA SPAN: A data span rule begins after the stub and spans the data
area only.

ROW SPACE: Row space controls the amount of space a horizontal
rule occupies. It is only used with RETAIN RULE AFTER ROW. ROW
SPACE = 1 means that the rule occupies the standard height of a table row.
The space is divided evenly above and below the rule. UNDERLINE is a
synonym for ROW SPACE = 0; An underlined row adds no extra space.
An underlined row takes up the same vertical space as row which is not
underlined.

 Defaults SOLID for all rules except bank dividers where the default is DOUBLE.

COLOR = BLACK for all rules

STANDARD for all rules except the top and end rules of a table which are
BOLD. The default for a standard rule is .5 pts where a pt is 1/72 inches.
The default for a bold rule is 1.2 pts.

ROW SPACE = 1

	 Format 683

 Example
For Rows 3: Keep rule after row Color = RED space = 3.0 Row Span;
For Columns 3: Keep down rule Dash;
For Columns 1: Keep down rule Bold;
For Rows 5: Keep rule after row underline Data Span;

Table Q1. Selected Characteristics of Households [In
thousands]

Characteristics Total Under
$5,000

$5,000 to
$9,999

$10,000
to

$14,999

$15,000
to

$19,999

All households 46,333 3,105 5,184 4,846 4,776

Tenure
Owner 29,791 1,136 2,350 2,494 2,711
Renter 15,672 1,836 2,667 2,229 1,968

No cash rent 871 133 167 123 97
Region
Northeast 10,020 579 1,190 879 920
Midwest 11,543 812 1,343 1,218 1,239

	 Format 684

SCALE

 Format	 SCALE	=	n%;	

where n is a number. Decimal numbers such as 99.4 are allowed.

	 Meaning The SCALE statement can be used when a table is just a bit too big to
fit on a page or in the available space in a document. It provides much
finer control of sizes than you can get with font size changes. For tables
with more than one page, you may find that you can fit more rows and/or
another column on each page, depending on the table and the degree of
scaling you choose. Page markers, if present, are scaled the same as the
tables.

 Level The statement applies to the entire table request.

 Default	 SCALE	=	100%;

Scaled tables will display and print accurately when distilled to PDF. EPS
versions of scaled tables will display and print accurately when inserted in
documents using software that accepts EPS.

 Note Page markers are not scaled so they will appear like page markers on un-
scaled tables.

Windows/TED Note
 Because of limitations in display of fractional font sizes, scaled tables may

not display perfectly in TED. This is true also if you print from TED us-
ing the regular Print command in the TED File menu. If you have access
to a PostScript printer, you can use the Postscript Print option in TED.
With PostScript Print, the scaled tables will print perfectly. See PostScript
Print in TED Help for more information. If you have Adobe Acrobat
Distiller, you can configure TED to do an Export to PDF from TED's File
menu. The exported PDF will display and print accurately in Adobe Acro-
bat Reader even when the printer does not support PostScript. See Export
in TED Help for more information.

 Example Assume that we are inserting a table into a document that mixes text and
tables. Assume also that we want all of the tables to be formatted with the
same font sizes, for example titles in font size 10 and the rest in font size
8. One of the tables doesn't quite fit in the allotted space. If we format
this tables in a smaller font, the difference will be noticeable, so we would
prefer to reduce the table just enough to fit. We can do this by scaling the
table to less than 100%, for example

	 Format 685

SCALE	=95%;

The table is shown below. On the left is the unscaled version. On the
right is the result of scaling to 95%.

Table B2: Single and plural births by
birth month and sex of child

Total Single
Births

Plural
Births

January
Male 5,156 5,002 154
Female 4,790 4,636 154

February
Male 4,726 4,561 165
Female 4,376 4,235 141

March
Male 5,037 4,885 152
Female 4,697 4,514 183

April
Male 4,728 4,557 171
Female 4,624 4,483 141

May
Male 4,942 4,750 192
Female 4,751 4,588 163

June
Male 4,885 4,719 166
Female 4,675 4,515 160

July
Male 5,346 5,157 189
Female 5,046 4,867 179

August
Male 5,398 5,237 161
Female 5,136 4,967 169

September
Male 5,054 4,903 151
Female 4,944 4,808 136

October
Male 5,129 4,970 159
Female 4,901 4,749 152

November
Male 4,704 4,564 140
Female 4,442 4,291 151

December
Male 4,914 4,726 188
Female 4,901 4,738 163

Table B2: Single and plural births by
birth month and sex of child

Total Single
Births

Plural
Births

January
Male 5,156 5,002 154
Female 4,790 4,636 154

February
Male 4,726 4,561 165
Female 4,376 4,235 141

March
Male 5,037 4,885 152
Female 4,697 4,514 183

April
Male 4,728 4,557 171
Female 4,624 4,483 141

May
Male 4,942 4,750 192
Female 4,751 4,588 163

June
Male 4,885 4,719 166
Female 4,675 4,515 160

July
Male 5,346 5,157 189
Female 5,046 4,867 179

August
Male 5,398 5,237 161
Female 5,136 4,967 169

September
Male 5,054 4,903 151
Female 4,944 4,808 136

October
Male 5,129 4,970 159
Female 4,901 4,749 152

November
Male 4,704 4,564 140
Female 4,442 4,291 151

December
Male 4,914 4,726 188
Female 4,901 4,738 163

 Example Assume that we have a table that almost fits on one page but breaks to a
new page for the last 5 rows of data. We can scale it down a little and get
it to fit on one page with the following SCALE statement.

SCALE	=	93%;

The table is shown below. On the left is the unscaled version. On the
right is the scaled version. The 5 rows that were originally on a second
page are highlighted with grey shading.

	 Format 686

Top 30 counties ranked by number of
plural births for total births and each sex1

Total Single
Births

Plural
Births

Total
Lincoln 12,296 11,860 436
Taylor 10,924 10,501 423
Eisenhower 5,831 5,638 193
Comanche 4,517 4,341 176
Cheyenne 5,433 5,270 163
Clinton 3,900 3,762 138
Coral 2,586 2,494 92
Bannock 2,564 2,474 90
Massachusett 3,114 3,025 89
Maricopa 2,039 1,956 83
Harrison 1,809 1,732 77
Cameron 2,079 2,004 75
Blackfoot 2,190 2,117 73
Mohawk 1,987 1,917 70
Chippewa 1,903 1,833 70
Norfolk 2,032 1,970 62
Vermillion 1,659 1,602 57
Adams 1,814 1,759 55
Holland 2,116 2,062 54
McKinley 1,356 1,303 53

Male
Lincoln 6,404 6,177 227
Taylor 5,623 5,413 210
Eisenhower 2,983 2,888 95
Cheyenne 2,778 2,690 88
Comanche 2,285 2,202 83
Clinton 1,959 1,887 72
Bannock 1,329 1,282 47
Coral 1,309 1,263 46
Massachusett 1,576 1,532 44
Mohawk 1,044 1,005 39
Blackfoot 1,143 1,104 39
Norfolk 1,031 992 39
Maricopa 1,046 1,007 39
Harrison 908 870 38
McKinley 711 674 37
Holland 1,145 1,111 34
Vermillion 861 828 33
Chippewa 965 934 31
Cameron 1,022 992 30
Manhattan 616 588 28

Female
Taylor 5,301 5,088 213
Lincoln 5,892 5,683 209
Eisenhower 2,848 2,750 98
Comanche 2,232 2,139 93
Cheyenne 2,655 2,580 75
Clinton 1,941 1,875 66
Coral 1,277 1,231 46
Massachusett 1,538 1,493 45
Cameron 1,057 1,012 45
Maricopa 993 949 44
Bannock 1,235 1,192 43
Chippewa 938 899 39
Harrison 901 862 39
Blackfoot 1,047 1,013 34
Mohawk 943 912 31
Adams 891 861 30
Sky 1,145 1,116 29
Cherokee 764 737 27
Vermillion 798 774 24
Gramblin 521 497 24

1 County residents only

Top 30 counties ranked by number of
plural births for total births and each sex1

Total Single
Births

Plural
Births

Total
Lincoln 12,296 11,860 436
Taylor 10,924 10,501 423
Eisenhower 5,831 5,638 193
Comanche 4,517 4,341 176
Cheyenne 5,433 5,270 163
Clinton 3,900 3,762 138
Coral 2,586 2,494 92
Bannock 2,564 2,474 90
Massachusett 3,114 3,025 89
Maricopa 2,039 1,956 83
Harrison 1,809 1,732 77
Cameron 2,079 2,004 75
Blackfoot 2,190 2,117 73
Mohawk 1,987 1,917 70
Chippewa 1,903 1,833 70
Norfolk 2,032 1,970 62
Vermillion 1,659 1,602 57
Adams 1,814 1,759 55
Holland 2,116 2,062 54
McKinley 1,356 1,303 53

Male
Lincoln 6,404 6,177 227
Taylor 5,623 5,413 210
Eisenhower 2,983 2,888 95
Cheyenne 2,778 2,690 88
Comanche 2,285 2,202 83
Clinton 1,959 1,887 72
Bannock 1,329 1,282 47
Coral 1,309 1,263 46
Massachusett 1,576 1,532 44
Mohawk 1,044 1,005 39
Blackfoot 1,143 1,104 39
Norfolk 1,031 992 39
Maricopa 1,046 1,007 39
Harrison 908 870 38
McKinley 711 674 37
Holland 1,145 1,111 34
Vermillion 861 828 33
Chippewa 965 934 31
Cameron 1,022 992 30
Manhattan 616 588 28

Female
Taylor 5,301 5,088 213
Lincoln 5,892 5,683 209
Eisenhower 2,848 2,750 98
Comanche 2,232 2,139 93
Cheyenne 2,655 2,580 75
Clinton 1,941 1,875 66
Coral 1,277 1,231 46
Massachusett 1,538 1,493 45
Cameron 1,057 1,012 45
Maricopa 993 949 44
Bannock 1,235 1,192 43
Chippewa 938 899 39
Harrison 901 862 39
Blackfoot 1,047 1,013 34
Mohawk 943 912 31

See footnotes at end of table.

	 Format 687

SET FOOTNOTE

 Note The SET FOOTNOTE statement can be used in the codebook, table request
or profile (profile.tpl) in addition to the format request. For a complete
description of footnote options and uses, see the "Footnotes" chapter.

 Format	 SET	FOOTNOTE	(name)	TEXT	label	SYMBOL	string;

where name is the name of the footnote. The parentheses around the
footnote name are optional. The footnote TEXT can be any valid TPL
TABLES label except that it cannot itself contain a reference to another
footnote. The footnote SYMBOL is a character string enclosed in quotes.
The TEXT and SYMBOL specifications are optional and can be in any
order but there must be at least one of the two in the statement.

If SET FOOTNOTE is used in a codebook, the ';' at the end of the state-
ment is optional. In the table request, format request or profile, the ';' is
required.

If you wish, you can use IS or = following the words TEXT and SYM-
BOL. For example,

SET	FOOTNOTE	CONFIDENTIAL
	 SYMBOL	IS	'(C)'	TEXT	IS	'Confidential	Data';

 Meaning The SET FOOTNOTE statement determines the footnote symbol and text
for the named footnote. The footnote can be referenced in labels or masks
in the codebook, table request, format request or profile. In any table
where the label or mask is used, the footnote symbol will print where the
footnote is referenced and the footnote text will print at the end of the
table.

If a footnote is not referenced, it is ignored unless the FORMAT statement
KEEP FOOTNOTE is used. Then it will be printed without a footnote
symbol unless you have explicitly assigned a symbol. See also the state-
ment SET NOTE as an alternate way of printing footnotes without sym-
bols.

 Level A particular footnote applies to all tables in a job. If the same footnote
name is used in more than one SET FOOTNOTE statement, the text and/
or symbol information from a later statement will replace those from an
earlier statement.

	 Format 688

The FOR clause has no effect on a SET FOOTNOTE statement. In the
following sequence of statements, the footnote text from the second defini-
tion of footnote A will be used wherever footnote A is referenced in any
table.

FOR	TABLE	1:		SET	FOOTNOTE	A		TEXT	'Preliminary	data.';
FOR	TABLE	2:		SET	FOOTNOTE	A		TEXT	'Final	data.';

 Default TPL TABLES has several built-in footnotes. All but two are automatically
included in your tables, regardless of whether they are explicitly referenced
in labels or masks. You can change the default symbols and text for these
footnotes with SET FOOTNOTE statements. You can also delete any or all
of them with the DELETE FOOTNOTE statement. The built-in footnotes
are:

Footnote Symbol Text
name

SEE_END	 ''	 'See	footnotes	at	end	of	table.'
EMPTY	 '-'	 'Data	not	available.'
ERROR	 '**'	 'Computation	error.'
NO_FIT	 'nf'	 'Data	does	not	fit.'
SMALL	 '>0'	 'Value	is	too	small	to	display.'
SMALL_NEG	 '<0'	 'Negative	value	too	near	zero	to	display.'
NORANK	 blank	 Reserved for blank rank numbers; no	text
ZERO	 	 Reserved for exact 0 value

The ZERO footnote has no built-in symbol or text and is not used unless
you assign a text and, optionally, a symbol. When these are assigned, cells
which evaluate to precisely 0 will be displayed with this footnote.

For more information about NORANK, see the the RANK DISPLAY sec-
tion of the "Ranking" chapter.

 Example	 SET	FOOTNOTE	DATE_NOTE		TEXT	'This	table	contains	'
	 			 'data	on	all	employees	hired	before	August	15.';

FOR	TABLE	1:	REPLACE	TITLE	WITH	
	 'Salary	information	by	sex	and	job	type'
	 FOOTNOTE	DATE_NOTE;

 Effect The title for the first table will be replaced with a title containing a refer-
ence to the footnote called DATE_FOOT. When the table is printed, a
footnote symbol will be attached to the end of the title and the footnote
text will appear at the end of the table. Since no symbol was specified for
the footnote, a footnote number will be generated and used as the symbol.

	 Format 689

 Restrictions You can have as many as 30,000 distinct footnotes and notes in one job.
There is no limit on the number of footnote references.

Only one footnote can be displayed per table cell. If a user-specified
footnote conflicts with a built-in footnote in a data cell, the following rules
apply: for all of the built-in footnotes, except NO_FIT, if the mask applied
to the table cell contains a footnote reference and no 9's, the footnote from
the mask will override built-in footnotes. If the mask does contain 9's, a
footnote in the mask will not override built-in footnotes.

If a footnote symbol is too wide to fit within the column width, it will be
replaced with the NO_FIT built-in footnote. The characters 'nf' will be
displayed in place of the footnote symbol.

	 Format 690

SET NOTE

 Note The SET NOTE statement can be used in the codebook, table request or
profile (profile.tpl) in addition to the format request.

 Format	 SET	NOTE		(name)		TEXT		label	;

where name is the name of the note. The parentheses around the note
name are optional. The note TEXT can be any valid TPL TABLES label
except that it cannot contain a reference to a footnote. The word TEXT is
optional. Thus the simple format for the SET NOTE statement is:

SET	NOTE		name		label	;

 Meaning The SET NOTE statement lets you specify note text that can be displayed
at the end of a table. When notes are displayed, they look like footnotes
without symbols. Notes differ from footnotes in that unreferenced foot-
notes without symbols can only be displayed if you use an associated
KEEP FOOTNOTE statement, whereas a note will always be displayed.

Unlike the SET FOOTNOTE statement, SET NOTE has no corresponding
DELETE, RETAIN or KEEP statements. However, you can refer to a note
with DELETE FOOTNOTE and KEEP FOOTNOTE. RETAIN FOOT-
NOTE has no effect on notes.

If you have several tables and want to apply a note to only particular
tables, you can use a combination of DELETE FOOTNOTE and KEEP
FOOTNOTE.

 Level A particular note applies to all tables in a job. If the same name is used in
more than one SET NOTE statement, the text from a later statement will
replace that from an earlier statement.

 Example	 	SET	NOTE	CD	'Confidential	Data.';

 Effect The note called CD will be displayed at the end of each table.

 Example	 SET	NOTE	PRELIM		 'Preliminary	data.';
SET	NOTE	FINAL		 'Final	data.';
FOR	TABLES	ALL:		DELETE	FOOTNOTE	PRELIM;
FOR	TABLES	ALL:		DELETE	FOOTNOTE	FINAL;
FOR	TABLE	2:		KEEP	FOOTNOTE	PRELIM;
FOR	TABLE	3:		KEEP	FOOTNOTE	FINAL;

	 Format 691

The notes PRELIM and FINAL will be deleted from all tables except
the second table where the PRELIM note will be kept and the third table
where the FINAL note will be kept.

 Restrictions You can have as many as 30,000 distinct notes and footnotes in one job.

	 Format 692

SHADE

Shading is an excellent way to highlight selected parts of a table or to add
color in a pleasing way. Even if you have only a monochrome printer,
you can get some excellent effects by using GREY shading to emphasize
selected parts of a table.

 Format	 SHADE	table-element	[COLOR]	r	g	b;
SHADE	table-element	[COLOR]	color-name;
SHADE	table-element	GREY	n;

where

r, g and b are numbers between 0 and 100 (inclusive) which specify red,
green, and blue components of color.

color-name is the name of a color defined in the color.tpl file.

GREY (or GRAY) is the color and n is a number between 0 and 100 (in-
clusive) that selects the degree of grey shading.

table-element can be any of the following:

TABLE	 	 								 	 STUB
TITLE	 	 	 DATA
WAFER	LABEL		 ROW
HEADNOTE	 					 COLUMN
TOP	 	 						 	 CELL
HEADING	 								 	 FOOTNOTES
STUB	HEAD	 	 LABEL

See also the COLOR statements for color printing of labels, values.

 Meaning You can use SHADE statements to specify background shading for an en-
tire table or for different sections of a table. You can choose the color for
each element shaded. If you are using a monochrome printer, color will
print in various shades of grey depending on the color.

GREY is a special built-in color that works equally well for shading tables
on either a color or a monochrome printer. In most cases, GREY shading
is the best choice for monochrome printing, because you can control the
degree of darkness directly by specifying a number from 0 to 100 where 0
is no shading and 100 is black shading.

	 Format 693

Colors can be referenced by name where the colors have been defined
in a file called color.tpl. The color.tpl file is installed as part of the TPL
TABLES system with several colors already defined. You can customize
this file to add the colors of your choice. For complete details, see the sec-
tion called "General Information about Color" in the "Color" chapter.

 Example	 FOR	TABLE	2:		SHADE	HEADING	GREEN;
FOR	TABLE	2,	COLUMN	1:		SHADE	CELLS	RED;

 Effect All tables will be printed without shading except in the second table. The
heading in the second table will be shaded in the color GREEN. The first
column will be shaded with the color RED.

 Example	 SHADE	TABLE	PUMPKIN;
REPLACE	TITLE	WITH		COLOR	RED	'Tableau	15B	'	
	 'Statistiques	sommaires	selon	le	genre	d'établissement.'

 Effect In this example, we combine background shading with color text in the
table title. The entire table is shaded in pumpkin color (99 60 20) and the
table title text is red. The other text, numbers and lines are printed in the
default color black.

Tableau 15B Statistiques sommaires selon le genre
d’établissement.

Dépenses de fonctionnement

Salaires Autres Total

Musées
Musées 42 357,34 282,36 42 639,70
Parcs naturels 71 628,05 76,25 71 704,30
Lieux d’intérêt

historique 61 359,82 62,56 61 422,38
Archives 81 305,43 48,55 81 353,98
Centres

d’expositions 511,48 10,53 522,01
Observatoires et

planétariums 434,79 1,28 436,07
Zoos et aquariums 67,69 51,66 119,35
Jardins botaniques 74,15 6,98 81,13

Total 257 738,75 540,17 258 278,92

	 Format 694

 Example	 FOR	ROWS	1	TO	21	BY	2:		SHADE		ROW	GREY	10;

 Effect Alternate data rows are shaded light grey.

Number of households by type of household
and state.

Type of Household

Married
couple

Other
family

Nonfamily
household

Connecticut 57,980 18,666 37,626
Maine 22,535 1,937 11,952
Massachusetts 71,997 14,208 29,184
New Hampshire 11,541 744 3,451
Rhode Island 12,559 719 6,306
Vermont 1,456 360 –
New Jersey 134,095 37,399 70,480
New York 197,547 60,114 110,844
Pennsylvania 218,880 28,678 103,033
Illinois 25,297 1,869 13,212
Indiana 37,912 4,781 7,157
Michigan 2,964 1,437 –
Ohio – 1,526 3,066
Wisconsin 22,528 – 12,172
Iowa 38,220 1,279 7,824
Kansas 11,169 1,250 1,276
Minnesota 10,192 2,598 7,973
Missouri 20,479 2,975 6,201
Nebraska 13,634 2,514 2,652
North Dakota 4,703 289 295
South Dakota 1,478 251 1,060

– Data not available.

 Default The default is no shading.

 Restrictions Shading can only be requested with the SHADE statements described here.
If you insert a shading in an individual label or mask, you will get an error
message.

Placing Tables in Other Documents

If you are placing Encapsulated PostScript(EPS) tables into documents cre-
ated with other desktop publishing software, you will get different results,
depending on whether the tables are unshaded or shaded.

	 Format 695

Unshaded
In TPL TABLES, a table with no shading is transparent except for the table
text and lines. If you place this table on top on something in a document
produced with other desktop publishing software, anything below the table
will show through when the page is printed. To place this unshaded table
on a green background, you would create the background square and place
the table on top. The green background would show through in the clear
spaces.

Shaded
If you use shading in TPL TABLES, all tables will be opaque from the
start of the first shading to the end of the last table. If you have multiple
banks, wafers or tables on a page, even the “white space” between will be
opaque. Thus, if you want to place a table on top of something and have
nothing show through, you can use shading to make the table opaque. If
you do not want color in the table, you can shade it white. For example:

SHADE	TABLE	100	100	100;

If you have the color WHITE defined in your color.tpl file, you can use the
statement:

SHADE	TABLE	WHITE;

How Shading Conflicts are Resolved

You can think of shading as being applied in layers with each layer being
opaque. For example, if a RED layer is applied on top of a BLUE layer,
only the RED shading will show. This "layering" explains how conflicts
are resolved.

An example of a shading conflict is a shaded column that intersects with
a shaded row. Whenever two shadings apply to the same place in a table,
only one of the shadings will be used. The "winning" shading is the top
layer.

The top layer is determined according to a shading order. If conflicting
SHADE statements are at different levels, the shading order determines the
shading at the overlapping points, regardless of the sequence of SHADE
statements. If SHADE statements conflict on the same level in the shading
order, they are applied according to their order in the format request.

	 Format 696

The shading order follows. Each level overlays shading at any level
above it. In general, the order allows finer levels of shading to overlay
broader levels of shading.

table
heading,		top,		footnotes,		stub
label,		wafer-label,		column,		headnote,		title,		stubhead
row,		data
cell

 Example	 SHADE	TABLE	GREEN;
FOR	COLUMN	2:		SHADE	COLUMN	RED;

Shading of the entire table conflicts with shading for one of the columns.
Since "table" is above "cell" in the shading order, the table shading will be
applied first to shade the entire table GREEN. The cell shading will then
be applied on top of the table shading and the color RED specified for
column 2 will cover the GREEN shading of the table.

 Example	 FOR	ROW	2:		SHADE	ROW	PURPLE;
FOR	CONDITION	SEX(1):		SHADE	LABEL	BLUE;

"Label" is above "row" in the shading order, so the label will be shaded
first and the row shading will overlay it. If the label is a multi-line label,
only the last line of the label will be shaded by the SHADE ROW state-
ment. This means that you will get a label with two color shadings, one on
the line with the data row and another on any label lines above. You could
get a more pleasing result by using SHADE DATA instead of SHADE
ROW. Since SHADE DATA shades the data row but does not extend into
the stub, the row and label shadings would not overlap.

Using WHITE with Shading Conflicts
Sometimes, white shading can be used to limit the extent of shading in
other colors. In the following example, the entire table is shaded RED,
but, since "top" and "footnote" shading follow "table" in the shading order,
the RED shading will be overlaid with WHITE for these parts of the table.

 Example If you have defined the color WHITE in color.tpl, you can use it in your
shade statements as follows:

SHADE	TABLE	RED;
SHADE	TOP	WHITE;
SHADE	FOOTNOTES	WHITE;

	 Format 697

If you do not have the color WHITE in color.tpl, you can get the same
result using:

SHADE	TABLE	RED;
SHADE	TOP	100	100	100;
SHADE	FOOTNOTES	100	100	100;

In either case, the table will be shaded in the color RED except for the
area from the title down through the heading and the footnote area at the
bottom.

ShAde OPTiOnS

Following are descriptions of all SHADE options, illustrated to show the
effect of shading different table elements. The basic illustrations, done
with light grey shading, will print the same way on either a monochrome
or color printer.

Shade Cell

Cell shading is generally useful only if there is a FOR clause to restrict the
shading to particular cells. If there is no FOR clause, SHADE CELL will
cause all data cells to be shaded. The result will be the same as with the
SHADE DATA statement.

 Level You can specify cell shading at the level of individual cells by a combina-
tion of table, wafer, row and column numbers.

	 Format 698

 Example	 SHADE	CELLS	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

 Example	 FOR	COLUMNS	1	TO	6	BY	2:		SHADE	CELLS	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

	 Format 699

 Example	 FOR	ROW	1	COLUMN	1:
	 COLUMN	WIDTH	=	12;
	 REPLACE	MASK	WITH	
	 	 TEXT	'Total	households	surveyed:'/	VALUE;
	 SHADE	CELL	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders Total

households
surveyed:

1,537

57 311 304 267 348

Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

In this example, the shaded cell contains text that is broken into multiple
lines. All lines of the cell are shaded.

Shade Column

Column shading extends from the bottom boundary of the heading to the
bottom boundary of the data section of the table. It can be used to shade
the entire section bounded by the heading and stub, or it can be used to
shade selected columns.

 Level Column shading can be specified at the column level.

 Example	 FOR	COLUMN	1:		SHADE	COLUMN	GREY	10;

	 Format 700

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

Shade Data

Rows that have data are shaded from the inside of the stub across to the
opposite side of the table. If the data row has one or more TEXT masks
long enough to wrap to multiple lines, the shading will extend to cover
these lines.

 Level Shading of data rows can be specified at the row level.

 Example	 FOR	ROWS	1	AND	3:		SHADE	DATA	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

	 Format 701

Note on Shade Data and Shade Row
As with rules and spanner labels that can span the entire row or just the
data section of the row, SHADE DATA and SHADE ROW let you make
a similar choice. In other words, they are the same except that SHADE
ROW extends across the entire table and SHADE DATA spans across only
the data section of the table, leaving the stub untouched.

Shade Footnotes

Footnote shading starts just below the boundary of the data section of the
table and extends down to the bottom of the last footnote present. The
shading spans the full width of the table. If a page has banks of unequal
width footnotes for all banks on the page are shaded to the width of widest
bank.

 Level Footnote shading can be specified at the table level.

 Example	 SHADE	FOOTNOTES	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

Shade Heading

The entire table heading is shaded. The shading extends to both sides of
the table and includes the stub head.

 Level Shading of the heading can be specified at the table level.

 Example	 SHADE	HEADING	GREY	10;

	 Format 702

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

Shade Headnote

If a headnote has been entered with a REPLACE HEADNOTE statement,
the headnote label rows will be shaded across the full width of the table.

 Level Headnote shading can be specified at the table level.

 Example	 SHADE	HEADNOTE	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

	 Format 703

Shade Label

Selected variable or condition labels can be shaded if the variables are in
the heading or stub, including stub labels with the attribute SPANNER.
For a multi-line label, the shading is applied to all lines of the label, in-
cluding blank lines entered in the label with the / character.

SHADE LABEL cannot be used to shade wafer labels. Use the SHADE
WAFER LABEL statement for these.

SHADE LABEL only works if it is preceded by a FOR VARIABLE or
FOR CONDITION clause that indicates which labels should be shaded.

 Format	 FOR	VARIABLE	var-name:	SHADE	LABEL	color;
FOR	CONDITIONS	con-var-name(c1,	c2,):		 	SHADE	LABEL	color;

var-name can reference any type of variable used in the table.

con-var-name can be any control variable from the codebook or a DE-
FINE statement. Note that if a control variable is described in the code-
book with the attribute DISPLAY AS SORTED, then the condition num-
bers will be determined by the sort order of the condition values.

 Level Label shading can be controlled at the table level. If the label referenced
in the FOR clause occurs more than once in a table, all occurences will be
shaded, but if it is used in more than one table, you can shade it in some
tables and leave it unshaded in others.

	 Format 704

 Example	 FOR	VARIABLE	AGE:		SHADE	LABEL	GREY	10;
FOR	CONDITION	SEX(1):		
	 REPLACE	LABEL	WITH	'Total,	 '/'All	householders';
	 SHADE	LABEL	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
Total,

All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

Shade Row

Rows that have data are shaded across the entire width of the table includ-
ing the stub. If the data row has one or more TEXT masks long enough to
wrap to multiple lines, the shading will extend to cover these lines. Note
however that if the stub label for the row is more than one line long, the
shading will only apply tothe last line of the label. To shade the entire
stub label, you must use SHADE LABEL.

 Level Row shading can be specified at the row level.

	 Format 705

 Example	 FOR	ROWS	1	AND	3:		SHADE	ROWS	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

Note on Shade Row and Shade Data
As with rules and spanner labels that can span the entire row or just the
data section of the row, SHADE DATA and SHADE ROW let you make
a similar choice. In other words, they are the same except that SHADE
ROW extends across the entire table and SHADE DATA spans across only
the data section of the table, leaving the stub untouched.

Shade Stub

The entire stub area is shaded from just below the stub head down to the
bottom of the table. If row or label shading conflicts with stub shading,
the row or label shading will overlay the stub shading for those rows.

 Level Stub shading can be specified at the wafer level.

	 Format 706

 Example	 SHADE	STUB	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

Shade Stub Head

The entire stub head area in the corner above the stub is shaded.

 Level Stub head shading can be specified at the wafer level.

 Example	 SHADE	STUB	HEAD	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

	 Format 707

Shade Table

The entire table is shaded including the title and any footnotes displayed
at the bottom of the table. Page markers in the top or bottom page margin
are not shaded. If there are multiple tables, banks, or wafers on the same
page, the space between them is not shaded. If a page has banks of un-
equal width, all banks on the page are shaded to the width of widest bank.

 Level Table shading can be specified at the table level.

 Example	 SHADE	TABLE	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

Shade Title

The title lines are shaded across the full width of the table.

 Level Title shading can be specified at the table level.

	 Format 708

 Example	 SHADE	TITLE	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

Shade Top

The space above the heading is shaded from the top of the table title to the
top boundary of the heading.

 Level Shading of the table "top" can be specified at the table level.

 Example	 SHADE	TOP	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

	 Format 709

Shade Wafer Label

If the wafer label is at the top of the table, the wafer label lines are shaded
across the full width of the table. If the wafer labels have been converted
to spanners with one of the statements WAFER LABEL = ROW SPAN or
WAFER LABEL = DATA SPAN, the shading will be within the boundaries
of the spanner sections of the table.

 Level Wafer label shading can be specified at the wafer level.

 Example	 SHADE	WAFER	LABEL	GREY	10;

Title: Number of Households Surveyed this Year by Sex of
Householder and Age of Householder1

Wafer label: Numbers in thousands

Headnote: Weighted Data

Stub head:
Characteristics

Age of Householder

Total,
All ages 17 to 29 30 to 39 40 to 54 55 to 64 65 and

over

Sex of Householder
All householders 1,537 57 311 304 267 348
Male householder 1,095 34 237 250 207 173
Female householder 441 23 74 55 60 175

1 Footnote referenced in title.
Data Source: Department of Commerce, Bureau of the Census

	 Format 710

SKIP AFTER BANKS

	 Format	 SKIP	n	LINES	AFTER	BANK;

where n is a number.

 Meaning If a table is too wide to fit on a page, it is automatically broken into sec-
tions called banks. Banking can also be requested explicitly with the
BANK AFTER COLUMN; statement. By default, each bank begins on a
new page. SKIP n LINES AFTER BANKS can be used to request a differ-
ent spacing between banks so that more than one bank can be printed on a
page.

If SKIP n LINES AFTER BANKS is specified by itself, TPL TABLES
assumes that there should be two banks per page. The related statement
BANKS PER PAGE can be used to request more than two banks per page.

With the statement SKIP 0 LINES AFTER BANKS; the banks are joined
with no space between banks, and the stub head is deleted for banks after
the first.

Table alignment is determined for each individual page of a banked table
and depends on the width of the widest bank on the page. Narrower banks
are aligned with the stub of the widest bank.

Table titles, wafer labels, headnotes and footnotes will appear only once on
a page regardless of the number of banks. They will be aligned with the
widest bank on the page.

 Note For multiple banks per page, we recommend that you use equal width
banks whenever possible. In general, unequal width banks on the same
page do not look good. This is especially true if you have specified SKIP
0 LINES AFTER BANKS;.

 Note All banks on a page will take up the same amount of vertical space. If you
have different width banks on the same page, you may find that the page
ends sooner than you expect, especially if you have a very narrow bank
that requires the table title to be broken into several lines. In addition, if
one bank has a very long heading label that must be broken into several
lines, the space requirement for that label will apply to all of the banks.
Each bank may then take more vertical space than you expect.

 Level SKIP n LINES AFTER BANK can be specified for individual wafers.

	 Format 711

 Default Each bank begins on a new page. If the BANKS PER PAGE statement is
used without SKIP AFTER BANKS, the default is SKIP 1 LINE AFTER
BANKS;

 Example	 FOR	COLUMN	2:	BANK	AFTER	COLUMN;
SKIP	0	LINES	AFTER	BANKS;

 Effect Each page of the table will contain 2 banks with no space between the
banks.

U.S. Waterborne Exports

By Country

Country of Ultimate
Destination

Short Tons of 2000 Lbs.

Liner Tanker

Total .. 248,745 4,146,065

MEXICO, CENTRAL AMER. &
CARIB.

Total .. 3,410 527,313
0 BULK .. 1,932 526,500
1 GENERAL 1,478 813

SOUTH AMERICA
Total .. 104,772 1,348,266
0 BULK .. 59,425 1,319,128
1 GENERAL 45,347 29,138

Short Tons of 2000 Lbs.

Tramp Total

Total .. 15,334,746 19,729,556

MEXICO, CENTRAL AMER. &
CARIB.

Total .. 584,649 1,115,372
0 BULK .. 576,483 1,104,915
1 GENERAL 8,166 10,457

SOUTH AMERICA
Total .. 2,664,773 4,117,811
0 BULK .. 2,587,432 3,965,985
1 GENERAL 77,341 151,826

 Example	 BANKS	PER	PAGE	=	3;
SKIP	2	LINES	AFTER	BANK;

	 Format 712

 Effect Each page of the table will contain 3 banks with 2 blank lines between the
banks. If the number of table banks is not a multiple of 3, then the last
page will contain fewer than 3 banks.

 Restrictions There must be enough vertical space on the page for each bank to contain
at least one line of data.

SKIP AFTER ROW

 Format	 SKIP	amount	AFTER	ROW;

where amount can be an integer, an integer followed by the word LINES,
or a measurement. Measurements can be expressed as a number of inches,
cm or points. If only an integer is specified, not followed by the word
LINES or a unit of measure, LINES will be assumed.

 Meaning SKIP AFTER ROW can be used to insert extra space after data rows. If
used with a FOR clause, it will insert space after selected rows. If used
without a FOR clause, it will insert the extra space after every row of every
table.

If you specify both SKIP AFTER ROW and RULE AFTER ROW for the
same row, the extra space will be inserted below the rule. Likewise, if you
specify both SKIP AFTER ROW and UNDERLINE ROW for the same
row, the extra space will be inserted below the underline.

 Note SKIP AFTER ROW applies only to data rows. If you want to skip space
between lines of a multi-line label or between a variable label and a condi-
tion label, use slash characters in the labels as described in the "Labels"
chapter.

 Note If any rows of a table do not appear in the table because they are empty
(do not have any data) or because the rows are ranked, you cannot deter-
mine row numbers by counting data rows in the printed table. You can find
the row numbers for PRINTED ROWS in the OUTPUT file. If you refer-
ence an empty row, the SKIP AFTER ROW statement will have no effect.

 Level SKIP AFTER ROW can be specified for individual rows.

 Default Standard single spacing is used for all rows.

	 Format 713

 Example	 SKIP	1	LINE	AFTER	ROWS;

 Effect One blank line of space will be inserted after all data rows in all tables.

 Example	 FOR	TABLE	2,	ROWS		6,	13,	21:		SKIP	1.2	CM	AFTER	ROWS;

 Effect In the second table, 1.2 centimeters of space will be inserted after rows 6,
13 and 21.

 Example SKIP AFTER ROW can be useful for lining up rows between row banks.
In the next table, there are 3 banks on the page, where types of fires are
shown by type of location. The first bank contains one less row than the
other two, because there are no residential fires in vehicles. To line up the
rows across the table so that fires of the same type are side by side across
the banks, we can add a blank row to the first bank.

ROW	BANKS	PER	PAGE	=		3;
FOR	ROWS	6	AND	12:	BANK	AFTER	ROW;
FOR	ROW	2:	SKIP	1	LINE	AFTER	ROW;

Fires by Type

Total

Residential
Total Fires 818
Structure Fires 608

Trees, Brush Fires 47
Refuse Fires 95
Other Fires 68

Total

Special Property
Total Fires 1,450
Structure Fires 20
Vehicle Fires 875
Trees, Brush Fires 255
Refuse Fires 256
Other Fires 44

Total

Other Business Property
Total Fires 397
Structure Fires 190
Vehicle Fires 11
Trees, Brush Fires 52
Refuse Fires 105
Other Fires 39

 Restrictions If the SKIP AFTER ROW is specified for the last row on a page, the SKIP
statement is ignored.

	 Format 714

SKIP AFTER TABLE

	 Format	 SKIP	n	LINES	AFTER	TABLES;

where n is a number.

 Meaning The SKIP AFTER TABLES statement can be used to control the grouping
of tables on a page. It tells TPL TABLES to skip the specified number of
lines after a table and continue printing without going to a new page.

When some tables are to be grouped together and others are to start on a
new page, the statement EJECT AFTER TABLES; can be used to cause
particular tables to start on a new page.

If the value of n is greater than 0, the tables are grouped but still look like
separate tables.

If the value of n is 0, there will be no space between the tables. Footnotes
from the joined tables are merged and are put at the end of the last table.
If the same footnote appears in more than one of the tables, its text will
be printed only once, and any automatic footnote numbering is adjusted so
that the numbering does not restart at the beginning of each table.

You may wish to join the tables so that they look like a single table. This
technique is especially useful if you cannot request all of the rows you
want in a single TABLE statement because you need to put different obser-
vation variables in the heading for different rows. To make the tables look
like one, you should delete the table title (and the headnote and wafer la-
bels if present) for all tables except the first. If you want the same heading
labels for the entire group of tables, you can also delete the heading for all
tables except the first. However, if a table with a deleted heading extends
to a second page, deleting the heading looks strange.

If you want a line to show where the tables are joined, use the statement
RULE AFTER ROW; for the last printed line of each table that has an-
other table joined to it.

SKIP 0 LINES AFTER TABLES; works best for short tables that can
be grouped to fit on one page. If the tables have multiple banks or wafers,
the result will probably not be what you want. Likewise, you will get the
best results with tables that have the same number of columns, widths and
alignment. Otherwise, the columns will not line up. When the columns do

	 Format 715

not line up, the tables usually look bad. The results are especially strange-
looking if you have deleted headings for tables other than the first.

 Level Both SKIP AFTER TABLES and EJECT AFTER TABLES can be speci-
fied at the individual table level.

 Default	 EJECT	AFTER	TABLE;

 Example	 FOR	TABLE	1:		SKIP	2	LINES	AFTER	TABLE;

 Effect At the end of the first table, two lines will be skipped and the second table
will begin without going to a new page. If there are other tables after the
second, they will each begin on a new page.

 Example	 SKIP	3	LINES	AFTER	TABLES;
FOR	TABLE	2:		EJECT	AFTER	TABLE;

 Effect At the end of each table except the second, three lines will be skipped and
the next table will begin. The third table will begin on a new page.

 Example Assume that there are ten tables with one row each. We can join them as
follows:

SKIP	0	LINES	AFTER	TABLES;
DELETE	TITLE;
DELETE	HEADING;
FOR	TABLE	1:	 RETAIN	TITLE;
	 	 RETAIN	HEADING;

 Effect The ten tables are joined so that they look like one table with ten rows.
The table titles and headings are deleted for all tables except the first.

 Example The following two tables can be joined on one page so that they look like a
single table.

	 Format 716

Table 44. Health care benefits: Percent of full-time participants by
coverage with selected cost containment features, medium and
large firms

Cost containment feature All par-
ticipants

Profes-
sional and
adminis-
trative
partici-
pants

Technical
and

clerical
partici-
pants

Produc-
tion par-
ticipants

Covered by at least one of the listed
cost containment features1 68 70 70 65

Incentive to seek second surgical
opinion .. 35 40 40 28

Higher coinsurance, or lower or no
deductible for outpatient surgery 28 31 33 23

Higher payment for generic
prescription drugs 7 7 7 6

No or limited reimbursement for
nonemergency weekend
admissions to hospital 10 13 13 8

Separate deductible for hospital
admission 9 10 9 7

1 The total is less than the sum of the individual items because many workers
participate in plans with more than one feature.

NOTE: This table was prepared by TPL TABLES, a product of QQQ Software, Inc.

tpl11282 date = 8/10/92 time = 3:24:36 PM

Table 45. Additional information on health care benefits

Cost containment feature All par-
ticipants

Profes-
sional and
adminis-
trative
partici-
pants

Technical
and

clerical
partici-
pants

Produc-
tion par-
ticipants

Urging prehospitalization testing 47 51 52 43
Preadmission certification requirement 16 18 15 16
Higher payment for delivery at birthing

center ... 12 15 12 11
Incentive to audit hospital statement 2 3 2 1

Not covered by any of the listed cost
containment features 32 29 29 34

Dental plan only1 1 1 1 2()

1 Participants who elected dental coverage only were not included in this tabulation.
2 Less than 0.5 percent.

NOTE: This table was prepared by TPL TABLES, a product of QQQ Software, Inc.

tpl11282 date = 8/10/92 time = 3:24:36 PM

	 Format 717

To join the two tables, use the folloing statements:

SKIP	0	LINES	AFTER	TABLES;
FOR	TABLE	2:	 DELETE	HEADING;
	 	 DELETE	TITLE;

 Effect The two tables are joined to look like one. Footnotes are merged so that
numbering and printing of footnote text is correct.

Table 44. Health care benefits: Percent of full-time participants by
coverage with selected cost containment features, medium and
large firms

Cost containment feature All par-
ticipants

Profes-
sional and
adminis-
trative
partici-
pants

Technical
and

clerical
partici-
pants

Produc-
tion par-
ticipants

Covered by at least one of the listed
cost containment features1 68 70 70 65

Incentive to seek second surgical
opinion .. 35 40 40 28

Higher coinsurance, or lower or no
deductible for outpatient surgery 28 31 33 23

Higher payment for generic
prescription drugs 7 7 7 6

No or limited reimbursement for
nonemergency weekend
admissions to hospital 10 13 13 8

Separate deductible for hospital
admission 9 10 9 7

Urging prehospitalization testing 47 51 52 43
Preadmission certification requirement 16 18 15 16
Higher payment for delivery at birthing

center ... 12 15 12 11
Incentive to audit hospital statement 2 3 2 1

Not covered by any of the listed cost
containment features 32 29 29 34

Dental plan only2 1 1 1 3()

1 The total is less than the sum of the individual items because many workers
participate in plans with more than one feature.

2 Participants who elected dental coverage only were not included in this tabulation.
3 Less than 0.5 percent.

NOTE: This table was prepared by TPL TABLES, a product of QQQ Software, Inc.

TPL12625 date = 8/10/92 time = 5:01:34 PM

 Restrictions The last table to begin on a page must have enough space for at least one
line of data. Otherwise, TPL TABLES will start the table on a new page.

	 Format 718

SKIP AFTER WAFER

	 Format	 SKIP	n	LINES	AFTER	WAFERS;

where n is a number.

 Meaning The SKIP AFTER WAFERS statement can be used to control the grouping
of wafers on a page. It tells TPL TABLES to skip the specified number
of lines after a wafer and continue printing without going to a new page.
The table title is shown only for the first wafer on a page. If a headnote
has been specified, the headnote will be shown only for the first wafer on a
page. Footnotes are shown only for the last wafer on a page. In all other
ways the wafer formats are unchanged.

When some tables are to be printed without going to a new page for each
wafer and some are to be printed with each wafer starting on a new page,
the EJECT AFTER WAFERS statement can be used where wafers are to
start on a new page.

If you specify SKIP 0 LINES AFTER WAFERS; and the table is unbanked
(all columns fit on the page), then the table heading is removed for all wa-
fers except the first on each page. If the table is banked, the headings will
not be removed.

SKIP 0 generally works best with spanning wafer labels between wafers.
See the FORMAT statement WAFER LABEL (Spanner) for an example of
this use.

 Level Both SKIP AFTER WAFERS and EJECT AFTER WAFERS can be speci-
fied at the individual wafer level. NOTE that only one of the two state-
ments can apply to a particular wafer.

 Default	 EJECT	AFTER	WAFER;

 Example	 FOR	TABLE	1:		SKIP	3	LINES	AFTER	WAFERS;

 Effect At the end of a wafer in the first table, three lines will be skipped and the
next wafer will begin without going to a new page.

 Example	 SKIP	2	LINES	AFTER	WAFERS;
FOR	TABLE	2:		EJECT	AFTER	WAFERS;

	 Format 719

 Effect At the end of each wafer, other than in the second table, three lines will be
skipped and the next wafer will begin. In the second table, each wafer will
begin on a new page.

 Restrictions The last wafer to begin on a page must have enough space for at least one
line of data. Otherwise, TPL TABLES will start the wafer on a new page.

If you have a banked table and have also specified FOOTNOTES EACH
PAGE; each wafer will begin on a new page regardless of any other speci-
fication. In other words, the SKIP statement will be ignored.

	 Format 720

SPANNER HEADING

 Format SPANNER	HEADING;

The word HEAD can be used in place of the word HEADING. The word
SPAN can be used in place of the word SPANNER.

 Meaning Whenever possible, the table heading will be formatted so that if the same
label occurs in heading boxes in adjacent columns and the label has the
SPANNER attribute, the label will be placed in one box that spans the
columns.

 Level SPANNER HEADING can be specified for individual tables.

 Default The heading is built from the top down, and heading boxes are aligned
with adjacent boxes, except at the bottom level where the box heights may
need to vary to fill the space above. Labels are not consolidated into span-
ning boxes unless they are in adjacent boxes of the same height.

 Example In the following table, all of the columns except the first have the label
"Average Income" at the lowest level, but the label does not span across all
of its columns because they are not all the same height.

Average income by household type and region.

Number of
House-
holds

Married
couple

Other
family

Nonfamily
household Sex of Householder

Average Income
Male Female

Average Income

Region
Northeast 872 45,672 28,429 19,722 41,881 23,048
Midwest 180 26,798 19,476 15,772 25,008 19,313

If we use the following FORMAT statements to assign the SPANNER at-
tribute to the "Average Income" label and request a SPANNER HEADING,
the heading will be formatted so that the "Average Income" label can be
consolidated into one spanning box.

FOR	VARIABLE	AVG_INCOME:
	 REPLACE	LABEL	WITH	SPANNER	'Average	Income';
SPANNER	HEADING;

	 Format 721

Average income by household type and region.
The label for Average Income has been converted to a spanner.

Number of
House-
holds

Married
couple

Other
family

Nonfamily
household

Sex of Householder

Male Female

Average Income

Region
Northeast 872 45,672 28,429 19,722 41,881 23,048
Midwest 180 26,798 19,476 15,772 25,008 19,313

 Note The above example demonstrates how the SPANNER attribute can be
assigned to a label in the format request. You can also assign the SPAN-
NER attribute to a label when you enter it in a codebook or table request.
If a SPANNER label occurs in the table stub, it will be formatted to span
the data section of the table; if it is used in the heading the SPANNER
attribute will be ignored if you do not also use the SPANNER HEADING
statement.

 Example In the next example, two tables are created by one table request and dis-
played on a single page. The table at the top of the page shows the default
treatment for a table heading with many labels that you would like to join
as spanning labels. The table at the bottom of the page shows how you
can combine the SPANNER HEADING statement with others to join the
labels in the heading and, in addition, remove extra space from the head-
ing, delete the rules from the spanners within a table and delete the rule
at the bottom of the table.

	 Format 722

Table Request

use	survey	codebook;

label	 label1	'label	1';
label	 label2	'label	2';
label	 label3	'label	3';
label	 label4	'label	4';
label	 label5	'label	5';
label	 label6	'label	6';
label	 label7	'label	7';
label	 label8	'label	8';
label	 label9	'label	9';
label	 label10	'label	10';
label	 label11	'label	11';
label	 label12	'label	12';
label	 label13	'label	13';
label	 label14	'label	14';
label	 label15	'label	15';
label	 label16	'label	16';
label	 label17	'label	17';
label	 label18	'label	18';
label	 label19	'label	19';
label	 label20	'label	20';
label	 label21	'label	21';
label	 label22	'label	22';

table	one		center	 'Table	ONE':

					heading		(label1	by	(label2	then	label3)	then	label4
						 then	(label5	then	label6	then	label7)	by	label8)	by	label9	
						 then	(label10	then	(label11	by	(label12	then	label13	then	label14)
						 then	label15	then	(label16	then	label17	then	label18)	by	label19)
						by	label20)	by	label21	then	label22;

					stub						count;

	 Format 723

define	new_sex	on	sex;
''	 	 if	 'm';				 /*	Note:	The	first	wafer	has	a	null	('')	 label.	*/
			 if	 'f';
copy	if	 'm';
copy	if	 'f';

table	two	
center	 'Table	ONE	with	SPANNER	HEADING	and	'
	 'HEAD	SPACE	=	.2;'/
	 'Heading	boxes	with	labels	that	have	the	SPANNER	'
	 'attribute	are	joined	whenever	possible.':

					heading		(label1	by	(label2	then	label3)	then	label4
						 then	(label5	then	label6	then	label7)	by	label8)	by	label9	
						 then	(label10	then	(label11	by	(label12	then	label13	then	label14)
						 then	label15	then	(label16	then	label17	then	label18)	by	label19)
						by	label20)	by	label21	then	label22;

					stub						age;

					wafer		new_sex;

	 Format 724

Format Request

rotate;
column	width	=	.45	in;
stub	width	=	.7	in;
skip	5	lines	after	tables;			/*	Puts	both	tables	on	the	same	page	*/

set	footnote	on_statements
	 symbol	 ''	 text	font	hi	 'Other	new	statements:'/
																														 'head	space	=	.2;'/
																														 'delete	end	rules;'/
																														 'delete	spanner	rules;';

/*	Table	two	combines	the	new	features.	*/

for	table	2:		
	 keep	footnote	on_statements;	 /*	for	documentation	only	*/
	 heading	space	=	.2;	 /*	Remove	space	above	and	below
	 	 	 	 heading	labels.	*/	
	 wafer	label	=	row	spanner;
	 skip	0	lines	after	wafers;
	 delete	down	rules;
	 delete	spanner	rules;
	 delete	last	rules;	 /*	Required	to	remove	rules	between
	 	 	 	 wafers	that	have	spanner	labels.	*/
	 delete	end	rule;
	 spanner	heading;	 /*	Join	the	heading	labels	with	the
	 	 	 	 SPANNER	attribute	if	possible.	*/

/*	The	following	statements	assign	the	SPANNER	attribute	to	heading	
labels	that	should	be	combined	to	span	all	of	their	columns.		Note	that	
since	the	statement	"spanner	heading;"	has	only	been	specified	for	
table	2,	 it	only	affects	the	heading	of	table	2,	even	though	the	same	
labels	are	also	used	in	table	1.	*/

for	variable	label8:	replace	label	with	spanner	 'label	8';
for	variabe	label9:	replace	label	with	spanner	 'label	9';
for	variable	label19:	replace	label	with	spanner	 'label	19';
for	variable	label20:	replace	label	with	spanner	 'label	20';
for	variable	label21:	replace	label	with	spanner	 'label	21';

	 Format 725

T
ab

le
 O

N
E

la
be

l 1
la

be
l 4

la
be

l 5
la

be
l 6

la
be

l 7
la

be
l 1

0
la

be
l 1

1
la

be
l 1

5
la

be
l 1

6
la

be
l 1

7
la

be
l 1

8

la
be

l 2
2

la
be

l 2
la

be
l 3

la
be

l 9

la
be

l 8

la
be

l 2
1

la
be

l 1
2

la
be

l 1
3

la
be

l 1
4

la
be

l 2
0

la
be

l 1
9

la
be

l 9
la

be
l 9

la
be

l 2
0

la
be

l 2
1

la
be

l 2
0

la
be

l 2
1

la
be

l 2
1

C
ou

nt
...

...
...

...
..

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

16
0

T
ab

le
 O

N
E

 w
it

h
 S

P
A

N
N

E
R

 H
E

A
D

IN
G

 a
n

d
 H

E
A

D
 S

P
A

C
E

 =
 .2

;
H

ea
d

in
g

 b
o

xe
s

w
it

h
 la

b
el

s
th

at
 h

av
e

th
e

S
P

A
N

N
E

R
 a

tt
ri

b
u

te
 a

re
 jo

in
ed

 w
h

en
ev

er
 p

o
ss

ib
le

.
la

be
l 1

la
be

l 4
la

be
l 5

la
be

l 6
la

be
l 7

la
be

l 1
0

la
be

l 1
1

la
be

l 1
5

la
be

l 1
6

la
be

l 1
7

la
be

l 1
8

la
be

l 2
2

la
be

l 2
la

be
l 3

la
be

l 8
la

be
l 1

2
la

be
l 1

3
la

be
l 1

4
la

be
l 1

9

la
be

l 9
la

be
l 2

0
la

be
l 2

1

A
ge

14
...

...
...

...
...

...
.

72
72

72
72

72
72

72
72

72
72

72
72

72
72

72
15

...
...

...
...

...
...

.
69

69
69

69
69

69
69

69
69

69
69

69
69

69
69

16
...

...
...

...
...

...
.

17
17

17
17

17
17

17
17

17
17

17
17

17
17

17

M
al

e

A
ge

14
...

...
...

...
...

...
.

27
27

27
27

27
27

27
27

27
27

27
27

27
27

27
15

...
...

...
...

...
...

.
36

36
36

36
36

36
36

36
36

36
36

36
36

36
36

16
...

...
...

...
...

...
.

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7

F
em

al
e

A
ge

14
...

...
...

...
...

...
.

45
45

45
45

45
45

45
45

45
45

45
45

45
45

45
15

...
...

...
...

...
...

.
33

33
33

33
33

33
33

33
33

33
33

33
33

33
33

16
...

...
...

...
...

...
.

10
10

10
10

10
10

10
10

10
10

10
10

10
10

10

O
th

er
 n

ew
 s

ta
te

m
en

ts
:

he
ad

 s
pa

ce
 =

 .2
;

de
le

te
 e

nd
 r

ul
es

;
de

le
te

 s
pa

nn
er

 r
ul

es
;

	 Format 726

STUB CONTINUATION

	 Format	 STUB	CONTINUATION	=	amount		[unit];

where amount is a number and unit is optional. If no unit is specified,
characters are assumed. If a unit is specified, the amount can be a deci-
mal number and unit can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning If a stub label is too long for the available space, it will automatically be
segmented over two or more lines. All continued segments will be indent-
ed n character positions from the first line segment for that label.

 Level Stub continuation can be controlled at the individual table level. Stub con-
tinuation cannot change within a table.

 Default	 STUB	CONTINUATION	=	3;

 Example	 STUB	CONTINUATION	=	2;

 Effect If a stub label is too long for the available space, the continued segments
will be indented 2 character positions from the first line segment for that
stub. Thus, if the first line of a label starts in position 1, continuation lines
will start in position 3.

 Restrictions If indention of a continuation segment of a label would cause the segment
to start beyond the position specified by STUB STOP, the segment will not
be indented. It will be aligned with the first line of the label. The default
position for stopping indentation is at the middle of the stub.

In a text table, continuation will be rounded to the nearest character.

	 Format 727

STUB INCREMENT

	 Format	 STUB	INCREMENT	=	amount		[unit];

where amount is a number and unit is optional. If no unit is specified,
characters are assumed. If a unit is specified, the amount can be a deci-
mal number and unit can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning For each level of nest in the stub, indent the stub labels n character posi-
tions.

 Level Stub increment can be controlled at the individual table level. Stub incre-
ment cannot change within a table.

 Default STUB	INCREMENT	=	2;

 Example STUB	INCREMENT	=	.4	inches;

 Effect For each level of nest in the stub, indent the stub labels .4 inches. Thus, if
the labels for the first level of nest starts 1 inch from the left margin, labels
for the second level of nest will start 1.4 inches from the margin, and so
on.

 Restrictions If there are enough levels of nest in the stub to cause the indentation to go
beyond the position specified by STUB STOP, indentation will stop. The
default position for stopping indentation is at the middle of the stub.

In a text table, indentations will be rounded to the nearest character.

	 Format 728

STUB LEFT

The default stub location is STUB LEFT which means that tables are nor-
mally formatted with the stub on the left side. Alternate stub locations are
described under the STUB RIGHT statement.

STUB RIGHT

	 Format	 STUB	RIGHT;

 Meaning With STUB RIGHT, tables are formatted with the stub on the right side of
the table instead of the left. This is most often used to prepare tables on
facing pages. It is particularly useful if you need to do a table in two lan-
guages on facing pages where the left page has the stub on the left in one
language and the right page has the stub on the right in another language.

 Note To divide a table into left and right facing pages with left and right stubs,
you need to prepare two table statements with half of the heading in each
table. To align the two tables, you may need to make the right STUB
WIDTH somewhat larger. Otherwise, the stub labels on the right side are
likely to "break" sooner and require more lines than the stub labels on the
left.

 Note If you need different languages in the two stubs, you must have a different
set of stub labels for each of the two tables. You can do this with REDE-
FINE in the codebook or with DEFINE and COMPUTE statements in the
table request or with format label statements.

For right-hand table stubs, the default start position for stub labels is in-
dented five positions (STUB START = 5;); for left-hand stubs, the default
start position is the left edge of the stub (STUB START = 0;).

See also the section on LEFT, RIGHT and CENTER in the "Labels" chap-
ter for an example of the effect of alignment specifications when used in
labels for a stub on the right.

 Level Stub position can be specified at the individual table level.

	 Format 729

 Default	 STUB	LEFT;

 Example	 FOR	TABLE	2:		STUB	RIGHT;

 Effect The second table will be formatted with the stub on the right.

 Note If you have specified STUB RIGHT for a text table, and you are using a
STUB START value expressed in characters, one of the characters will be
taken up by the vertical bar between the data part of the table and the stub.
Thus, if you are using the default STUB START = 5; for right-hand stubs,
you will get only 4 dots preceding the beginning of the left-most stub la-
bels.

 Restrictions If you have specified STUB RIGHT; and you want to set STUB START
= 0; the STUB START statement must follow the STUB RIGHT state-
ment. In any other situation, the order of the statements is irrelevant. For
esthetic reasons, we do not recommend the combination of STUB RIGHT
and STUB START = 0; unless you delete down rules or replace the divide
character with blank. If the rule is present, the stub labels may look like
they are touching the vertical rule at the edge of the data section of the
table.

	 Format 730

STUB START

	 Format	 STUB	START	=	amount		[unit];

where amount is a number and unit is optional. If no unit is specified,
characters are assumed. If a unit is specified, the amount can be a deci-
mal number and unit can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning The left-most position for stub labels is indented by the specified amount.

 Level Stub start amount can be specified at the individual table level.

 Default	 STUB	START	=	0;	 for left-hand table stubs
STUB	START	=	5;	 for right-hand table stubs.

 Example	 FOR	TABLES	3	AND	4:		STUB	START	=	2	CM;

 Effect For tables 3 and 4, the left-most stub label position will be indented 2 cen-
timeters from the left edge of the stub.

 Restrictions If you have specified STUB RIGHT; and you want to set STUB START
= 0; the STUB START statement must follow the STUB RIGHT state-
ment. In any other situation, the order of the statements is irrelevant. For
esthetic reasons, we do not recommend the combination of STUB RIGHT
and STUB START = 0; unless you delete down rules or replace the divide
character with blank. If the rule is present, the stub labels may look like
they are touching the vertical rule at the edge of the data section of the
table.

	 Format 731

STUB STOP

	 Format	 STUB	STOP	=	amount		[unit];

	
where amount is a number and unit is optional. If no unit is specified,
characters are assumed. If a unit is specified, the amount can be a decimal
number and unit can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning The last position within the stub at which a stub label line can begin print-
ing is indicated by n.

 Level Stub stop can be controlled at the individual table level. Stub stop cannot
change within a table.

 Default The default STUB STOP is the middle of the stub. For example, if the
stub width is 20 and no STUB STOP is specified, no label or label segment
can begin beyond position 10.

 Example	 STUB	STOP	=	15;

 Effect Stub labels (including continuation segments) that would begin at a posi-
tion beyond position 15 according to other rules of stub label placement
will not be indented.

 Restrictions STUB STOP cannot be greater than the stub width. If STUB STOP is 0 or
1, there will be no stub indentation.

	 Format 732

STUB WIDTH

	 Format	 	 STUB	WIDTH	=	amount		[unit];

where amount is a number and unit is optional. If no unit is specified,
characters are assumed. If a unit is specified, the amount can be a decimal
number and unit can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left
out altogether.

 Meaning Make the table stub n characters wide.

See also AUTOMATIC STUB AND COLUMN WIDTHS in this chapter
for automatic adjustment of stub widths to fill the available space.

 Level Stub width can be controlled at the individual table level. Stub width can-
not change within a table.

 Default	 STUB	WIDTH	=	20;

 Example	 FOR	TABLE	3:		STUB	WIDTH	=	30;

 Effect The stub will be 30 characters wide in table 3.

 Note STUB WIDTH = 0; has the same effect as the DELETE STUB statement.
All stub entries, including SPANNER labels, are deleted.

 Restrictions The minimum stub width is 3 characters. The page must be wide enough
to hold the stub + the margins + the widest column.

	 Format 733

TABLE SPACE

 Format TABLE	SPACE		=		n;

where n is a decimal number that is a multiplier of the font size.

 Meaning TABLE SPACE can be used to increase or decrease the vertical space
between tables elements. For example, space is changed between title and
top of heading, between bottom of heading and first data row, and between
last data row on a page and the horizontal line below it.. The most com-
mon use is to decrease the space so that the table will take less vertical
space on the page. TABLE SPACE is ignored in the export of text tables.

 Important Note If you simply want to scale down the size of your table, see the SCALE
statement. With the SCALE statement, you can reduce the overall size
of everything in a table to a percentage of its original size and fit more
of your table on a page or other smaller space. TABLE SPACE does not
work with all types of table, but SCALE will work with all tables.

In general, the minimum recommended table space is .2.

The space between lines of data or labels is not affected by the TABLE
SPACE statement. See the statement EXTRA LEADING to change the
space between lines.

See also HEADING SPACE to change the vertical space in the headig
only.

 Level TABLE SPACE can be specified for individual tables.

 Default	 TABLE	SPACE	=	1.15;

 Example Following are two tables, the first with the default table space of 1.15 and
the second with table space of .3:

FOR	TABLE	2:		TABLE	SPACE	=	.3;

	 Format 734

Table with default table space.

Total

Sex

Female Male No
response

Total 160 88 70 2
Age
14 72 45 27 –
15 69 33 36 –
16 19 10 7 2

– Data not available.

TPL1 date = 2/5/01 time = 7:03:07 PM Page 1

Table with table space reduced to .3.

Total
Sex

Female Male No
response

Total 160 88 70 2
Age
14 72 45 27 –
15 69 33 36 –
16 19 10 7 2

– Data not available.

TPL1 date = 2/5/01 time = 7:03:07 PM Page 2

 Restrictions TABLE SPACE should not be used with statements that join tables, wafers
and banks, for example:

SKIP	0	LINES	AFTER	TABLES;
SKIP	0	LINES	AFTER	WAFERS;
SKIP	0	LINES	AFTER	BANKS;

The combination of these statements with TABLE SPACE will produce un-
desirable results such as extra horizontal rules or overlapping lines of text.

For a table that has stub or wafer labels that have the SPANNER attribute,
TABLE SPACE may not give the desired results. For example, vertical
rules may run into spanner labels.

If you have a table with one of the listed restrictions or another type of
table for which TABLE SPACE does not give you the results you expect,
we recommend the SCALE statement.

	 Format 735

TEXT TABLE OUTPUT (UNIX only)

 Format	 TEXT	TABLE	OUTPUT	=	YES	or	NO	or	PROMPT;

Normally, TPL TABLES will prompt you at the end of a job to find out
if you would like to export the tables to other formats. To prevent the
prompt for TEXT TABLE, and the other export statements, you can use
this statement and each of the other export statements with YES or NO.

UNDERLINE ROW

This command has been replaced by
RETAIN RULE AFTER ROW UNDERLINE;

	 Format	 UNDERLINE	ROW;

 Note The UNDERLINE ROW has no effect when applied to exported text
tables.

 Meaning Underline the data section of the specified rows. A row is defined as a
data row in the table. If a row has a stub label or cell contents that take
more than one line, it still counts as one row, so the blank line will follow
the bottom line for the row.

The statement can be used with a FOR clause to underline only selected
rows. If used without a FOR clause, it will insert a line after every row of
every table.

 Note If any rows of a table do not appear in the table because they are empty
(do not have any data) or because the rows are ranked, you cannot deter-
mine row numbers by counting data rows in the printed table. If you are
using TED, you can just select the rows you wish to underline. If you
do not have access to TED, you can find the row numbers for PRINTED
ROWS in the OUTPUT file. If you reference an empty row, the UNDER-
LINE ROW statement will have no effect.

See also the statement RULE AFTER ROW for another way of adding
horizontal lines to the body of a table.

	 Format 736

 Level UNDERLINE ROW can be specified for individual rows.

 Default Tables are formatted without underlined rows.

 Example	 FOR	TABLE	ONE:		UNDERLINE	ROWS;

 Effect For Table One, the data portion of the row is underlined for all data rows.

Table F10: Amount of training and average age by sex.

Total

Sex

Female Male No
response

Total
Average Age 44 44 44 48
Employer Training

with multi-line
label High High High Low

Manufacturing
Average Age 46 1() Multi-line

text for
mask

48

Employer Training
with multi-line
label High Medium Medium Low

Other
Average Age 43 43 43 –
Employer Training

with multi-line
label High High Medium –

1 Confidential
– Data not available.

TPL29931 date = 1/2/95 time = 9:57:19 AM Page 1

 Example	 FOR	TABLE	ONE,	ROWS	2	TO	100	BY	2:		UNDERLINE	ROWS;

 Effect For Table One, the data portion of the row is underlined for alternate data
rows in the range of row 2 to row 100.

	 Format 737

WAFER LABEL SPANNER

	 Format	 WAFER	LABEL	=	DATA	SPANNER;
WAFER	LABEL	=	ROW	SPANNER;
WAFER	LABEL	=	HEADNOTE;

Any one of the three options can be chosen. The word IS can be used in
place of =. Both are optional and can be left out altogether.

 Meaning Normally wafer labels are displayed at the top left of each wafer between
the table title and the heading. This is the HEADNOTE position. If you
choose WAFER LABEL = DATA SPANNER, the wafer label will be
displayed as a spanner label, directly beneath the table heading, spanning
the data columns. If you choose WAFER LABEL = ROW SPANNER, the
wafer label will be displayed as a spanner label, directly beneath the table
heading, spanning the entire width of the table. In either case, the span-
ning label will have a horizontal rule (line) above and below.

Spanning wafer labels are centered by default. You can override these de-
faults with the statement ALIGN WAFER LABELS. An alignment speci-
fication that is part of a wafer label will take precedence over any other
alignment specifications. If you have nested variable labels in a wafer with
different alignment specifications for each and you do not like the spanner
label that results, you can replace it with the statement REPLACE WAFER
LABEL.

 Note Wafer labels can only be turned into spanners by using a WAFER LABEL
statement. A SPANNER specification entered directly into a label will
only produce a spanner if the label is used in the stub.

For unbanked tables, WAFER LABEL = DATA or ROW SPANNER;
works well with the statement SKIP 0 LINES AFTER WAFERS; Normal-
ly, each wafer begins on a new page. If you combine the WAFER LABEL
and SKIP 0 statements, you can join wafers with spanning wafer labels.

 Level WAFER LABEL can be controlled at the individual table level.

 Default	 WAFER	LABEL	=	HEADNOTE;

 Example	 WAFER	LABEL	=	ROW	SPANNER;

 Effect Wafer labels are displayed as spanners across the full width of the table
under the table heading. Each wafer begins on a new page.

	 Format 738

 Example	 WAFER	LABEL	=	DATA	SPANNER;
SKIP	0	LINES	AFTER	WAFERS;

 Effect Wafer labels are displayed as spanners across the data portion of the table.

Does age and sex of siblings affect nervousness
with members of the opposite sex?

Nervous with opposite sex?

Total Nervous Not
nervous

Female

Get along with Mom?
Yes 60 37 23
No 3 1 2
So-So 23 12 11
N/A 1 1 –
Total 87 51 36

Male

Get along with Mom?
Yes 54 22 32
No 2 – 2
So-So 11 4 7
N/A 2 2 –
Total 69 28 41

Both sexes

Get along with Mom?
Yes 114 59 55
No 5 1 4
So-So 34 16 18
N/A 3 3 –
Total 156 79 77

– Data not available.

If the table is not banked, i.e. all columns fit across the page as shown in
the illustration for three wafers, the wafers are joined as follows. For the
first wafer on a page, the spanner is directly beneath the heading. For sub-
sequent wafers on the same page, all title, headnote and heading lines are
removed leaving only the spanning wafer labels between wafers. Footnotes
are displayed only at the end of a page.

	 Format 739

If the table is banked and footnotes are to be displayed at the end of the
table, the wafers will be joined whenever possible, but the table heading
will not be deleted.

If the table is banked and you have specified FOOTNOTES EACH PAGE;
each wafer will begin on a new page regardless of other specifications.
The SKIP 0 LINES statement will be ignored.

 Restrictions The selection of spanner type, ROW, DATA or HEADNOTE, is unaffected
by the DATA SPAN or ROW SPAN statements. These statements apply
only to SPANNER labels entered in the table stub and horizontal rules
specified with RULE AFTER ROW.

XLS OUTPUT (UNIX only)

 Format	 XLS	OUTPUT	=	YES	or	NO	or	PROMPT;

Normally, TPL TABLES will prompt you at the end of a job to find out
if you would like to export the tables to other formats. To prevent the
prompt for XLS, and the other export statements, you can use this state-
ment and each of the other export statements with YES or NO.

	 Appendix A: Installation (Windows) 740

a p p e n d i x a

Installation (Windows)

hOw TO inSTALL TPL TABLeS under
windOwS

Installing from the CD

If you are replacing an earlier version of TPL TABLES, please review the
next section before installing the new version.

To install, insert the CD in the CD drive. After a pause, the installation
process may begin automatically. If it does not start automatically, go to
Start then Run. Select the file setup.exe on the CD and click on "OK".

Respond to the prompts.

Installing from Download

If you are replacing an earlier version of TPL Tables, please review the
next section before installing the new version.

To install, download the self-extracting file and execute it.

Respond to the prompts.

	 Appendix A: Installation (Windows) 741

If You Have an Earlier Version of TPL TABLES

.tpl Files

During installation, new profile.tpl, color.tpl and country.tpl files will
be placed in the TPL system directory. If you are installing a new version
on top of a previous one and have previously edited these files to establish
your own set of system defaults, you will probably want to save them in
another place and copy them into the system directory after doing the new
installation. If you are installing TPL Tables in a new location, you may
wish to wish to update the new .tpl files with lines from the older .tpl files.

Replacing a Previous Version of TPL TABLES

If you do not want to retain your previous version and you want to install
the new version in the same place as the old, we recommend that you unin-
stall the old version before installing the new one.

Using More than One Version of TPL TABLES

A new version of TPL TABLES can be installed without removing earlier
versions. The different versions will not interfere with each other provided
that they are installed in different directories and run against codebooks
processed by the correct version.

tpl.ini

For Version 6, a file named tpl.ini was installed in the Windows system di-
rectory (e.g. c:\winnt or c:\windows). tpl.ini is a text file that contains in-
formation about your TPL TABLES preferences and also path information
for TPL modules. Each time you use TPL TABLES, the current prefer-
ence settings will be saved in tpl.ini. You should not directly modify this
file. Instead use the various preferences menus in the TPL system to set
these values. For Version 7 and following, the tpl.ini file has been moved
to a location specified by the environment variable TPL_INI. This envi-
ronment variable is set during installation. Version 6 will continue to use
the copy of tpl.ini in the Windows system directory. So if you have both
Version 6 and Version 7 installed, they will not necessarily have the same
preferences. From version 7 forward, a common tpl.ini file is used.

	 Appendix A: Installation (Windows) 742

Network Installation

In a network installation, it is desirable to have the TPL TABLES programs
in a common location on a server but make preferences user specific.
Version 7.1 supports this goal in such a way that it does not compromise
restricted directories. TPL Version 7.1 uses two environment variables,
TPLPATH7.1 and TPL_INI. On each machine using TPL TABLES, set
TPLPATH7.1 to the common server location where the modules are in-
stalled. Set TPL_INI to a location on the user's machine that he has read
and write access to.

It is also desirable to add a directory structure to the user's start menu with
entries for each of the programs, documentation, and help files included in
a standard install. Adding a desktop shortcut which points to this directory
structure in the start menu completes a full network install.

Compatibility

"Source" Files
"Source" files, including codebook sources, table requests, and format
requests, that run with earlier versions of TPL TABLES should run without
change. The only exception is if you have a name that has been added to
the list of Keywords. In the unlikely event that this happens, you will get
a message and will need to change the name.

Codebooks, table requests and format requests created interactively and
saved by Codebook Builder, Table Builder or interactive TED may contain
statements that will not work with earlier versions of TPL TABLES.

Codebooks and TPL Subdirectories
Codebook objects (processed codebooks) created by earlier versions are not
compatible with Version 7.1. Before running tables jobs, you will need to
reprocess the codebooks.

TPL subdirectories created by earlier versions of TPL Tables are not com-
patible with Version 7.1. You cannot do a rerun process using an old TPL
subdirectory with this version of the system.

	 Appendix A: Installation (Windows) 743

Default Settings in Profile.tpl

After you have installed TPL TABLES, there will be a file called profile.
tpl in the directory where you installed the system. It contains a set of
text statements that determine defaults for basic activities. A sample profile
after installation is:

Postscript	=	yes	;
Default	font	=	H	8;
Footnote	text	font	=	T	8;
Footnote	symbol	font	=	H	8;
Title	font	=	HB	10;
paper	=	LETTER;

All statements entered in the profile during installation are described in
detail in the FORMAT Language chapter of the manual.

If you wish, you can change the values in the profile after installation and
also have different profiles for different sets of jobs.

Networks

Licensing Note

If you are accessing a copy of TPL TABLES installed on a network server,
you must have a license to use TPL TABLES on your PC.

	 Appendix B: Run Instructions (Windows) 744

a p p e n d i x B

Run Instructions (Windows)

inSTruCTiOnS fOr running TPL TABLeS
under windOwS

Introduction

TPL TABLES can be run using interactive menus, or it can be run as a
batch process using scripts. Scripts are described in a separate appendix
as well as in TPL Help. This appendix describes the basic information
needed to run jobs from menus and the various input and output files for
different types of jobs. Similar information can also be found in TPL
Help, along with additional details about the options available in the inter-
active menus for running jobs.

TED and Other Editors

TPL TABLES is designed to allow you to use the editor (word processing
program) of your choice to create codebooks, table requests and format
requests. Any editor that creates stand-alone ASCII text files is acceptable.

You can also use TED, the TPL Editor. TED lets you edit, view, and print
character files. It also allows you to view, print, and interactively edit
tables produced by TPL TABLES. You can use it to print tables on any
Windows compatible printer. Finally TED allows you to export tables in
formats usable by other software.

If you are running a job that stops because of errors, TPL TABLES will
transfer to TED to allow you to view the error messages and make correc-
tions. When you are finished, you can return to TPL TABLES to resume
processing.

	 Appendix B: Run Instructions (Windows) 745

TED is an integral part of TPL TABLES, but you can also use it without
starting TPL TABLES. See TED Help for complete details.

Description of Jobs and Files

Getting Started

You can start TPL Tables by clicking on the TPL icon or by going to Start
then Programs then QQQ Software then TPL.

You can run as many jobs as you wish without leaving TPL.

Selecting the Job Directory

The Job Directory is the directory in which your TPL jobs will run. You
will probably find it most convenient to set the Job Directory to the direc-
tory where your codebook, data and request files are stored, but you can
choose a different directory if you wish.

Outputs are stored in the Job Directory. These outputs include the pro-
cessed codebooks and TPL subdirectories described in this appendix. For
this reason, it is important to know what Job Directory you are in. If an
output is not found in the expected place, the likely reason is that the Job
Directory was set to a place other than the intended one.

To see what the current Job Directory is or to change to a different Job
Directory, go to File then Job Directory.

Creating and Processing Codebooks

Codebooks can be created either with an editor or interactively with Co-
debook Builder. To create a codebook interactively, go to File then Build
Codebook in the main TPL screen. Instructions for creating codebooks
interactively can be found in Codebook Builder Help.

After you have created the codebook, you can save it into a file with a
name of your choice. Usually the codebook is saved into a file with the
same name used at the beginning of the codebook. For example, if you
name the codebook Survey with the codebook entry Begin Survey Co-
debook, save it with the name Survey.cbk. The codebook file you have
created is called the codebook source.

Run the codebook processor, giving it the name of the codebook
source. In the main TPL screen, go to Run then Codebook. When

	 Appendix B: Run Instructions (Windows) 746

prompted, enter the name of your codebook source file, for example Sur-
vey.CBK.

If any errors are found in your codebook, you will be transferred to TED
where you will see two windows open, one containing your codebook
source and another showing the source with error messages. Edit the code-
book source to correct the errors. When you are finished, Go to Return to
TPL then Save changes and try again. Your corrected codebook source
will automatically be saved before processing continues.

Note In some cases, you may not wish to resume processing. For example, if
you have accidentally entered in the menu the name of a file that is not a
codebook source file, you will need to go back to the menu to correct it.
In this case, go to Return to TPL then Cancel.

As the codebook is being processed, the source and any error messages
are saved in a file with the same name as the codebook and a .O exten-
sion. For example, if your codebook is named Survey, the file is called
Survey.O.

When your codebook has been processed successfully with no errors, the
.O file will be deleted and the .L codebook abstract file will take its place.
You can view and/or print the abstract in TED by clicking on the Review/
Print button when your job is completed. When you are finished, you can
close TED or go to Return to TPL then Resume.

Codebook Abstract
The abstract includes the name of the codebook source file, the date and
time of processing, and the TPL version number. In addition, it contains a
list of the codebook variables in alphabetical order along with each vari-
able's size and location within a record. This information is particularly
useful if you have an alignment problem between your codebook and your
data file. You may also find the abstract useful as a quick reference when
preparing your table specifications. If you are creating a codebook describ-
ing a CSV or other type of delimited file or a database, the information in
the abstract will differ slightly.

For each control variable, there is a count of the number of condition val-
ues.

Note If your data file is an ASCII file, it will have carriage return/line feed char-
acters at the end of each record. These will not be included in the record
sizes listed in the abstract. ASCII is the default file type.

	 Appendix B: Run Instructions (Windows) 747

Codebook Object
The processed codebook is called the codebook object. When you have
successfully run the codebook processor, your codebook object will be
stored with .K appended to the name. Thus, for a codebook named Survey,
the codebook object will be given the name Survey.K.

Once your codebook is successfully processed, you can run any number of
table jobs using the same codebook object.

Note The name of your codebook object will always be derived from the name
you have used in the BEGIN codebookname entry in the codebook,
regardless of the name you give to your codebook source file.

Database Codebook Source

The following applies if you have the TPL-SQL database interface. When
a database codebook is processed, there is another file generated in addition
to the .K and .L files. This is the .S file. When a you create a codebook
source for a database, you omit some items such as field widths and con-
trol variable condition values. These are filled in by gathering data from
the database. The .S file is a new codebook source with the additional
data filled in. See the TPL-SQL chapter and/or TPL Help for more details.

Producing Tables

Tables requests can be created either with an editor or interactively with
Table Builder. To create a table request interactively, go to File then Build
Table in the main TPL screen. Instructions for creating table requests
interactively can be found in Table Builder Help.

In the USE statement at the beginning of a table request, you can refer to
the codebook using the same name you used in the BEGIN codebook-
name CODEBOOK statement. Using the name Survey shown in the ex-
ample above, you would say USE Survey CODEBOOK; at the beginning
of your table request. TPL TABLES will know to look for a codebook
object file called Survey.K for descriptive information about your data file.

If your codebook is in a subdirectory other than the one in which you are
running your table job, you can give the complete name for the codebook
in the USE statement.

Save your table request with any valid Windows file name, for example,
Survey.REQ.

	 Appendix B: Run Instructions (Windows) 748

You may also have an optional format request giving detailed specifications
for formatting your tables. The format request can have any valid Win-
dows file name, for example, Survey.FMT.

To produce tables, you need to enter the names of the table request
file, the data file and (optionally) the format request. In the main TPL
screen, go to Run then Table Request. When prompted, enter the name
of your table request, your data file, and (optionally) the format request.
If your data is contained in more than one file, see the Data chapter for
instructions on multi-file input.

If any errors are found in your table or format requests, you will be trans-
ferred to TED where you will see two windows open, one containing your
table request or format request and another showing the output with error
messages. Edit the request to correct the errors. When you are finished,
go to Return to TPL then Save changes and try again. Your corrected
request will automatically be saved before processing continues.

Note In some cases, you may not wish to resume processing. For example, if
you have entered an incorrect data file name in the menu, you will need to
go back to the menu to correct it. In this case, go to Return to TPL then
Cancel.

When TPL TABLES has finished processing your data and calculating the
values for your tables, you can review the tables and other output on the
screen, print them, or export the tables into files of different types such as
Encapsulated PostScript or HTML. To do this, transfer to TED by clicking
on the Edit/Print button. Your outputs will be opened in TED. When
you are finished, you can close TED or go to Return to TPL then Re-
sume.

You can also edit PostScript tables interactively in TED. Double-click on
any part of a table and you will be presented with editing options. Com-
plete instructions for interactive editing can be found in TED Help.

The TPL Subdirectory

Each time you run a tables job, a subdirectory is created to contain the files
needed to create your tables. The subdirectory has the name TPLnnnnn
where nnnnn is a randomly generated number with 1 to 5 digits. You can
override this number by entering the number of your choice in the Table
Request screen where you enter the file names to be used for your tables
job.

	 Appendix B: Run Instructions (Windows) 749

See also the Script arguments -O and -N for selecting subdirectory numbers
in TPL scripts.

Completed tables are stored in a TPL subdirectory file called TABLES.PS.
If Postcript = no; is used, the tables are stored in the file TABLES.

The file called OUTPUT contains your request files, the names of your
data and request files, the date and time of execution for each part of the
job, the TPL version number, and, at the end, the name of the TPL subdi-
rectory in which it was created. It also shows how many pages of tables
were created, and which lines and columns will be printed on each page.

The other files in the subdirectory are not intended to be read but are used
by TPL TABLES and saved in case you want to reformat the tables without
reading the data again.

Subdirectory Maintenance
If you go to Run then Remove Directories in the main TPL screen, you
can get a list of TPL subdirectories. In addition to removing all or selected
directories, you can add notes to the directories. If you click on a subdi-
rectory on the list, you will get the date and time that the subdirectory was
created and a display of any notes that have been added.

The subdirectories on the list are those contained in the current Job Direc-
tory. The Change button lets you change to a different Job Directory.

Rerunning the Format Step to Make Modifications

After running a table job, you may see that the appearance of your tables
could be improved by changing certain formatting characteristics of the
tables. For example, if the numbers in the tables are very large, the default
column width may be too small, or you may want to change a table title or
label. You can quickly change the format of your tables by rerunning only
the table formatting part of a job.

You specify the changes that you want using the FORMAT language. The
FORMAT statements go into a file called a format request that you cre-
ate using TED or some other editor. The format request file can have any
valid Windows name, for example, Survey.FMT.

You can also create or modify a format request interactively in TED.
Complete instructions for interactive editing can be found in TED Help.

	 Appendix B: Run Instructions (Windows) 750

To rerun the format step, TPL TABLES needs to know the number of
the TPL TABLES subdirectory containing the existing tables and the
name of the format request file. In the main TPL screen, go to Run then
Rerun. When prompted, enter the name of your format request and the
TPL Subdirectory for the original run. When the tables are reformatted,
the new version of the tables will replace the originals in the TABLES.PS
or TABLES file.

If you rerun the formatting step and do not like the result of your format
changes, you can always get back to the original tables by rerunning this
step again without entering the name of a format request file.

You can reformat a set of tables any number of times without reprocessing
the data.

Interactive Edit and Export of Tables

As already described, you can transfer to TED after a run or rerun using
the Edit/Print button and have the table output displayed for further activi-
ties. If you start TED later and simply open a tables.ps file, the full range
of activities is not available. In particular, you cannot do most types of
exports or edit the table interactively.

To make the full range of activities available, go to File then Edit Table
in the main TPL screen. You will be prompted for the TPL subdirectory
that contains the tables.ps file and will then be transferred to TED as you
would be with the Edit/Print button.

Customizing with PROFILE.TPL

The TPL TABLES installation process creates a file called PROFILE.
TPL and puts it in the TPL TABLES system directory. PROFILE.TPL is
a text file that you can edit. It contains FORMAT statements that become
defaults for such things as fonts and paper size. You can change these
defaults and also add other FORMAT statements to set additional defaults.
For example, if you always want your tables left-adjusted on the page,
you can make it the default by including the FORMAT statement ALIGN
TABLE LEFT; in PROFILE.TPL.

If you want to leave the system profile unchanged, but use a different pro-
file for a particular set of jobs, you can make a copy of PROFILE.TPL in
the directory where you are working and change that copy to fit the tables

	 Appendix B: Run Instructions (Windows) 751

you are preparing. The profile in the directory where you are working will
override the one in the TPL TABLES system directory.

Encapsulated PostScript (EPS)

Most desktop publishing software that allows you to add PostScript files to
a document requires that these files follow certain conventions. Files that
follow these conventions are called Encapsulated PostScript (EPS) files.
The EPS files created by TPL TABLES can be incorporated into your
document according to your desktop publishing software's rules for bring-
ing in Encapsulated PostScript files. EPS files have the file extension .eps.

There are three ways of converting PostScript tables to EPS.

 1. If a tables.ps file is open in TED, you can export EPS interactively.
See TED Help for details.

 2. EPS files can be exported using TED arguments in scripts as de-
scribed both in TPL Help and in the Scripts appendix.

 3. The ENCAPS program provides a third way.

ENCAPS
ENCAPS is a stand-alone command line program that is installed in the
TPL TABLES system directory. To run it, change into the TPL subdirecto-
ry that contains the tables.ps file you wish to convert. Assuming that TPL
TABLES in installed in C:\QQQ\TABLE, give the command:

C:\QQQ\TABLE\WTPL\ENCAPS		.		0		TABLES.PS		<Enter>

Your tables will then be divided into pages and an EPS file will be created
for each page. These files will be saved in the TPL subdirectory and will
be named according to page and table number. For example, if you have
a two page table followed by a one page table, the table output will be
divided into three files with the following names:

P1T1.EPS
P2T1.EPS
P3T2.EPS

ENCAPS will report the names of the EPS files as they are created.

Other options are available, such as naming the directory for the output
instead of specifying '.' for the current directory and running silently with

	 Appendix B: Run Instructions (Windows) 752

no reporting (1 instead of 0). The current options will be displayed on the
screen if you type:

C:\QQQ\TABLE\WTPL\ENCAPS		<Enter>

Note If you have more than one table on a page, they will all be contained in the
same EPS file.

Other Export Formats

When TPL Tables is run, it supports many different export formats. One
of the new ones is a text table format very similar to the format produced
when PostScript = NO; is specified.

There are two ways to produce exported tables.

 1. You can export the files interactively from TED after doing a table
run or a rerun using the Run menus. See TED Help for details.

 2. You can export the files using TED arguments in scripts as de-
scribed both in TPL Help and in the Scripts appendix.

Common Error and Warning Messages

Error and warning messages are intended to be self-explanatory. However,
a few common messages deserve special note.

Syntax error message

	***	ERROR:	A	syntax	error	was	discovered	while	processing		 'element'.
	 Look	for	the	error	at	or	before	that	point.

This message appears whenever there is a syntax error in a codebook,
table request, format request or profile. Examples of syntax errors are
misspelled keywords or punctuation errors such as a missing colon (:) or
semicolon (;). The point at which TPL TABLES discovered the error is
indicated by the element in quotes.

	 Appendix B: Run Instructions (Windows) 753

Example The following sequence in a table request will produce the message shown
below.

TABLE	ONE	'Average	Income	by	Region'
	 HEADING	REGION,

***	ERROR:	A	syntax	error	was	discovered	while	processing	'HEADING'.
	 Look	for	the	error	at	or	before	that	point.

Since the error was found when the word HEADING was encountered,
we can assume that there is something wrong with the word HEADING,
or that an error preceded the word HEADING so that it appears to be in
the wrong place. In this example, a colon (:) is missing following the
table title. TPL TABLES is looking for the colon when it finds the word
HEADING.

Undefined variable error message

***	ERROR:	The	variable	'variable	name'	is	undefined.

A frequent cause of this error is a misspelled name. Another cause is a
reference to a variable that has not yet been defined. For example, if a
variable is computed in a COMPUTE statement and used in a TABLE
statement that precedes the COMPUTE statement, the computed variable is
unknown to TPL TABLES when it finds it in the TABLE statement.

Example Misspelling of the variable name INCOME as INCOM produces the mes-
sage shown below.

POST	COMPUTE	AVG_INCOME	=	INCOM	/	PERSONS;

***	ERROR:	The	variable	'INCOM'	is	undefined.

Narrow column warning message

***	WARNING:		Some	columns	in	your	tables	are	too	narrow	to	hold	
your	table	cells.		See	the	output	file	for	details.

When TPL TABLES is formatting a table, if a data value is too wide to
fit in the column, it will be replaced with the built-in NO_FIT footnote,
making it obvious that the value does not fit. However, TPL TABLES first
attempts to display the value by removing mask items such as commas,
percent signs and footnote symbols and displays the value without these

	 Appendix B: Run Instructions (Windows) 754

items. This warning message will alert you to the fact that one or more
values are missing some mask items.

If you get this message, it will be at the end of the file called output. You
can then search for other instances of *** WARNING in the layout section
of the output to get more detailed information about where values had
items removed. For example,

***	WARNING:		For	table	1,	page	1,	column	1	is	too	narrow	to	hold	
some	data	cells.

Specifying Extra Memory

For certain types of large jobs, you may be able to improve performance
by increasing cell memory space with the CELL MEMORY statement.
The statement is in PROFILE.TPL and is described in the Format chapter.

In earlier versions of TPL Tables, the LABEL MEMORY statement could
be used to control the amount of work space available for certain kinds of
labels. This statement in no longer needed or used by TPL Tables due to
improvements in memory management. The statement is ignored if pres-
ent.

Networks

Licensing Note

If you are accessing TPL TABLES on a PC connected to a network, you
must have a license to use TPL TABLES on your PC.

 Appendix C: Scripts (Windows) 755

a p p e n d i x C

Scripts (Windows)

running BATCh JOBS wiTh TPL SCriPTS

Introduction

TPL jobs can be run from the character mode command line, the Run
command found in Start, or a batch file. It is also possible to create a
script which allows multiple TPL and non-TPL jobs to run without your
intervention. To start TPL in one of these ways, run the program WTPL.

To run an individual job, you just type the command with all required com-
mand-line arguments. If a required argument is missing, menus will open
prompting you for the missing data. At the end of the job, all menus will
close and the job will terminate. For example, assuming that TPL TABLES
is installed in c:\qqq\table, suppose you type in the Run menu:

c:\qqq\table\wtpl	codebook	-p	c:\qqq\table\examples	-c	cps.cbk	

WTPL will process the cps.cbk source found in the examples directory. If
you omitted the -c cps.cbk, a menu would prompt you for the name of the
codebook to be processed.

If you wish to run a collection of jobs, you can start WTPL with a file
name containing a script consisting of a list of the commands you wish to
execute. The scripts may include substitution arguments. The values of
these are placed on the command line. Again if you omit required argu-
ments and the job is run in foreground, the system will prompt you. When
one command has completed, the next in the script will execute without
calling TED or prompting for TED. This will continue until the script is
exhausted.

 Appendix C: Scripts (Windows) 756

Notes The command arguments are case-sensitive.

 Exactly one command and its arguments can appear on each line of a
script. There is no way to continue a line and you cannot put multiple
commands on a line.

 A line that is completely blank will terminate the script so that nothing
following the blank line will be executed.

 There is no facility for conditional execution.

 If a job is run in foreground, an error in a request will put you in TED.
When you have corrected the error the script processing will resume.
An error in the script itself will usually result in that portion of the
script being skipped. If you just omit an argument or enter an incorrect
one, you will usually be put in a menu to fill in the missing informa-
tion.

 Paths and arguments including blanks are supported but such items
must be in quotes. They must be double, not single, quotes. For ex-
ample using the Call command described below you might have:

CALL	"my	programs\program.exe"	1	xxx	"new	arg"	

WTPL has a startup directory which may be changed from within the pro-
gram using the Job Directory option under File and saved using the Save
Job Directory option under Preferences. However, if you do not run all
of your TPL jobs from the same directory, it is easier to include a CHDIR
command as the first entry in each of your scripts. This will make it un-
necessary to include full path names for all files referenced in your scripts.

Files and directories may use absolute (full) paths or relative paths. Paths
are relative to the most recent CHDIR command. For example:

CHDIR	c:\qqq\table\examples
TED	-Pp	tpl1\tables.ps

will print the same file as

TED	-Pp	c:\qqq\table\examples\tpl1\tables.ps

 Appendix C: Scripts (Windows) 757

Job Script Example

The following sample script is contained in a file called sample.lst in the
examples subdirectory of the TPL system directory. It runs several jobs,
re-using the TPL1 subdirectory after copying the PostScript tables.ps to
another location. Note that all of the job files are in the same directory.
Starting the script with a chdir to that location means that full path names
are not required for job files. The TPL system is assumed to be located in
c:\qqq\table. If you want to try running this script and your TPL system
is located in a different directory, you will need to edit the chdir line.

Start the script from the command line or using the Run option of Start
by entering:

c:\qqq\table\wtpl	-A	c:\qqq\table\examples\sample.lst

The sample.lst file is:

chdir	c:\qqq\table\examples
mkdir	mytables
codebook	-c	cps.cbk
table	-r	cps1.req	-d	cps.dat	-f	cps1.fmt	-O	1
copy	tpl1\tables.ps	mytables\cps1.ps
table	-r	cps2.req	-d	cps.dat	-f	cps2.fmt	-O	1
copy	tpl1\tables.ps	mytables\cps2.ps
table	-r	cps3.req	-d	cps.dat	-f	cps3.fmt	-O	1
copy	tpl1\tables.ps	mytables\cps3.ps
codebook	-c	police.cbk
table	-r	police1.req	-d	police.dat	-f	police1.fmt	-O	1
copy	tpl1\tables.ps	mytables\police1.ps

Wild Cards (* and ?) in TED, COPY, and DELETE
Commands

File name arguments in TED, COPY, and DELETE can include the * and ?
wild cards.

The * wild card can take the place of 0 or more characters. For example,
if PostScript tables have been collected in a single directory with different
names followed by the extension .ps, they can all be printed by the follow-
ing TED command.

TED	-pP	*.ps

 Appendix C: Scripts (Windows) 758

The ? wild card can take the place of exactly one character. For example,
if a table has been converted to multiple EPS table files, one for each page,
the command:

TED	-pP	P?T1.eps

will print the files P1T1.eps, P2T1.eps, P9T1.eps. It will not however
print files with names such as P10T1.eps or P25T1.eps, because a match
would require more than one character.

The same wild cards can be used to copy files to another directory and to
delete files. In the following example, all .eps files are copied from the
current directory to the directory e:\my_eps_files. Then the .eps files are
deleted from the current directory.

COPY	*.eps	e:\my_eps_files
DELETE	*.eps

Running a Script in Foreground or Background

If the line invoking a script begins with -A the script is run in foreground.
If the line begins with -B, the script is run in background.

A script run in foreground shows the progress of the steps of the script.
For example, as the data is read, the hourglass shows its progress. If a re-
quired argument is omitted or is incorrect, the system displays a prompt for
the argument and processing is stopped until the argument is provided. If
a request error is detected, you are put into TED for editing just as if your
were running the job interactively.

A script run in background behaves quite differently. There is no activity
shown on the screen except for an icon at the bottom. The icon changes
to reflect the approximate percent of the script completed. If any error
occurs, the script is terminated. It is recommended that you use a Script
Log for background scripts.

Script Log

A Script log is a brief listing of the results of the steps of a script. It is
created when it is specified on the command line for the script. The script
log specification is an optional parameter -G followed by the name you
choose for the Script log file. If it appears, it must follow the -B script-
name or -A script-name and must precede any substitution arguments.

 Appendix C: Scripts (Windows) 759

The resulting log has 1 line for each Table, Codebook, TED, Report, or
Rerun step in a script. The first word in each line is one of the following:

SUCCESS:
FAIL:
WARNING:
ERROR:

The line will also contain the name of the program being run and the script
line number. If the line of the script fails, the log will contain either an er-
ror message or the comment to look in the output file for more details.

The script log is useful for debugging scripts. It is also useful for pro-
grams which include TPL scripts. You can check the success of a job by
reading the first character of each line of the script. If all lines begin with
S or W, then the TPL jobs in the script executed successfully.

A WARNING line can appear when a format request has warnings. These
can usually be ignored. The output file messages associated with these
format request warnings are preceded by *** NOTE.

Some other things that can cause a WARNING are: a table request refer-
ences condition values that do not exist in the codebook; the layout step of
a job removes part of one or more data values because they were too wide
for the column; data errors are found when the data is being read; or the
job runs successfully to the layout step, but there is no data for the table(s),
for example because a Select or Define statement caused no data to be
selected for the table(s).

Example	 c:\qqq\table\wtpl.exe	-B	c:\myfiles\myscript.lst	-G	c:\myfiles\mylogfile

Substitutions in Scripts

A list of one or more substitution arguments may be added to the -A or -B
command line following the script name. These replace the items in the
script referenced by %1, %2, etc. For example, if the command line is:

wtpl	-A	sample.lst	T1	F1

and the first line of sample.lst is:

table	-r	%1.req	-d	cps.dat	-f	%2.fmt	-O	1

The result is:

table	-r	T1.req	-d	cps.dat	-f	F1.fmt	-O	1

 Appendix C: Scripts (Windows) 760

Example Using Substitution Arguments
The script in the earlier example can be modified to use substitution argu-
ments. The new command line is:

c:\qqq\table\wtpl	-A	c:\qqq\table\examples\sample.lst	cps1	cps2	cps3

The substitution arguments follow the script name and are referenced in
order as %1, %2, etc.

The new script is:

chdir	c:\qqq\table\examples
mkdir	mytables
codebook	-c	cps.cbk
table	-r	%1.req	-d	cps.dat	-f	%1.fmt	-O	1
copy	tpl1\tables.ps	mytables\%1.ps
table	-r	%2.req	-d	cps.dat	-f	%2.fmt	-O	1
copy	tpl1\tables.ps	mytables\%2.ps
table	-r	%3.req	-d	cps.dat	-f	%3.fmt	-O	1
copy	tpl1\tables.ps	mytables\%3.ps
codebook	-c	police.cbk
table	-r	police1.req	-d	police.dat	-f	police1.fmt	-O	1
copy	tpl1\tables.ps	mytables\police1.ps

Commands and Arguments

WTPL Arguments for Starting Scripts
-A	script-name	[run	script	 in	foreground]
-A	script-name	substitution-argument-1	substitution-argument-2...	
-A	script-name	-G	log-file	substitution-argument-1	
	 substitution-argument-2...	
-B	script-name		[run	script	 in	background	(as	icon)]
-B	script-name	substitution-argument-1	substitution-argument-2	...
-B	script-name	-G	logfile	substitution-argument-1	
	 substitution-argument-2	...

 Appendix C: Scripts (Windows) 761

Script Commands and Arguments
TABLE	(or	table,	tables)	
	 -p	 working-directory

working-directory	is	either	the	path	to	the	directory	where	you	
want	the	job	to	run	or	the	word	DEFAULT	to	indicate	the	current	
job	directory.		A	period	(.)	can	be	used	in	place	of	the	word	DE-
FAULT.		-p	 is	most	useful	for	submitting	a	request	for	a	single	job	
on	the	command	line.		For	a	command	in	a	script,	chdir	 is	more	
convenient.	

	 -r	 request	[REQUIRED]
	 -d	 data-file	[REQUIRED	except	as	noted	below]

Instead	of	using	the	-d argument	to	specify	a	data	file,	you	may	
use	-l with	the	name	of	a	file	whose	contents	is	a	list	of	data	files	
or	you	may	use	ODBC	Database	arguments.

	 -l	 file-list
	 	 Note:	File	lists	are	described	in	the	"Data"	chapter.
	 -f	 format-request
	 -O	old-run-directory

Use	subdirectory	nnnnn	and	overlay	its	contents	if	 it	already	ex-
ists.	You	can	use	TPLnnnn	 if	you	wish.

	 		-N	new-run-directory
Create	a	new	sudirectory	with	the	number	nnnnn	only	if	there	is	
not	already	a	subdirectory	in	your	current	directory	with	the	name	
TPLnnnn.		 If	such	a	subdirectory	already	exists,	TPL	TABLES	will	
not	use	it	but	will	 instead	create	a	new	subdirectory	with	a	random	
number.	You	can	use	nnnn	or	TPLnnnn.

-C	codebook-name
Codebook-name	must	include	 .k The	table	request	must	have	a	
USE statement	but	the codebook	name	on	the	use	statement	is	
ignored.		This	feature	is	useful	when	you	are	creating	a	table	from	

multiple	data	files	with	different	formats.

ODBC	Database	Arguments
If	you	have	the	TPL-SQL	interface	for	ODBC,	you	can	use	the	fol-
lowing	arguments	with	the	TPL	commands:		TABLE,	CODEBOOK,	
RERUN,	and	RMTPL.		Normally	they	would	only	be	used	with	TABLE	
or	CODEBOOK.		For	more	information,	see	the	section	on	Arguments	
for	ODBC.

	 -q	 [Use	-q	or	-Q	 instead	of	-d	when	using	an	ODBC	Data	Source.		
If	-q	is	used,	TPL	TABLES	may	prompt	for	the	ODBC	Data	
Source.]

	 -Q	 ODBC-datasource-name
		 -U	 database-user
		 -P	 database-password

 Appendix C: Scripts (Windows) 762

CODEBOOK	(or	codebook)	
	 -p	 working-directory

working-directory	is	either	the	path	to	the	directory	where	you	
want	the	job	to	run	or	the	word	DEFAULT	to	indicate	the	current	
job	directory.		A	period	(.)	can	be	used	in	place	of	the	word	DE-
FAULT.		-p	 is	most	useful	for	submitting	a	request	for	a	single	job	
on	the	command	line.		For	a	command	in	a	script,	CHDIR	is	more	
convenient.	

	 -c		codebook-source	[REQUIRED]
	 	 codebook-source	is	the	name	of	the	codebook	source	file.

CBUILDER	(or	cbuilder)	-	ODBC	Databases	only
This	command	lets	you	call	Codebook	Builder	from	a	script	to	update	
condition	value	lists	if	your	database	has	changed	since	you	last	cre-
ated	the	codebook.		New	values	are	added	at	the	ends	of	the	condi-
tion	value	lists.

	 -u	 [REQUIRED]
	 -K	 codebook-object.K	[REQUIRED]

Provide	the	complete	name	of	the	codebook	object	("old"	pro-
cessed	codebook)	to	be	used	as	input.		The	 .K	extension	must	be	
included	in	the	name.

	 -c	 updated-codebook-source	[REQUIRED]
	 -Q	 ODBC-datasource-name		[REQUIRED]

If you need a user name and password to access your database, you can
add the following arguments to avoid being prompted for the information.

-U	 database-user
-P	 database-password

CBUILDER does not have an argument for working-directory. Thus, if
you are using this command as a stand-alone, you may need to include full
path information for the codebook names. If you are using the command
in a script, you can precede it with a CHDIR command to get to the direc-
tory where you want to update the codebook.

Example	 CHDIR	f:\myjobs
CBUILDER	-u	-K	survey.K	-c	survey_new.cbk	-Q	"Survey	Data"

RERUN	(or	rerun)	
	 -p	 working-directory

working-directory	is	either	the	path	to	the	directory	where	you	
want	the	job	to	run	or	the	word	DEFAULT	to	indicate	the	current	
job	directory.		A	period	(.)	can	be	used	in	place	of	the	word	DE-
FAULT.		-p	 is	most	useful	for	submitting	a	request	for	a	single	job	

 Appendix C: Scripts (Windows) 763

on	the	command	line.		For	a	command	in	a	script,	chdir	 is	more	
convenient.	

	 -w	 rerun-tplnnnn-directory	[nnnn	or	TPLnnnn]	[REQUIRED]
	 -f	 format-request

RMTPL	(or	rmtpl)	
	 -p	 working-directory
	 -X	 jobs-to-delete		[nnnn	or	TPLnnnn	or	full	path]	[REQUIRED]
	 -X	 ALL	(may	be	used	instead	of	the	above)

CALL	command-and-args
CALL	can	take	any	executable	including	"built-ins"	such	as	dir	and	
copy.		It	supports	redirections	>		|	and	<.	

CHDIR	path
CHDIR	supports	changing	to	any	existing	path	including	ones	on	dif-
ferent	drives.		If	most	of	your	job	files	are	in	the	same	directory,	you	
will	probably	want	to	include	a	CHDIR	command	as	the	first	entry	in	
your	script	so	that	you	do	not	have	to	provide	full	path	names	for	all	
files	referenced	in	the	script.

MKDIR	path
In	TPL	scripts	MKDIR	can	make	a	path	more	than	1	segment	at	a	
time.	

MOVE	old-name	new-name
MOVE	allows	you	to	move	a	file	from	one	directory	to	another.	

REM	any-text	[no	action	performed]
REM	can	be	used	to	add	comment	lines	to	a	script.	

COPY	
COPY	from-file	to-file
COPY	from-file(s)	to-directory

In	COPY	file(s)	to	directory,	the	from-file(s)	argument	can	include	
the	*	and	?	wild	cards.		Wild	cards	are	explained	elsewhere	in	
this	appendix.

DELETE	file(s)
DELETE	arguments can include the * and ? wild cards.		Wild	cards	are	
explained	elsewhere	in	this	appendix.

TPLDIR	reference-name
TPLDIR	is	described	in	the	TPLDIR	section	of	this	appendix.

ETED

 Appendix C: Scripts (Windows) 764

ETED	is	identical	to	TED	below	except	that	the	script	stops	at	the	
Ted	step	so	you	can	do	custom	modifications	to	your	tables.		When	
you	close	TED,	your	script	continues.

TED
TED	arguments	can	include	the	*	and	?	wild	cards.		Wild	cards	are	
explained	elsewhere	in	this	appendix.	
	 -e	 text-file-to-review
	 -p	 Postscript-file-to-review
	 -eP	 text-file-to-print
	 -pP	 Postscript-file(s)-to-print
	 -pE	 Postscript-file-to-convert-to-eps

Note	that	if	you	are	converting	tables	from	multiple	runs	into	
eps	files,	you	must	also	use		-N Export-core-name	to	avoid	
overlaying	eps	files	with	duplicate	named	files.

	 -pF	 Postscript-file-to-convert-to-PDF
The	entire	file	is	converted	and	placed	in	the	same	directory	
as	the	source	with	the	same	name	except	ps	 is	changed	to	
pdf.

	 -pC	 Postscript-file-to-convert-to-CSV
-pC	can	be	followed	by	a	divider	character	to	be	used	in	
place	of	comma	to	separate	the	values	in	the	exported	
file(s).		If	you	want	to	use	a	blank,	enclose	the	entire	argu-
ment	in	quotes:	"-pC	".		Note:	Tab	cannot	be	specified	in	a	
script.		If	you	are	exporting	interactively	from	TED,	you	can	
select	Tab	as	the	divider.		You	can	also	use	the	CSV	DIVIDE	
format	statement	to	specify	the	divide	character	that	will	be	
used	for	Unix	or	Windows.

	 -pA			Postscript-file-to-convert-to-PC-AXIS
	 -pH	 Postscript-file-to-convert-to-HTML
	 -pO		Postscript-file-to-convert-to-ODS
	 -pX			Postscript-file-to-convert-to-XLS
	 -pT			Postscript-file-to-convert-to-Text-table
	 -pD			Postscript-file-to-convert-to-data-table
	 -D				Export-directory		(See	below	for	details)
	 -N				Export-core-name		(See	below	for	details)
	 -C				PC-Axis-Contents-name	(See	below	for	details);
	 -F				PDF-properties	(See	below	for	details)

Notes on Exporting
When TED converts a PostScript file to other formats, the PostScript file
must be in the TPLnnnn subdirectory where it was created. TED uses
other files in the subdirectory to do the conversion and will not be able to
find them if the PostScript file has been moved to a different location.

Also, the TED command should always reference a PostScript (.ps) file,
not an Encapsulated PostScript (.eps) file. If you reference a .eps file,

 Appendix C: Scripts (Windows) 765

there will only be one page of converted output created and it will always
be the first page of the output no matter which page of .eps is referenced.

The -e and -p arguments will stop the processing stream to enable you
to review the tables and output file. You may run several TPL TABLES
jobs and then review all of the tables and output at once using TED with
multiple -e and -p arguments. If you use -eP or -pP, TED will be invoked
and the files will be printed and TED will close without any human action.
-pH, -pE and -pN will also do their task without stopping the processing.

Notes on HTML Export
For HTML export, you can place additional options markers after the H.
There should not be any spaces either between the H and the additional
options or between the options. You can add as many options as you wish.
If the options conflict, later ones will override earlier ones.

n	 Include	a	navigation	bar	if	the	request	produces	multiple	pages	of	
output.

s	 Place	all	output	into	a	single	file.		This	turns	off	the	n	option.
a	 Automatically	size	the	"page"	to	allow	the	entire	table	to	fit	 in	a	

single	html	file	(no	automatic	banking	or	skipping	to	a	new	page	
because	the	table	is	too	long).

Autosized and Single File HTML
It is reasonable to use both the a (autosize) and s (single file) options for
the same HTML export. Autosize causes the "paper" to expand so that
you do not get page breaks because of too many columns or rows in the
table. Page breaks will still occur between wafers and tables or if there
are explicit ejects. The single file option does not affect what gets put on
each page of the table. It just puts all of the pages together into a single
file rather than splitting them across files.

Notes on Data Table Export
For data table output, you can place additional options markers after the
D. There should not be any spaces either between the D and the additional
options or between the options. You can add as many options as you wish.
If the options conflict, later ones will override earlier ones.

s	 all	of	the	data	from	all	tables	should	be	place	in	a	single	file.
b	 The	table	stub	should	be	retained.
z	 leading	and	trailing	blanks	in	fields	should	be	replaced	by	zero.

 Appendix C: Scripts (Windows) 766

Notes on PDF Properties
In the Properties menu of a pdf there is information about the pdf. This
command allows you to specify this information. Options are

a	 author
t	 title
s	 subject
k	 keywords

Each option must have a separate -F followed by a space and the value.
If the value contains a blank, it must be in quotes. All of the -F options
must precede the -pF.

Example	 TED	-Fa	"Jules	Verne"	-	Ft	"20	Thousand	Leagues"	-Fs	submarine
	 -Fk	"Sea,	Adventure"	-pF

Notes on Export to PC-Axis
The script command for the TPL run that creates the PostScript file must
immediately precede the TED command that converts the table to PC-Axis
format.

PC-Axis Contents Name in Scripts
By default, the Contents name is the label of the observation variable used
in the table request or "Count" if no observation variable is used. When
you export interactively in Ted, you can change this name with the PC Axis
export Options.

To specify a Contents name in a script, place -C PC-Axis-Contents-name
before the -pA export argument. The name must be inside double quotes.
The new contents name remains in effect until the end of the script or until
there is another -C argument.

Example	 CHDIR	c:\qqq\myjobs
TABLE	-r	PC_Axis.req	-d	cps.dat	-f	PC_Axis.fmt	-O	1
TED	-C	"Households"	-pA	tpl1\tables.ps

Setting the TED Export Directory in Scripts

By default, exported files are placed in the same directory as the source .ps
file. When you export interactively in TED, you can change this destina-
tion. The -D argument allows you to change the export directory in a TPL
script.

To specify an export directory, place -D export-directory on a TED line
before the -p export argument. The new export directory remains in effect

 Appendix C: Scripts (Windows) 767

until the end of the script or until there is another -D argument. To return
to the default behavior specify -D DEFAULT.

Export Core Name in Scripts

When PostScript files are exported, they are divided into a number of files
equal to the number of table pages. The file names for the exported files
consist of three parts: an export directory, a core name, and an extension.
For export to HTML, the extension is .htm. For Encapsulated PostScript,
it is .eps and for bit mapped graphics it is .bmp.

When files are exported from TED interactively, the default core name is
always Tablen where n is the table page number.

Encapsulated PostScript and HTML can also be exported by TED script
commands. When files are exported with a script command, the default
core name varies depending on the export type. For HTML, the default
core name is Tablen where n is the table page number. For Encapsulated
PostScript, the default core name is PnTm where n is the page number and
m is the table number.

To specify a different export core name, place -N core-name on a TED
line before the -p export argument. The new export core name remains in
effect until the end of the script or until there is another -N argument. To
return to the default behavior specify -N DEFAULT.

Example For a table request with 5 table pages and a tables.ps file in TPL2, the fol-
lowing script will export both .eps and .htm files with a core name of sal-
ary. The .eps files will be named salary1.eps, salary2.eps,, salary5.
eps. The .htm files will be named salary1.htm, salary2.htm,, salary5.
htm.

CHDIR	TPL2
TED	-N	salary	-pE	tables.ps
TED	-pH	tables.ps

Example For a table request with 5 table pages and a tables.ps file in TPL2, the
following script will export both .eps and .htm files with a core name of
Table. The .eps files will be named Table1.eps, Table2.eps,, Table5.
eps. The .htm files will be named Table1.htm, Table2.htm,, Table5.
htm.

CHDIR	TPL2
TED	-N	Table	-pE	tables.ps
TED	-pH	tables.ps

 Appendix C: Scripts (Windows) 768

Note If you are exporting to a single HTML file, the default core name is Table.
There is no number appended, so the default HTML file is named Table.
htm.

Note You can also create Encapsulated Postscript using the ENCAPS command
line program described elsewhere in this manual. The ENCAPS program
uses the core name PnTm.

Note If you have more than one table on a page, they will all be contained in the
same .eps file.

TPLDIR Script Command

When a table job is run, a TPLnnnnn directory is created. This directory
contains the finished tables, the output file and other information needed to
modify the tables using TED or Rerun. When operating interactively, you
may select a specific TPLnnnnn directory or allow the system to select a
unique name. In a script, if you use a specific name, you run the risk that
some other job might have used that directory name. If you let the system
select the name, you have no way of doing additional things with the direc-
tory. For example you can't use TED to print the tables or convert them
into HTML since you don't know what the directory name is.

The TPLDIR command solves this problem. TPLDIR creates a unique
TPLnnnnn subdirectory in the currently active directory and associates it
with a user-selected reference-name. The script can then reference the
directory by using %reference-name.

Example	 CHDIR	c:\test
TPLDIR	cpsjob
TPLDIR	dispatchjob
TABLE	-r	cps.req	-d	cps.dat	-f		cps.fmt	-O	%cpsjob
TABLE	-r	dispatch.req	-d	dispatch.dat	-f	dispatch.fmt	-O	%dispatchjob
TED	-pP	c:\test\%cpsjob\tables.ps
TED	-pH	c:\test\%dispatchjob\tables.ps

This script will run the cps and dispatch table requests and will print the
tables produced by the cps job and convert the dispatch tables into HTML.

Note that in the table jobs we used -O for old directory rather than -N for
new directory since the directories were actually created by the TPLDIR
command. Also note that the CHDIR command occurs before the TPLDIR
commands. Otherwise the directories created by TPLDIR might be in the
wrong place.

 Appendix C: Scripts (Windows) 769

Arguments for ODBC

If you have the TPL-SQL interface for ODBC, you can use the following
arguments to access ODBC Data Sources from scripts.

-q	 [If	-q	is	used,	TPL	TABLES	prompts	for	the	ODBC	Data	Source.]
-Q	 ODBC-datasource-name
-U	 database-user
-P	 database-password

Arguments which have blanks or special characters must be put in quotes.
They must be double, not single, quotes.

Depending on your environment, you may or may not be required to pro-
vide a user name and password to access the Data Source. If you do not
wish to include a database user name and password in your script, you may
use substitution arguments for these parameters and then provide the user
name and password when you run the script.

If you provide all required arguments, you can run your request without
being prompted for any information about your ODBC Data Source.

The -q argument can be used if you wish to continue with the same data-
base. You can enter a new -Q and other arguments if you wish to change
databases.

Example In the following sample script, a codebook will be processed for the ODBC
Data Source named "My datasource", a table request will be run using the
data from the same Data Source, and a second table request will be run us-
ing data from a different Data Source. No prompts will be needed for Data
Source.

CODEBOOK		-c	my_db.cbk	-Q	"My	datasource"		-P	xxx		-U	"John	Doe"
TABLE	-q		-r	sample.req
TABLE	-Q	"my	other	datasource"		-P	yyy		-U	sew		-r	another.req

Notes For codebook processing, ODBC Data Source arguments are only required
if the codebook needs information from the database. For example, if an
ODBC codebook is created interactively in Codebook Builder, all required
database information will already be included in the codebook source.

 Appendix C: Scripts (Windows) 770

	 Appendix D: Installation (UNIX/Linux) 771

a p p e n d i x d

Installation (UNIX/Linux)

hOw TO inSTALL TPL TABLeS under uniX

How to Stop

You can stop the setup procedure by entering <Ctrl>C.

Before You Start

The TPL TABLES installation process copies TPL TABLES to your hard
disk. It also asks you about certain characteristics of your operating en-
vironment, such as printer, so that it can set defaults for system operation.
We recommend that you scan through the following instructions before you
start, so that you will know in advance how you want to answer the instal-
lation questions.

If you wish to move the TPL TABLES system to another location in your
file system after it is installed, you must remove it from the original loca-
tion and reinstall it. Merely copying the files will not work correctly. If
you have customized your TPL TABLES profile.tpl, color.tpl or country.
tpl files, you may wish to save them for use in the new location before
removing TPL TABLES from the previous location.

Installation Steps

The exact installation procedure depends upon the platform on which you
are installing TPL. Specific directions can be found in the README file
in the directory where you found the software.

	 Appendix D: Installation (UNIX/Linux) 772

So that users do not have to start tpl using full paths or modify their .pro-
file (or equivalent) PATH statements, you may wish to use the ln command
to link some TPL programs into directories that are already in their paths;
e.g. /usr/bin. You can link just tpl. If you do this the users will need to
prepend tpl to each of their programs; e.g. tpl rerun; Alternately you can
link each of the following which will make it unnecessary to prepend tpl.

The programs which can be usefully linked are:

tpl
rerun
codebook
conditions
rmtpl
encaps
psp
report (if you have installed TPL Report)

Detailed Description of Setup Prompts

When you begin the setup program, setup.tpl, it displays some introduc-
tory information on your screen and begins asking questions about the
installation:

This	program	sets	up	the	TPL	TABLES	system	after	it	has	already	
been	copied	to	your	selected	directory.		It	customizes	your	copy	of	TPL	
TABLES	by	allowing	you	to	specify	some	default	parameters.	If	you	
wish	to	move	your	copy	of	TPL	TABLES	you	must	rerun	this	program.		
UNIX	mv,	cp,	or	mvdir	commands	can	be	used	to	move	the	modules,	
but	setup	must	be	rerun	for	the	system	to	work	after	it	 is	moved.

Respond	to	each	question	prompt	"==>"	with	the	appropriate	file	name	
or	value	then	press	the	<ENTER>	key.

You	must	have	write	permission	for	the	path	which	is	to	receive	the	
TPL	TABLES	system.		If	you	do	not,	you	must	terminate	this	session	
and	install	the	system	using	an	appropriate	id.

The	following	questions	are	used	to	set	system	default	values	for	the	
profile.tpl	file.		If	there	are	multiple	users	on	your	system	or	you	wish	
to	use	different	defaults	for	different	data	files,	you	may	make	modified	
copies	of	the	profile.tpl	file	for	different	directories.

	 Appendix D: Installation (UNIX/Linux) 773

Prompt:
Do	you	wish	to	install	TPL	TABLES?

Response:
y	for	yes	or	n	for	no.

Prompt:
Do	you	wish	to	install	TPL	REPORT?

Response:
y	for	yes	or	n	for	no.

Where Do You Want the System Installed?

Prompt:
Please	specify	the	path	of	the	directory	which	is	to	RECEIVE	the	TPL	
TABLES	system.		Relative	path	specifications	may	be	used.

Response:

Enter the path as directed in the prompt. If the directory does not exist,
you will be asked if you want the system to create it.

Prompt:
Please	specify	the	path	for	the	directory	containing	the	modules	which	
are	to	be	installed.

Response:

Enter the location of the TPL software modules you wish to install as di-
rected in the prompt. Note that relative paths including "." are supported.

Table Viewer

TPL TABLE output is valid PostScript. Most versions of Linux and Unix
have utilities for viewing PostScript output. By specifying one of these
programs, you can view your tables before printing them or exporting
them.

Prompt:
Many versions of Unix and Linux have Postscript page viewers such
as Solaris pageview and Linux (KDE) kghostview or okular or Linux
(GNOME) evince. If you have such a program, please specify its name
(and path if necessary);

Response:

	 Appendix D: Installation (UNIX/Linux) 774

Enter the name of your PostScript viewer program (and path if necessary).
For Solaris a recommended program is pageview.
For Linux using the KDE environment, kghostscript is recommeded.
For Linus using the GNOME environment, evince is recommended.

Paper Size

TPL TABLES will automatically format your tables according to the paper
size you specify in answer to the next prompts. Your answers will depend
on the type of printer, size of paper and the type style you wish to use.

Prompt:
You	may	specify	your	standard	paper	size	either	by	picking	one	of	the	
following	or	by	picking	NONE	and	then	specifying	a	length	and	width	
when	prompted.	

Select	one	of:
		LETTER	(8.5	inches	by	11	inches)
		LEGAL		(8.5	inches	by	14	inches)
		A3					(42.0	cm	by	29.7	cm)
		A4					(21.0	cm	by	29.7	cm)
		B5					(18.2	cm	by	25.7	cm)
		NONE

Response:

You can choose one of the standard page types by entering its name, for
example letter.

If you enter none and are prompted for length and width, you can specify
them in inches, centimeters, points or characters. Fractions should be
expressed as decimal numbers. For example, a page width of 8 1/2 inches
should be entered as 8.5 inches.

It is best to express page size in something other than characters. This is
because you can choose different character sizes. If page size is expressed
in characters, the size of the page will vary as the character size changes.
This result is usually undesirable.

	 Appendix D: Installation (UNIX/Linux) 775

Editor

TPL TABLES has been designed so that you can use the text editor of your
choice to create codebooks, table requests, and format requests. Any editor
that creates standalone text files is acceptable.

Prompt:
If	a	TPL	TABLES	job	fails	because	of	a	request	error,	the	job	will	be	
put	into	the	selected	editor.		When	editing	is	completed	and	the	editor	
terminated,		TPL	TABLES	processing	will	resume.		The	default	editor	is	
the	UNIX	editor,	vi.

The	editor	selected	must	be	such	that	it	can	be	invoked	by:

					editor-name	dataset

where	editor-name	 is	the	name	of	the	editor	and	dataset	is	the	name	
of	the	file	to	be	edited.

Please	type:

				<ENTER>		if	you	wish	to	use	the	currently	selected	or	default	editor,
				none		<ENTER>		if	you	do	not	wish	to	use	an	editor
				editor-name		<ENTER>		if	you	wish	to	select	an	editor.

Response:

If you have an editor other than vi on your system, you may wish to enter
its name. However do not use a word processor which inserts formatting
information into your file unless there is an option to save the file in "text
only" mode.

If You Change Your Mind

The installation process will now give you the option to change any of
your answers to the questions you have been asked. First it displays the
options you have already chosen. For example:

Prompt:
The	current	values	which	you	have	set	are:
Editor	=	'vi'
Postscript	printer
Paper	type	=	LETTER

	 Appendix D: Installation (UNIX/Linux) 776

Do	you	wish	to	change	any	of	these	values?

Response:

If you are satisfied with your choices, enter y. If not enter n for no. Even
if you respond with no to this prompt you will still be able to change the
effect of your responses by editing profile.tpl after installation is complete.

Completion of Installation

Installation will continue. If you have indicated at the beginning that you
also wish to install TPL REPORT, there will be additional prompts similar
to those already described. The installation process will tell you when it is
finished.

If You Have Multiple Printers Connected to Your
Computer

TPL TABLES will direct its output to the default printer for your computer.
If you wish to change this, you may modify the profile statement

Print		Command	=	'lp';

For example you might replace the command with

Print	Command	=	"lp	-dpost";

where post is the name of your PostScript printer. Note that if different
people wish to use different printers they should create local profiles with
different print commands.

	 Appendix E: Run Instructions (UNIX/Linux) 777

a p p e n d i x e

Run Instructions (UNIX/Linux)

inSTruCTiOnS fOr running TPL TABLeS
under uniX

General Information

Editor

TPL TABLES is designed to allow you to use vi or another editor of your
choice to create codebooks, table requests and format requests. Any editor
that creates standalone UNIX files is acceptable.

If you have installed TPL TABLES so that it can access your editor and
you are running a job that stops because of errors, TPL TABLES will
prompt you to find out if you want to transfer to the editor. If you are
transferred to the editor, TPL TABLES will automatically resume process-
ing when you are finished with your editing.

Where to Run Jobs: Paths and Files

We do not recommend that you mix your request files with system files
by putting your own TPL-related files in the TPL system directory. In-
stead, put your own files in one or more other directories and run your
jobs from those directories. If you cannot invoke tpl from your command
line without providing a path, you may wish to add the path to tpl tp the
path command in .profile or a different unix/linux startup script file. It
is a good idea to run your TPL TABLES jobs in the directory where your
TPL-related files are stored, because then you can simply provide the file
names without including path information. For any of your files that are
not in the directory where you are running a job, you may include the path
information.

	 Appendix E: Run Instructions (UNIX/Linux) 778

How to Stop

The easiest way to stop a TPL job in the middle of processing is to type:

<Ctrl>C

If this doesn’t work, open a new window and type:

ps	-A

Then type:

kill	-9	pid

where pid is the process id associated with the TPL process.

Note on Running in Background

All processes can be run in background, with the exception of rmtpl. The
prompt for background processing and the -b argument are described under
How to Run a Table request.

Codebook Processing

Prepare your codebook (data description) file using your editor. We rec-
ommend that you save it with the same name you use at the beginning of
the codebook. For example, if you name the codebook survey with the
codebook statement begin survey codebook, save your codebook file
as survey.cbk. The codebook file you have prepared will be referred to
as the codebook source.

Note If you have a partial codebook source that needs to be completed with
information from the data or if your data has changed such that new condi-
tion values need to be added for control variables, run TPL conditions
first to create a complete or updated codebook source.

How to Run codebook

To run the codebook processor, type:

codebook		<Enter>		(or	tpl	codebook	<Enter>)

	 Appendix E: Run Instructions (UNIX/Linux) 779

The codebook processor will display the prompt:

Please	type	the	name	of	your	codebook	request		and	<Enter>	

==>

If you have a codebook source named survey.cbk, as in the example
above, you would type:

survey.cbk		<Enter>

Codebook Command Line Arguments

You can bypass the prompt for the codebook source name by entering your
codebook command as:

tpl		codebook		-c		cbsource		<Enter>

where cbsource is the name of your codebook source.

Error Handling

As the codebook processor runs, it will display your codebook on the
screen along with messages about any errors it finds. All information dis-
played on the screen during processing will be stored with the same name
as the codebook except that it will be capitalized and .O will be appended
to the name. If your codebook is named survey, the processing informa-
tion will be stored in a file called SURVEY.O.

If the codebook processor finds errors in your codebook, you will need to
correct them with your editor and process the codebook again. If any syn-
tax errors are found in the codebook, processing will stop. For most other
types of errors, processing will continue to the end of the codebook. In
that case, you will probably want to look for the error messages in the file
containing processing information (e.g. SURVEY.O).

When your codebook has been processed successfully with no errors, the
.O file will be deleted and the .L codebook abstract file will take its place.

	 Appendix E: Run Instructions (UNIX/Linux) 780

Codebook Abstract

The codebook abstract name ends with .L (e.g. SURVEY.L). The abstract
includes the name of the codebook source file, the date and time of pro-
cessing, and the TPL version number. In addition, it contains a list of the
codebook variables in alphabetical order along with each variable’s size
and location within a record. This information is particularly useful if you
have an alignment problem between your codebook and your data file. You
may also find the abstract useful as a quick reference when preparing your
table specifications. If you are creating a codebook describing a CSV or
other type of delimited file or a database, the information in the abstract
will differ slightly.

Codebook Object

We will refer to the processed codebook as the codebook object. When
you have successfully run the codebook processor, your codebook object
will be stored with the same name as the codebook except that it will be
capitalized and .K will be appended to the name. Thus, for a codebook
named survey, the codebook object will be produced with the name
SURVEY.K.

Once your codebook is successfully processed, you can run any number of
table jobs using the same codebook object.

Producing a Codebook Source with the conditions
Procedure

If you do not already have a codebook source, TPL conditions can be
used to create a full codebook source from a partial one. It can also be
used to update a codebook source if the data has changed such that new
condition values need to be added for control variables.

Prepare your partial codebook with your editor as described in the Appen-
dix called "TPL Conditions".

How to Run a conditions Request

To run a conditions job, type:

conditions	<enter>	(or	tpl	conditions	<enter>)

	 Appendix E: Run Instructions (UNIX/Linux) 781

The program will prompt you for your partial codebook source (with miss-
ing conditions).

It will then prompt you for your data file or database name. If the program
cannot find the name it will ask whether the name is a SQL database name.
Answer y or n as appropriate. If you answer n, you will be re-prompted
for the data file name.

Finally you will be asked for the name of the completed codebook source
you wish to create. You can use the same file name for your original
source and your completed source. If you do, the completed source will
be placed on top of the original source. The original source will be saved,
along with a few extra statements, in the .O output file until the completed
source has been created successfully. Thus, if there are any errors or prob-
lems that interrupt the creation of the completed source, you do not risk
losing your original source. It will still be available in the .O file.

You will then be asked if you want to run the job in background.

If your codebook describes a database, you will be prompted for database
user name, password, database server, etc.

The resulting complete codebook source file can be passed directly into a
TPL codebook run or it can be edited to improve condition labels before
codebook processing.

Command Line arguments for conditions
-c	 incomplete-codebook-source
-s	 complete-codebook-source
-d	 data-file	(if	your	data	is	fixed	format	or	delimited,	e.g.	csv)
-q	 database	(if	your	data	is	in	database)
-Q	 (denotes	data	is	in	database	-	Oracle	only)
-U	 user	(SQL	only)	or	user@connect-identifier (Oracle	only)
-S	 database-server	(Sybase	only)
-P	 database-password	(SQL	only	-	password	may	need	quotes)
-b	 to	run	job	in	background

Error Handling

During the first part of TPL conditions, error handling is identical to
codebook error handling as described above. After the original, incomplete
codebook has been found to be valid, the program moves to the data read-
ing step to get the information it needs to complete the codebook. Data
errors such as incorrect characters in observation fields are added to the
.O file. Data errors will not stop processing and will not put you into an
editor.

	 Appendix E: Run Instructions (UNIX/Linux) 782

Producing Tables with the tables Procedure

Prepare your TPL TABLES table request with your editor. In the USE
statement at the beginning of a table request, you can refer to the codebook
using the same name you used in the begin codebookname codebook
statement. Using the name survey shown in the example above, you
would say use survey codebook; at the beginning of your TPL TA-
BLES request. TPL TABLES will know to look for a codebook object file
called SURVEY.K for descriptive information about your data file. Path
names are allowed in the USE statement.

Store your table request with any valid UNIX file name, for example,
survey.req. You may also have an optional format request giving detailed
specifications for formatting your tables. The format request can have any
valid UNIX file name, for example, survey.fmt.

How to Run a Table Request

To run TPL TABLES, type

tpl		tables		<Enter>

TPL TABLES will display the prompt

Please	type	the	name	of	your	request	and	<Enter>:

==>

Using the name from the example above, you would type:

survey.req			<Enter>

TPL TABLES will display the prompt

Please	type	the	name	of	your	data	file	and	<Enter>

==>

Your data file can have any valid UNIX file name. To continue the "sur-
vey" example, we will assume that your data is called survey.dat. You
would type:

survey.dat	<Enter>

	 Appendix E: Run Instructions (UNIX/Linux) 783

If you are running against a database rather than a file, you should enter
the database name. If you have entered a database name or an incorrect
file name you will be asked if the name is a SQL database name. If it is,
answer y and processing will continue with questions about your database
user name, password, and server. If you answer n, you will be re-prompt-
ed for your data file.

TPL TABLES will display the prompt

Please	type	the	name	of	your	format	request	and	<Enter>
or	just	type	<Enter>	if	you	do	not	wish	to	provide	a	format
request	file:

==>

Often you will not have a format request. In this case, simply press the
<Enter> key to continue. Otherwise, type the name of your format re-
quest. For example:

survey.fmt			<Enter>

Next you will be asked:

Do	you	wish	to	run	this	request	in	background?

y	or	n	==>	

Answering y to this prompt is the proper way to run TPL TABLES as
a background process. Don’t just use &. When the job is put in back-
ground, all output except the tables goes to the output file. Nothing is
displayed on the screen and you are not put into your editor when errors
are found in your request.

Do	you	wish	to	be	notified	when	the	request	completes?

y	or	n	=>

If you answer y to this prompt, when the job completes a message will
appear on the screen telling whether the job has completed successfully
or whether errors were detected in the request. In any case you should
examine the output file in the TPL subdirectory. The TPL subdirectory is
explained later.

	 Appendix E: Run Instructions (UNIX/Linux) 784

Tables Command Line Arguments

If you wish, you can bypass some or all of the prompts by entering your
tables command with any of the following parameters. Note that many of
these options will be explained more fully later.

-r	request-file	 where	request-file	 is	the	name	of	your	table	request	file
-f	format-file	 where	format-file	 is	the	name	of	your	format	request	file
-d data-file	 where	data-file	 is	the	name	of	your	data	file
-b	 to	run	job	in	background
-n	 to	notify	when	job	has	completed
-E	 to	request	only	a	partial	display	of	output	on	the	screen	when	run-

ning	in	foreground.		For	details,	see	the	section	on	controlling	screen	
display.

-e	 convert	tables	into	Encapsulated	PostScript
-h	 convert	tables	into	HTML.		For	additional	-h	options	and	details,	see	

the	section	on	HTML	table	arguments.
-V	 convert	tables	to	CSV	(delimited)	format.
-D	 produce	a	data	table.		For	additional	-D	options	and	details	see	the	

section	on	Data	Table	arguments.
-B	 produce	pdf	output.		ghostscript	must	be	installed	for	this	command	to	

work.
-a	 produce	(ASCII)	text	table.	
-o	 produce	spreadsheet	output	(ods	-	the	current	spreadsheet	standard)
-X	 produce	spreadsheet	output	(xls	-	a	format	used	by	older	versions	of	

Excel)	
-N	nnnnn	 use	TPLnnnnn	as	TPL	subdirectory	where	nnnnn	is	a	user	selected	

number	of	one	to	five	digits.		If	there	is	already	a	directory	of	that	
name,	create	a	new	number.

-O	nnnnn	 use	TPLnnnnn	as	a	new	TPL	TABLES	subdirectory	overwriting	any	
existing	subdirectory	of	that	name.

-i		 includepath	 where	 includepath	 is	the	path	to	the	directory	where	%include	files	are	
located.		Use	if	you	have	include	files	in	a	directory	other	than	the	run	
directory.		For	details,	see	the	section	"Path	for	INCLUDE	files".

-U	 user	(SQL	only)	or	user@connect-identifier (Oracle	only)
-P	database-password	(SQL	only	-	password	may	need	quotes)
-S	database-server	(Sybase	only)
-Q	(denotes	database	with	no	database-name	required	-	Oracle	only)
-q	database-name	(Data	in	SQL	database	database-name)

Example	 tpl		tables		-r		survey.req		-d		survey.dat			<Enter>

	 Appendix E: Run Instructions (UNIX/Linux) 785

Table Request Processing

As TPL TABLES processes your request, it will display the request on the
screen along with messages about any errors and other information to show
you the status of the job. If there are any errors in the table or format
requests, you will be asked:

If	you	wish	to	edit	your	request	and	continue
respond	with	 'y'	to	the	prompt.		You	will	 then	be
put	in	your	editor.		Upon	termination	of	your	editing
session	you	will	be	returned	to	TPL	and	processing
will	continue.		A	response	of	 'n'	will	 terminate	the
TPL	session

If you answer y, you will be allowed to correct your errors and processing
will continue. If you can’t figure out your errors from what is displayed
on the screen, you should answer n to the prompt and examine the error
messages in your output file (described later). When you have fixed your
errors you should start your table request again. Processing will stop im-
mediately if a syntax error is encountered. For most other errors, process-
ing will continue to the end of the request.

For some operating systems. if no request or format errors are found, TPL
TABLES will draw an hour glass on the screen as it begins to read your
data. You will be able to tell how much of your data has been processed
by the amount of sand that has fallen to the bottom of the hour glass. For
other operating systems you will get a changing line to report how much of
the data has been processed. If your codebook does not match your data
or if there are errors in the data, messages will be displayed at the bottom
of the screen.

When TPL TABLES has finished processing your data and calculating the
values for your tables, it will report whether the job has completed success-
fully.

You may examine the output file in the TPL subdirectory to review any
data errors and determine whether you should print your tables. The out-
put and tables files are described in the next section.

Example	 tpl		tables		-r		survey.req		-d		survey.dat		-b		-n		<Enter>

Since 	-b and -n have been specified, no output will be displayed on the
screen except for the final status of the job. You will not be given the op-
portunity of correcting errors and continuing processing. Instead you must
examine the output file in your TPL subdirectory and resubmit your job if
an error is found. If the job has run correctly, you may print your tables.

	 Appendix E: Run Instructions (UNIX/Linux) 786

Controlling the Amount of Screen Display in Foreground

You can use the statements display output = no; and/or display
tables = no; in your profile to reduce the amount of screen display when
running in foreground.

You can also use the -E command line option with both codebook and
table runs. It provides a convenient way of running jobs in foreground,
because it lets you see what is happening but reduces the volume of screen
display. Display of codebooks or requests is suppressed. If an error is
encountered in your codebook or request, the output ends with the error
message and the preceding line of your codebook or request. This way,
you can often see where the error is without looking at the entire output
file. Note that this option will not work if you have the statement display
output = no; in your profile.

The TPL Subdirectory

Each time you run TPL TABLES, it creates a subdirectory to hold the
files it needs to create your tables. The subdirectory always has the name
TPLnnnnn where nnnnn is a number with 1 to 5 digits. The process
id is used for the nnnnn part of the subdirectory name, unless there is
already a subdirectory using that number. You can find these subdirectories
with the UNIX command ls TPL*. If you do not wish to let TPL TA-
BLES select your TPL subdirectory number, you can specify one yourself
by using -O nnnnn or -N nnnnn on your command line. If you use -N,
TPL TABLES will use nnnnn only if there is not already a TPL subdi-
rectory with that number in your current directory. If such a subdirectory
already exists, the -N argument will be ignored and a new numbered subdi-
rectory will be generated. If -O nnnnn is chosen, the new directory will
be TPLnnnnn regardless of whether there was already one by that name.
The old one will just be overwritten.

Most of the files that go into a subdirectory are not intended to be read
by you. However, there are two files in the subdirectory that you will
want to see. One is called output and contains all of the information that
was displayed on the screen while your job was running — all except the
tables, that is. The completed tables are stored in a file called tables. If
Postscript = yes; was specified, there is no tables file but instead there
is a file tables.ps.

	 Appendix E: Run Instructions (UNIX/Linux) 787

If the messages go by on the screen too fast for you to read while your job
is running, you can find them in the output file. If you run your job in
the background or leave your computer while the job is running, you can
find all the information that was displayed on the screen in the output
file.

To help you keep track of your jobs, the output file contains the names
of your data and request files, the date and time of execution for each part
of the job, the TPL version number, and, at the end, the name of the TPL
subdirectory in which it was created.

Printing and Exporting

Note If no tables are created, for example because of data errors or because no
data is selected, there will be no prompt for printing or exporting tables.

When a TPL TABLES job ends you will be presented with the following
printing options:

Please	specify	the	numbers	for	all	of	the	print	and	export	options	you
wish	to	use:
		1.		Print	Tables
		2.		Print	Output

==>

If you have run your job in Postscript mode, you will have a larger set of
printing and output options. If you have specified a value for DISPLAY
NAME in your profile, you will first be asked if you wish to display your
tables in the PostScript displayer you have specified. If you answer yes,
the displayer will open your tables in a separate process. TPL TABLES
will then continue with the following prompt:

Please	specify	the	numbers	for	all	of	the	print	and	export	options	you
wish	to	use:
		1.		Print	Tables
		2.		Print	Output
		3.		Export	Encapsulated	Postscript	(eps)	files
		4.		Export	delimited	(csv)	files
		5.		Export	 internet	(HTML)	files	
		6.		Export	Spreadsheet	(ods)	files	
		7.		Export	Spreadsheet(xls	-	old	Excel	format)	files	
		8.		Export	Text	Table	(txt)	
		9.		Export	Data	Table	(dat)	
	10.		Export	PDF	(ghostscript	must	be	installed)	
==>

	 Appendix E: Run Instructions (UNIX/Linux) 788

Select the numbers of the options you wish to use and place them on the
prompt line separated by blanks. For example

==>	1	3	5

will result in your tables being printed and also exported as EPS files and
HTML files.

Export files will be placed in the TPLnnnnn subdirectory where the job is
run.

If you have selected item 5, export to HTML, you will be presented with
additional options for specifying how you want your html to look.

Please	specify	the	numbers	of	the	html	options	you	wish	to	use:
		1.	HTML	with	navigation	(Can't	be	used	with	Single)
		2.	Single	file	HTML
		3.	Autosized	HTML	-	page	size	limits	removed
==>	

Normally, TPL puts each page of your tables into a separate HTML file.
If option 1 is selected and your table has multiple pages, each HTML
page will have a navigation bar at the top. Someone who is viewing the
table in a web browser can click on the arrows in the navigation bar to
move among the pages. If option 2 is selected, the pages of the table are
still broken into separate HTML tables but they are all placed in the same
file. If option 3 is selected, the "paper" size is expanded so that there is
no banking of the table caused by it being too wide and there are no page
breaks caused by it being too long. Multiple files may still result if there
are wafers or multiple TPL tables in the request and there are no format
statements to keep the wafers and tables on the same page.

If you have selected item 9, Export Data Table, you will be presented with
additional options for how the data should be formatted.

Please	specify	the	numbers	of	the	data	table	options	you	wish	to	use:
		1.	Retain	Stub	
		2.	Combine	all	tables	into	a	single	file	
		3.	Zero	fill	(replace	all	blanks	with	zeros)
==>	

Normally, TPL creates a data table from the cells of a table and creates a
separate file for each table. If option 1, Retain Stub, is selected, the stub is
prepended to the file. This provides identification for the rows of the file.
The meaning of options 2 and 3 is obvious.

	 Appendix E: Run Instructions (UNIX/Linux) 789

Preventing Prompts for Printing and Exporting
The above prompts can be avoided by putting the appropriate options in
your profile.tpl file or format request and by using some command line op-
tions when you submit your job.

If you run your job in background and do not include any print options
or export options in your profile, format request, or command line, then
you will not be prompted and no printing or exporting will occur. To get
printed output, add print output = yes; and/or print tables = yes; to your
profile.tpl file or format request. To invoke the various export options, use
the command line options discussed above.

To avoid the prompts when running the job in foreground, you must put all
of the following in your profile.tpl or format request. For each, the value
should be yes, no, or prompt. If prompt is set for any of them or you
omit any, you will get the standard prompts. Responses to the prompts
will override the profile values.

print	output	=	value;
print	tables	=	value;

If the job is being run in postscript mode, you must also include:

eps	output	=	value;
csv	output	=	value;
html	output	=	value;
ods	output	=	value;
xls	output	=	value;
pdf	output	=	value;
datatable	output	=	value;
text	table = value;

Final Disposition of Generated Files

When your job completes, the output, tables, and any exported files can be
found in the TPLnnnnn subdirectory along with a few other files needed
if you wish to modify your request with tpl rerun. If your job is run in
non-PostScript mode, the tables can be found in tables. This file may be
printed using the standard unix lp command. It can also be displayed in
an editor or with more or cat but it may not look quite right since it is
formatted for printing rather than display. If your job is run in PostScript
mode the tables can be found in tables.ps. If you are using a Sun comput-
er, this file can be viewed using the pageview program. Other PostScript
display programs may also be used. tables.ps may be printed directly to a
PostScript compatible printer without passing it through a PostScript filter.

	 Appendix E: Run Instructions (UNIX/Linux) 790

Path for INCLUDE files

For tables or codebook runs, if you have %INCLUDE files that are in a
directory other than the run directory, you can use the -i argument to enter
the path to the directory where the %INCLUDE files are located.

For example, if you have an include file called stubs.txt that is located in
the directory called /usr3/tplwkgrp/ALB.FILES, you can use the -i argu-
ment on the command line as follows:

-i		 /usr3/tplwkgrp/ALB.FILES

Then in your %include statement, use the file name:

%include	stubs.txt

You may only have one include path.

Another way to access include files in another directory is to use the UNIX
ln command to make the include files appear to be in the local directory.

Encapsulated PostScript (eps)

Many desktop and professional publishing systems allow importation of
PostScript files provided they are in EPS format. Presentation programs
such as Microsoft PowerPoint can also display EPS files created with TPL.
If you have run your job in PostScript mode and have specified -e on your
command line or selcted Export Encapsulated Postscript at the prompt,
then you will have created EPS files in your TPLnnnnn directory. If no
tables were created, for example because of data errors or because no data
was selected, then no EPS files will be created.

If you have not specified creation of EPS files and later decide you need
them, the encaps program may be used to create them. Change into the
TPLnnnnn subdirectory and type:

encaps		.		0		tables.ps		<Enter>

encaps will report the names of the EPS files as they are created.

Other options are available, such as naming the directory for the output
instead of specifying '.' for the current directory and running silently with
no reporting (1 instead of 0). The current options will be displayed on the
screen if you type:

encaps		<Enter>

	 Appendix E: Run Instructions (UNIX/Linux) 791

The encaps program works only with .ps files created by TPL software. It
cannot be used with PostScript files created by other programs.

Tables can be most conveniently imported into another system if each page
is in a separate file. Consequently TPL TABLES creates one file for each
page of table output. The files are named by page and table number. For
example, if you have a two page table followed by a one page table, the
table output will be divided into three files with the following names:

P1T1.eps
P2T1.eps
P3T2.eps

The tables.ps file containing the complete table output will still be avail-
able for printing or you can print individual pages of your tables by print-
ing the EPS files.

If you have more than one table on a page, they will all be contained in the
same EPS file.

CSV

Comma Separated Variable (CSV) format is a common data interchange
format. TPL can read CSV and other types of delimited files as data and
can output tables in CSV format for use by other programs. If you have
run your job in PostScript mode and have specified -V on your command
line or selected Export Delimited at the prompt, then you will have cre-
ated CSV files in your TPLnnnnn directory. If no tables were created,
for example because of data errors or because no data was selected, then
no CSV files will be created.

Each table with data produces a separate CSV file in your TPLnnnnn
directory. The files are labeled Table1.csv, Table2.csv, etc.

HTML

HTML is the standard language interpreted by Internet browsers to cre-
ate web pages. If you run your job in PostScript mode and include -h on
your command line or select Export Internet at the prompt, then you will
create HTML files in your TPLnnnnn directory. If no tables were cre-
ated, for example because of data errors or because no data was selected,
then no HTML files will be created.

	 Appendix E: Run Instructions (UNIX/Linux) 792

By default, one HTML file is created for each page of a table. These are
labeled Table1.htm, Table2.htm, etc. There are several options which af-
fect how many files are created and how they are formatted. These can be
specified on the command line as described below or they can be specified
though the prompts at the end of a tables run.

HTML Table Arguments

For a tables run or rerun job, the command line arguments for requesting
HTML output are:

-h	 produce	html		
-hn	 produce	html	with	a	navigation	bar	if	there	are	multiple	pages	of	out-

put
-ha	 produce	autosized	html;	automatically	sizes	the	"page"	to	allow	the	

entire	table	to	fit	 in	a	single	html	file	(no	automatic	banking	or	skip-
ping	to	a	new	page	because	the	table	is	too	long)

-hs	 produce	html	in	a	single	file	(this	turns	off	the	-hn	option)

You can request multiple HTML options at the same time, either by enter-
ing multiple -h arguments or by combining options in one -h argument.
If you combine options in a single -h argument, do not put any spaces
between options.

Example To run a tables job and request HTML with navigation and also with built-
in footnotes in the same column as the data, you could enter either of the
following:

tpl		tables		-r		survey.req		-d		survey.dat		-hn -ha		<Enter>	

tpl		tables		-r		survey.req		-d		survey.dat		-hna		<Enter>	

Note on Autosized and Single File HTML
It is reasonable to use both the -ha (autosize) and -hs (single file) options
for the same HTML export. Autosize causes the "paper" to expand so that
you do not get page breaks because of too many columns or rows in the
table. Page breaks will still occur between wafers and tables or if there
are explicit ejects. The single file option does not affect what gets put on
each page of the table. It just puts all of the pages together into a single
file rather than splitting them across files.

	 Appendix E: Run Instructions (UNIX/Linux) 793

ODS and XLS

ODS and XLS are both spreadsheet formats which can be read by most
spreadsheet programs. ODS is the current standard and is the preferred
format. It can be read by most spreadsheet programs including versions of
Excel available since 2007. The version of XLS produced by TPL can be
read by nearly any spreadsheet program. When it is brought into a recent
version of Excel, a warning message appears but if you select yes, the file
opens and displays correctly.

PDF

PDF is a widely used format for accurately displaying tables and other
output. The option currently works in Linux or Unix only if you have
installed the free program ghostscript. If you wish to use a different dis-
tiller program (not pdf reader), contact us and we will try to accomodate
your request.

TXT

This option produces the same output you would get if you ran your job
with Postscript = no; in your profile or format statements. It is really just
a convenience to enable you to get both text and other export formats from
the same table run.

DAT

DAT, like TXT, is provided as a convenience for people who wish to
produce data tables as well as other table formats in the same request. It
is equivalent to using the format command Data Tables; in your format
request or profile.

DAT Table Arguments

For a tables run or rerun job, the command line arguments for DAT table
output are:

-D	 produce	data	table
-Ds	 produce	single	table
-Dz	 produce	data	table	with	zeros	replacing	leading	and	trailing	blanks	on	

each	data	value.	
-Db	 produce	data	table	with	the	stub	retained.

Note s, z, and b may be used together; e.g. -Dzb will produce a data table with
with the stub retained and zero-filled data values.

	 Appendix E: Run Instructions (UNIX/Linux) 794

Removing Subdirectories with the rmtpl Command

The rmtpl command makes it easy for you to erase TPL subdirectories
that you no longer want to keep.

How to Run rmtpl

To erase a subdirectory, first be sure that you are in the directory that con-
tains the subdirectory. Then type the command

rmtpl		nnnnn 	<Enter>		(or	TPL	rmtpl	nnnn)

where nnnnn is the number of the subdirectory you want to erase.

You can delete multiple TPL subdirectories by including multiple numbers
on the command line. For example,

rmtpl		123		456		78345		<Enter>

To delete all TPL subdirectories contained in the current directory, type:

rmtpl		all		<Enter>

Note If you also have TPLR subdirectories created by TPL REPORT in the same
directory, the command rmtpl all will remove these subdirectories as well.

Modifying Tables with the rerun Procedure

After running a TPL job, you may see that the appearance of your tables
could be improved by changing certain formatting characteristics of the
tables. For example, if the numbers in the tables are very large, the default
column width may be too small, or maybe you want to change a table title
or label. The rerun procedure allows you to quickly change the format of
your tables by rerunning only the table formatting part of a job.

You specify the changes that you want using the FORMAT language. The
FORMAT statements go into a file that you create using your editor. The
format file can have any valid UNIX name, for example, survey.fmt.

	 Appendix E: Run Instructions (UNIX/Linux) 795

How to Run rerun

To use the rerun procedure, you will need to know the number of the TPL
TABLES subdirectory containing the existing tables. To rerun, type

rerun		<Enter>		(or	tpl	rerun	<Enter>)

TPL TABLES will display the prompt

Please	type	the	name	of	your	format	request	and	<Enter>
or	just	type	<Enter>	if	you	do	not	wish	to	provide	a	format
request	file:

==>

Using the name from the example above, you would type:

survey.fmt	<Enter>

TPL TABLES will display the prompt

Please	type	the	name	of	the	TPL	working	directory	and
<Enter>.		 'TPL'	may	be	omitted	if	the	path	is	not	included.

==>

Assuming that the tables you want to reformat are in the TPL TABLES
subdirectory TPL9467, you would type:

9467		<Enter>

	 Appendix E: Run Instructions (UNIX/Linux) 796

Rerun Command Line Arguments

If you wish, you can bypass the prompts by entering your rerun command with the following
parameters:

-f	format-file	 where	format-file	 is	the	name	of	your	format	request	file
-w	 nnnnn	 where	nnnnn is	the	number	of	the	TPL	subdirectory	you	are	working	

with
-e	 if	PostScript	 is	set,	convert	tables	into	Encapsulated	PostScript
-h	 if	PostScript	 is	set,	convert	tables	into	HTML.		For	additional	-h	options	

and	details,	see	the	section	on	HTML	table	arguments.
-V	 if	PostScript	 is	set,	convert	tables	to	CSV	(delimited)	format.
-D	 if	PostScript	 is	set,	produce	a	data	table.		For	additional	-D	options	and	

details	see	the	section	on	Data	Table	arguments.
-B	 if	Postscript	 is	set,	produce	pdf	output.		ghostscript	must	be	installed	

for	this	command	to	work.
-a	 if	Postscript	 is	set,	produce	(ASCII)	text	output.	
-o	 if	Postscript	 is	set,	produce	spreadsheet	output	(ods	-	the	current	

spreadsheet	standard)
-X	 if	Postscript	 is	set,	produce	spreadsheet	output	(xls	-	a	format	used	by	

older	versions	of	Excel)

	

For example,

tpl		rerun		-f		survey.fmt		-w		9467

Rerun Processing

The rerun procedure will process your FORMAT statements and reformat
your tables. The new version of your tables will replace the originals in
the tables file of the TPL9467 subdirectory.

If you do a rerun and don’t like the result of your format changes, you
can always get back to the original tables by doing a rerun without a
format request. Just type <Enter> when you are prompted for the format
request file name.

You can reformat a set of tables any number of times without reprocessing
the data.

	 Appendix E: Run Instructions (UNIX/Linux) 797

Creating Your Own Environment with the profile.tpl
File

The TPL TABLES installation process creates a file called profile.tpl and
puts it in the TPL TABLES system directory. This file allows TPL TA-
BLES to adjust to your operating environment.

The profile.tpl file contains statements that you can change with your edi-
tor after installation if something changes in your operating environment.
For example, if you begin using a PostScript printer, you might want to
edit profile.tpl.

You can also change table format defaults by including FORMAT state-
ments in profile.tpl. For example, if you always want your tables left-
adjusted on the page, you can make it a default by including the FORMAT
statement align table left; in profile.tpl.

If you want to leave the system profile unchanged, but use a different
profile for a particular set of jobs, you can make a copy of profile.tpl in
the directory where you are working and change that copy to fit the tables
you are preparing. The profile in the directory where you are working will
override the one in the TPL TABLES system directory.

If your copy of TPL TABLES is being shared over a network, you may
wish make a copy of profile.tpl that is appropriate for the way you want
to use TPL TABLES.

Specifying Extra Memory

For certain types of large jobs, you may be able to improve performance
by increasing cell memory space with the CELL MEMORY statement.
The statement is in PROFILE.TPL and is described in the Format chapter.

In earlier versions of TPL Tables, the LABEL MEMORY statement could
be used to control the amount of work space available for certain kinds of
labels. This statement in no longer needed or used by TPL Tables due to
improvements in memory management. The statement is ignored if pres-
ent.

	 Appendix E: Run Instructions (UNIX/Linux) 798

Piping Data to TPL TABLES

TPL TABLES supports standard piping of data into a request and also sup-
ports the more flexible named pipes.

Standard Piping

Standard piping is done by using just the standard ‘|’ symbol plus the TPL
TABLES keyword %pipe.

An example is:

cat		datafile		|		 tpl		tables		-r	request		-d		%pipe

The piped input may of course come from the output of any program
which writes to the standard output (console). The hourglass is not shown
while data is being read.

With this type of piping, TPL TABLES reads the piped data as if it were
coming from the standard input (the keyboard). Thus, the following rules
apply:

1. Both the -r and -d arguments must be included and be
correct or the job will fail to execute.

2. TPL TABLES will not prompt you for missing or
incorrect arguments. Since the standard input (key-
board) is used for the pipe, there is no way to respond
to prompts using the keyboard.

3. Jobs can only be run in foreground. You cannot use
the -b argument to run TPL TABLES in background.

Named Pipes

Named pipes or FIFOs provide a more flexible method for connecting
the output of one program to the input of another. TPL TABLES treats a
named pipe just like a file except that the hourglass is not displayed when
a named pipe is used.

Named pipes are usually preferable to the type of piping described above
as "standard piping". Since the named pipe is not the standard input, but
rather a separate entity with its own name, the keyboard is free for repond-

	 Appendix E: Run Instructions (UNIX/Linux) 799

ing to prompts. In addition, you can use the -b argument to run jobs in
background.

To use named pipes, first create a named pipe using the mknod command:

mknod	 /dev/your-name			p																																																																																																																																																
																											

where your-name is whatever you want. The pipe need not be created in
/dev though this is customary. The p is required to indicate that the node
is to be a pipe. The pipe need only be created once as it will stay around
between jobs.

Now you can direct the output from your data-generating program into
the pipe. Start TPL TABLES with the pipe name as the input file. TPL
TABLES detects that the input file is a pipe rather than a regular file and
modifies the processing as appropriate.

Suppose your pipe name is /dev/my_pipe. You can pipe a data file called
my_data into TPL TABLES with the following sequence:

cat		my_data		>		/dev/my_pipe		&
tpl		tables		-d		/dev/my_pipe

Most UNIX programs which write output to a user-specified file can write
their output to a named pipe and hence can pipe their output into TPL
TABLES.

Silent Use of Pipes

Named pipes can be used to run jobs silently in background in such a way
that there is no output on the screen. The following example shows how
TPL TABLES can read data from a pipe and run without displaying even a
process id on the screen.

cat		datafile		>		named_pipe		&
tpl		tables		-r		request		-d		named_pipe		-b		>		/dev/null

Although TPL TABLES will run silently in this example, we will get a
process id displayed from the cat program. In a real case, we would not
be using cat to fill the pipe so there would be no problem.

For example, we can replace the cat with a trivial program called
pipe_fill as follows:

	 Appendix E: Run Instructions (UNIX/Linux) 800

main()
	{
		system(“cat		datafile		>		named_pipe		&”);
	}

Then pipe_fill will not display the process id so the following sequence
will be completely silent:

pipe_fill
tpl			tables		-r		request		-d		named_pipe		-b		>		/dev/null

Common Error and Warning Messages

Error and warning messages are intended to be self-explanatory. However,
a few common messages deserve special note.

Syntax error message
	***	ERROR:	A	syntax	error	was	discovered	while	processing	
	 'element'.	 	Look	for	the	error	at	or	before	that	point.

This message appears whenever there is a syntax error in a codebook,
table request, format request or profile. Examples of syntax errors are
misspelled keywords or punctuation errors such as a missing colon (:) or
semicolon (;). The point at which TPL TABLES discovered the error is
indicated by the element in quotes.

Example Following is an example showing the beginning of a TABLE statement and
the error message that would result:

TABLE	ONE	'Average	Income	by	Region'
	 HEADING	REGION,

***	ERROR:	A	syntax	error	was	discovered	while	processing	
'HEADING'.		Look	for	the	error	at	or	before	that	point.

Since the error was found when the word HEADING was encountered,
we can assume that there is something wrong with the word HEADING,
or that an error preceded the word HEADING so that it appears to be in
the wrong place. In this example, a colon (:) is missing following the
table title. TPL TABLES is looking for the colon when it finds the word
HEADING.

	 Appendix E: Run Instructions (UNIX/Linux) 801

Undefined variable error message
***	ERROR:	The	variable	'variable-name'	 is	undefined.

A frequent cause of this error is a misspelled name. Another cause is a
reference to a variable that has not yet been defined. For example, if a
variable is computed in a COMPUTE statement and used in a TABLE
statement that precedes the COMPUTE statement, the computed variable is
unknown to TPL TABLES when it finds it in the TABLE statement.

Example Misspelling of the variable name INCOME as INCOM produces the mes-
sage shown below.

POST	COMPUTE	AVG_INCOME	=	INCOM	/	PERSONS;

***	ERROR:	The	variable	'INCOM'	is	undefined.

Narrow column warning message
***	WARNING:		Some	columns	in	your	tables	are	too	narrow	to	hold	
your	table	cells.		See	the	output	file	for	details.

When TPL TABLES is formatting a table, if a data value is too wide to
fit in the column, it will be replaced with the built-in NO_FIT footnote,
making it obvious that the value does not fit. However, TPL TABLES first
attempts to display the value by removing mask items such as commas,
percent signs and footnote symbols and displays the value without these
items. This warning message will alert you to the fact that one or more
values are missing some mask items.

If you get this message it will be at the end of the file called output. You
can then search for other instances of *** WARNING in the layout section
of the output to get more detailed information about where values had
items removed. For example,

***	WARNING:		For	table	1,	page	1,	column	1	is	too	narrow	to	hold	
some	data	cells.

	 Appendix F: TPL Conditions (UNIX/Linux) 802

a p p e n d i x F

TPL Conditions (UNIX/Linux)

whAT iS tpl conditions?
The tpl conditions program converts partial codebook sources into com-
plete codebook sources. In doing so, it saves you work in creating code-
books and also assures that the codebook source accurately describes the
data. It works with codebooks for databases, fixed format files and delimit-
ed files such as CSV. The program can also be used to update a codebook
source when the data file or database has changed in such a way that addi-
tional condition values are needed. tpl conditions fills in condition values
and labels for all types of codebooks. For delimited (CSV) and database
codebooks it also fills in field sizes. For database codebooks, tpl condi-
tions fills in data types of observation variables such as float. See Produc-
ing A Codebook Source with the conditions Procedure in Run Instructions
(UNIX) for details on how to run a tpl conditions job.

Control Variable Conditions

As the name of the procedure implies, the biggest use of tpl conditions is
to fill in condition values for control variables. If the codebook is new, the
condition value lists are presumably empty. In this case tpl conditions in-
serts all of the conditions found in the data for each control variable. The
conditions are assigned default labels.

If the codebook is old and is merely being updated, all existing conditions
and their labels are retained. tpl conditions just adds the new conditions
found in the data. Where the new conditions are added depends upon the
display as clause. If there is no display as clause or display as sorted
is specified, the old and new conditions for a variable are intermixed and
placed in sort order based on the value. If display as listed is specified,
the old conditions are retained at the start of the condition list and the new

	 Appendix F: TPL Conditions (UNIX/Linux) 803

conditions are placed at the end of the condition list in the order they are
encountered.

When tpl conditions has finished, you may edit the new codebook source
to provide better labels for the new conditions and to rearrange them if
desired.

Note tpl conditions cannot update codebooks that contain groups.

Fixed Format Sequential File Example

The following is an incomplete fixed format sequential file codebook
before tpl conditions has been run. Note that all fields must have a width
since this is the only way TPL can identify the boundaries of a field. aip
has no conditions but it must have parentheses. Complainant, shift_ and
squad all have some condition values.

Begin	dispatch	codebook	ascii

dispatches	'Dis'-'patches'	record	level	0
			filler	6	
			A_I_P	'A-I-P'	control	1	
				(
)
			filler	5
			STREET1	'1STREET'	char	4
			STREET2	'2STREET'	char	4
			COMPLAINANT	'Complainant'	control	30
				(
					 'Alarm	Panel'		=	 'ALARM	PANEL'
					 'Blairs	Florists/John'		=	 'BLAIRS	FLORISTS/JOHN'
					 'Cowden,George'		=	 'COWDEN,GEORGE'
					 'Marion	High	School'		=	 'MARION	HIGH	SCHOOL'
)
			td	obs	4		
			tr	obs	4			
			 ta	obs	4		
			tc	obs	4			
			unit	 'Unit'	char	4
			filler	36	
			full_date	'Date'	char	6
			shift_	 'Shift'	control	1	display	as	sorted
				(
					 'first	shift'	 	=	 '1'
					 'third	shift'	 	=	 '3'
)

	 Appendix F: TPL Conditions (UNIX/Linux) 804

			filler		1
			squad	'Squad'	control	1	Display	as	listed
				(
					 'unknown'		=	 '	 '
	 	 	 	 	 'squad	9'		=	 '9'
)
End	dispatch	codebook

The following is the completed codebook source after tpl conditions has
been run. Note that filler has been removed. Instead, the field following
the filler has a start position. Complainant does not have a display as
clause so the old conditions are sorted into value order along with the new
values. shift_ has a display as sorted clause so the old conditions are also
sorted into value order with the new conditions. squad uses display as
listed so the old conditions retain their order and the new conditions are
added after them.

Begin	DISPATCH	codebook	ascii
DISPATCHES	"Dis"	-	"patches"	Record	Level	0
A_I_P	"A-I-P"	start	6	Con	1
	(
			=	"A"
			=	"I"
			=	"P"
)
STREET1	"1STREET"	start	12	Char	4
STREET2	"2STREET"	Char	4
COMPLAINANT	"Complainant"	Con	30
	(
			=	"	"
			=	"7	AV	STD"
			"Alarm	Panel"	=	"ALARM	PANEL"
			=	"ALEXANDER,DICK"
			=	"ARP,MICHAEL"
			=	"BEETS,GENEVA"
			=	"BEHNKE,MRS"
			"Blairs	Florists/John"	=	"BLAIRS	FLORISTS/JOHN"
			=	"COOK,TOM"
			=	"COOPER,DEB"
			"Cowden,George"	=	"COWDEN,GEORGE"
			=	"CR	727"
			=	"MARION	76/RANDI"
			=	"MARION	FIRE"
			"Marion	High	School"	=	"MARION	HIGH	SCHOOL"
			=	"MATTESON,KENNETH"
			=	"WORTMAN,DAVID"
			=	"YATES,DOUG"

	 Appendix F: TPL Conditions (UNIX/Linux) 805

			=	"YEISLEY,BILL"
			=	"YIRKOUSKY,DARREL"
			=	"YOUNG,MARVIN"
)
TD	"TD"	Obs	4
TR	"TR"	Obs	4
TA	"TA"	Obs	4
TC	"TC"	Obs	4
UNIT	"Unit"	Char	4
FULL_DATE	"Date"	start	106	Char	6
SHIFT_	"Shift"	Con	1
Display	as	sorted
	(
			"first	shift"	=	"1"
			=	"2"
			"third	shift"	=	"3"
)
SQUAD	"Squad"	start	114	Con	1
Display	as	listed
	(
			"unknown"	=	"	"
			"squad	9"	=	"9"
			=	"1"
			=	"R"
)

End	DISPATCH	codebook

Delimited (CSV) Sequential File Example

The following is a small incomplete CSV codebook before tpl conditions
has been run. Note that sizes are not specified but field number is. Some
of the fields have been skipped. For the field complaint some of the con-
dition values have been provided. aip has no fields provided but it does
have the required parentheses.

Begin	dispatch_csv	Codebook	CSV	
	 (Head	=	Yes	Delimiter	=	COMMA)
dispatch_csv	Record
ID	"id"	Field	=	1	Char	
AIP	"aip"	Field	=	2	Control	()
COMPLAINANT	"complainant"	Field	=	6	Control	Right	Blank	Fill	
	(
			"ALARM	PANEL"		=		"ALARM	PANEL"
			"BLAIRS	FLORISTS/JOHN"		=		"BLAIRS	FLORISTS/JOHN"
			"COWDEN,GEORGE"		=		"COWDEN,GEORGE"
			"MARION	HIGH	SCHOOL"		=		"MARION	HIGH	SCHOOL"

	 Appendix F: TPL Conditions (UNIX/Linux) 806

)
SQUAD	"squad"	Field	=	22	obs
End	dispatch_csv

The following shows the complete codebook after tpl conditions has been
run. Field widths have been filled in as have condition values for aip.
Conditions have also been filled in for complainant, Since there is no dis-
play as clause, the old conditions are sorted in with the new conditions.

Begin	DISPATCH_CSV	codebook	CSV
(Delimiter	=	Comma		Head	=	Yes		Quote	=	'"')
DISPATCH_CSV	"DISPATCH	CSV"	Record	Level	0
ID	"id"	Report	Error	=	No
Field	=	1	char	5
AIP	"aip"	Field	=	2	Con	1
	(
			=	"A"
			=	"I"
			=	"P"
)
COMPLAINANT	"complainant"	Field	=	6	Con	Right	Blank	Fill	28
	(
			=	"	"
			=	"7	AV	STD"
			"ALARM	PANEL"	=	"ALARM	PANEL"
			=	"ALEXANDER,DICK"
			=	"ARP,MICHAEL"
			=	"BEETS,GENEVA"
			=	"BEHNKE,MRS"
			"BLAIRS	FLORISTS/JOHN"	=	"BLAIRS	FLORISTS/JOHN"
			=	"COOK,TOM"
			=	"COOPER,DEB"
			"COWDEN,GEORGE"	=	"COWDEN,GEORGE"
			=	"CR	727"
			=	"MARION	76/RANDI"
			=	"MARION	FIRE"
			"MARION	HIGH	SCHOOL"	=	"MARION	HIGH	SCHOOL"
			=	"MATTESON,KENNETH"
			=	"WORTMAN,DAVID"
			=	"YATES,DOUG"
			=	"YEISLEY,BILL"
			=	"YIRKOUSKY,DARREL"
			=	"YOUNG,MARVIN"
)
SQUAD	"squad"	Field	=	22	Obs	1

End	DISPATCH_CSV	codebook

	 Appendix F: TPL Conditions (UNIX/Linux) 807

Error Detection

 In addition to producing a new codebook source, tpl conditions detects
errors. For this example, the error messages were placed in DISPATCH_
CSV.O. The field squad is described as obs but it has some letters in it.
The following is the last part of the file DISPATCH_CSV.O where the
errors are reported.

For	record	255	Variable	SQUAD:		 'R'	cannot	appear	in	an	ascii	observation	value.
For	record	255	Variable	SQUAD:		An	observation	value	must	contain	a	digit.
For	record	256	Variable	SQUAD:		 'R'	cannot	appear	in	an	ascii	observation	value.
For	record	256	Variable	SQUAD:		An	observation	value	must	contain	a	digit.
For	record	267	Variable	SQUAD:		 'K'	cannot	appear	in	an	ascii	observation	value.
For	record	267	Variable	SQUAD:		An	observation	value	must	contain	a	digit.
For	record	268	Variable	SQUAD:		 'K'	cannot	appear	in	an	ascii	observation	value.
For	record	268	Variable	SQUAD:		An	observation	value	must	contain	a	digit.
For	record	280	Variable	SQUAD:		 'R'	cannot	appear	in	an	ascii	observation	value.
For	record	280	Variable	SQUAD:		An	observation	value	must	contain	a	digit.

285	records	read.
60	data	errors	were	found.

End	CODEBOOK	CONDITIONS	processing

SQL Database Example

The following is a small incomplete SQL codebook before tpl conditions
has been run. Note that field sizes are not specified. Data types, such as
float, have not been filled in for observation variables and no conditions
are provided for the control variables. Instead, get conditions from data
or get conditions from table(label,code) are used. Since this codebook
describes a Sybase database with lowercase field names, each variable must
have a defines clause.

begin	sample	codebook	sql

employee	defines	"employee"	table
company_id	defines	"company_id"	obs
last_name	defines	"name"	control	from	data	
salary	defines	"salary"	obs

company	defines	"company"	table
company_name	defines	"name"	control	get	conditions	from	data
company_id	defines	"company_id"	obs
location	defines	"location"	control
		get	conditions	from	"locations"("location_name","location_id")
gross	defines	"gross"	obs

	 Appendix F: TPL Conditions (UNIX/Linux) 808

company	is	parent	of	employee	where	company_id	=	company_id

After the incomplete codebook has been processed by tpl conditions the
result is as listed below. Last_name and Company_name have condi-
tions obtained from the data. Location has obtained its conditions from the
location_name and location_id of the locations table. Field widths are
filled in. Since the program was run against a Sybase data base, the begin
statement references Sybase instead of SQL.The fields Company_id and
Gross are now obs float instead of just obs and salary is now obs money
and has a mask rather than just being obs.

Begin	SAMPLE	codebook	Sybase
EMPLOYEE	"EMPLOYEE"	Defines	"employee"	table
COMPANY_ID	"COMPANY	ID"	Defines	"company_id"	obs	float	8
LAST_NAME	""	Defines	"name"	control	9
	(
			"Balmer"	=	"Balmer"
			"Einstein"	=	"Einstein"
			"Gates"	=	"Gates"
			"Newton"	=	"Newton"
			"Watson"	=	"Watson"
			"Weeks"	=	"Weeks"
			"Weiss"	=	"Weiss"
)
SALARY	"SALARY"	Mask	Center	$	999.99	
	 Defines	"salary"	obs	money
COMPANY	"COMPANY"	Defines	"company"	table
COMPANY_ID	"COMPANY	ID"	Defines	"company_id"	obs	float	8
COMPANY_NAME	""	Defines	"name"	control	12
	(
			"IBM"	=	"IBM"
			"Microsoft"	=	"Microsoft"
			"QQQ	Software"	=	"QQQ	Software"
)
GROSS	"GROSS"	Defines	"gross"	obs	float	8
LOCATION	""	Defines	"location"	control	2
from	"locations"	("location_name",	"location_id")
	(
			"Arlington"	=	"01"
			"Everywhere"	=	"02"
			"Redmond"	=	"03"
			"New	Carrollton"	=	"04"
			"Nowhere"	=	"05"
			"hometown"	=	"06"
			"Atlantis"	=	"07"
)

	 Appendix F: TPL Conditions (UNIX/Linux) 809

COMPANY	is	parent	of	EMPLOYEE	where	
	 COMPANY_ID	=	COMPANY_ID

End	SAMPLE	codebook

Comments

tpl conditions preserves comments in your codebook source. To assure ac-
curate placement of your comments in the output, the comments should be
put in one or more of the following places:

At the start of your codebook
Before the end codebook statement
Before a variable or record entry
Before a condition entry
Before an association statement

	 Appendix G: International 810

a p p e n d i x G

International

fOrmATS, SymBOLS And LAnguAgeS

Important The CODEPAGE and COUNTRY statements described in this appendix are
special statements that can be used in the profile for your jobs. If you add
a CODEPAGE or COUNTRY statement to your profile, change a CODEP-
AGE or COUNTRY statement in your profile, or make changes to country.
tpl, you need to restart TPL to activate the changes.

Your codebook must be processed with the same CODEPAGE and COUN-
TRY statements that you use when running your table requests. Otherwise,
you will have conflicting standards. In particular, conflicts in CODEPAGE
will cause the sort order to be scrambled.

Alphabets and Sort Order: The CODEPAGE Statement

The CODEPAGE determines the character set and sort order for your re-
quests and tables. The default CODEPAGE will work with many languag-
es. If you need additional characters for your alphabet, you can select a
different CODEPAGE from those shown in the Appendix called "Character
Sets". See also the CODEPAGE statement in the FORMAT chapter.

Entering characters, using them in labels and printing them. The most
desirable way of entering characters is with a keyboard that is appropriate
for the alphabet of the language you are using and an editor that supports
it.

Any character that can be entered on the keyboard, either directly or by
using Alt and the numeric keypad, can be used in TPL TABLES labels and
other character strings such as condition values.

	 Appendix G: International 811

Characters not on your keyboard can also be entered by typing in their
numeric code or by entering a character name.

Character Name. A character name is the name of a character preceded
by & and terminated with ;. For example É refers to the let-
ter E with an acute accent above it. Character names are case sensitive.
é is the letter e with an accute accent.The acceptable names are the
names for the codepage you have selected. See Special Character names in
the "Character Sets" Appendix. Use of character names instead of charac-
ter codes has the advantage of being more portable. If you switch codep-
ages, the table will look the same provided the character name is in both
code pages. Also, if you are using a table for multiple purposes -- creating
a pdf, creating a web page, and printing the table -- then use of a character
name will in general result in a constant display of the character. Finally,
table requests written using character names area easier to read than re-
quests using character codes.

Character Code. A Character code is a \ followed by a 3 digit number
which identifies the character. Three digits are always required. If the
character can be represented by fewer than 3 digits, add leading zeros. For
example, for a character represented by the code 65, enter \065.

The value nnn must be the decimal code for the character. Note that the
character code tables in some software manuals show the octal or hexideci-
mal codes for the characters. If you are using this type of table, you must
convert the code to its decimal equivalent. Character set tables showing
decimal codes are included in the Appendix called "Character Sets".

These characters will print correctly if they are included in the character set
for the selected CODEPAGE. In exported text tables, the characters will
print correctly if they are available on the printer.

Alphabet for user-specified names. If an alphabetic character is includ-
ed in the character set for the selected CODEPAGE and the character can
be entered on the keyboard, either directly or by using Alt and the numeric
keypad, it can be used in names for variables, tables, and other items.

The Sort Sequence. The proper order for sorting depends on the charac-
ter set used. TPL will use the sequence that goes with the character set se-
lected by the CODEPAGE statement. The sort sequences for all character
sets are stored in a file called sort.tpl that is installed in the TPL system
directory.

	 Appendix G: International 812

Note Your should insert CODEPAGE at the beginning of your profile. You can-
not do this until after TPL TABLES is installed.

The COUNTRY Statement

The COUNTRY statement is fully described in the FORMAT chapter of
the manual. It lets you select standards for the characters to be used as
decimal and thousands separators, the currency symbols and format, and
formats for date and time. These standards are set in a file called country.
tpl that is installed with TPL TABLES. US is the default country.

Note You should insert COUNTRY at the beginning of your profile. You cannot
do this until after TPL TABLES is installed. Before inserting the COUN-
TRY statement, you should check to see if there are any decimal numbers
already used in the profile. For example, decimal numbers can be used in
the page size specifications. If you have any such instances, you should
edit your profile to match your country standard.

Specifying Right-hand Stubs with the FORMAT State-
ment STUB RIGHT

With the FORMAT statement STUB RIGHT, tables are formatted with the
stub on the right side of the table instead of the left. This is most often
used to prepare tables on facing pages. It is particularly useful if you need
to do a table in two languages on facing pages where the left page has the
stub on the left in one language and the right page has the stub on the right
in another language.

See the STUB RIGHT statement in the FORMAT chapter of the user
manual for details.

Replacing Default English Text

If you regularly use TPL TABLES to produce tables in a language other
than English, you may wish to replace the default text for labels such as
TOTAL ("Total"), title continuation (" - Continued") or the built-in foot-
notes such as the SEE_END footnote "See footnotes at end of table."

We recommend that you replace these labels by entering the appropriate
FORMAT statements in your profile.tpl file. The new labels will then
automatically apply to all of your tables.

	 Appendix H: Keywords 813

ABS
AFTER
ALIGN
ALL
ALTERNATE
AND
AS
ASCENDING
ASCII
AT
AUTO
AUTOMATIC
BANK
BANKS
BEGIN
BINARY
BIT
BLANK
BLANKS
BOLD
BOTH
BOTTOM
BY
CELL
CELLFILE
CELLS
CENTER
CENTRE

CHANGE
CHAR
CHARACTER
CM
CODEBOOK
CODEPAGE
COLOR
COLOUR
COLUMN
COLUMNS
COMMAND
COMPRESS
COMPUTE
CON
CONDITION
CONDITIONS
CONT
CONTINUATION
CONTINUE
CONTINUED
CONTROL
COPY
COUNT
CREATED
CSV
DATA
DATE
DECIMAL

DEFAULT
DEFINE
DEFINES
DELETE
DELIMITER
DESCENDING
DISPLAY
DIV
DIVIDE
DIVIDER
DO
DOUBLE
DOWN
EACH
EIA
EJECT
EMPTY
END
EOF
EPS
EQUAL
EQUALS
EVALUATED
EVERY
EXCEPT
EXTRA
FETCH
FIELD

FILE
FILL
FILLER
FLOAT
FMEDIAN
FONT
FOOTNOTE
FOOTNOTES
FOR
FQUANTILE
FROM
GET
GRAY
GREATER
GREY
GROUP
HEAD
HEADER
HEADERS
HEADING
HEADINGS
HEADNOTE
HEADS
HIERARCHIES
HTML
I
IF
IN

a p p e n d i x h

Keywords

TPL TABLES Keywords

The following words are TPL TABLES keywords. They should not be
used as names for tables, variables, conditions, codebooks, or footnotes.

	 Appendix H: Keywords 814

* Codebook only. You can continue to use this word as a variable name, if you precede it with a : in
the codebook. For example, :PRIMARY

INCH
INCHES
INCOMPLETE
INCREMENT
INDENT
INPUT
INS
IS
ITALIC
JUSTIFIED
JUSTIFY
KEEP
KEY
LABEL
LABELS
LAST
LEADING
LEFT
LENGTH
LESS
LEVEL
LINE
LINES
LISTED
MARGIN
MARKER
MASK
MAX
MAXIMUM
MEAN
MEDIAN
MEMORY
MIN
MONEY
MONITOR
NAME
NAMES
NO
NORMAL
NOT
NOTE
NULL
NUMBER
NUMBERS
NUMERIC

OBS
OBSERVATION
ODBC
ODS
OF
ON
OR
ORACLE
OTHER
PAGE
PAPER
PARENT
PATH
PDF
PERCENT
PLAN
POINT
POINTS
POST
POSTCOMPUTE
POSTSCRIPT
PRIMARY*
PRINT
PT
PTS
QUANTILE
QUANTILES
QUOTE
RANK
RECORD
REDEFINES
REPEAT
REPEATS
REPLACE
REPORT
REPORTS
RETAIN
RIGHT
ROTATE
ROUND
ROW
ROWS
RULE
RULES
SCALE

SELECT
SEQUENCE
SET
SHADE
SHIFT
SIB
SIBLING
SIDE
SKIP
SORTED
SPACE
SPACES
SPAN
SPANNER
SPANNERS
SQL
SQRT
START
STARTS
STATCAN
STDERR
STDEV
STDEVP
STOP
STUB
STUBS
SUB
SUBSTR
SUBSTRING
SUP
SUPER
SYBASE
SYM
SYMBOL
TABLE
TABLES
TABULATE
TEXT
THAN
THEN
TITLE
TITLES
TO
TOP
TOTAL

U
UNDERLINE
UNJUSTIFIED
UNJUSTIFY
UNLESS
UNSIGNED
UP
USE
USING
VALUE
VALUES
VAR
VARIABLE
VARIABLES
VARP
VARYING
WAFER
WAFERS
WEIGHTED
WEIGHTING
WHERE
WIDTH
WITH
XLS
YES

	 Appendix I: Limits 815

a p p e n d i x i

Limits

SummAry Of feATureS And SySTem
COnSTrAinTS

Platforms and Operating Systems

Windows 98, XP, 2000, VISTA.

UNIX platforms, including Sun and HP.

Can be ported to other UNIX platforms.

Contact QQQ Software for current list.

Minimum Hardware Configuration

Hard disk space: 30 megabytes

Printer: any

Optional Hardware

PostScript printer: On UNIX systems, a PostScript printer is required to
print PostScript tables directly. You can however export the tables to pdf
and print them on most printers. Alternately some PostScript display pro-
grams support printing of PostScript tables on printers which do not print
Postscript. On Windows systems, PostScript tables can be printed from
TED on any printer. When PostScript tables are inserted in documents
with desktop publishing software, a PostScript printer may be required to
correctly print the tables. If you convert PostScript tables, or documents
containing PostScript tables, to Adobe Acrobat PDF format, they can be
printed from Adobe Acrobat Reader.

Hard disk space: The installed system occupies about 30 megabytes of
hard disk space. Additional space is needed for temporary work files and

	 Appendix I: Limits 816

for your data and output tables. Alternate drives can be substituted for
anything other than the installed TPL TABLES system.

Features/Constraints

There are very few fixed limits in TPL TABLES. The available computer
resources are allocated according to the unique requirements of each job so
that space not needed for one feature can be used by another. Thus, it is
highly unlikely that you will ever encounter a limitation on the size of your
job. If you do, please contact Software Support for suggestions.

Maximum cells per request: no limit

Maximum number of tables per request: no limit

Maximum number of variable references: no limit

Maximum number of values for a single control variable (includ-
ing variables created by DEFINE statements): no system limit, although
performance may degrade with many hundreds of thousands of values,
depending on the capacity of your computer and what you are doing with
the variable.

Maximum columns per table: no system limit, although tables with thou-
sands of columns may encounter memory limitations

Maximum print label length: no limit

Maximum record types and groups in codebook: 30

Input data file requirements:

Record formats: fixed length records with data fields in fixed columns;
variable length CSV (comma separated) and other types of delimited
files

Datafile type: sequential

Maximum record length: 32,764 bytes for fixed length records; 50,000
bytes for CSV and other delimited files

Datafile organizations: flat (single level) and hierarchical (multi-level)

Data field types: character (ASCII), binary and floating point (single or
double precision)

SQL databases: The TPL-SQL Database Interface is optional. For

	 Appendix I: Limits 817

Window systems, databases can be accessed via ODBC. For UNIX
systems, contact QQQ Software for the current list of supported
database systems.

Accuracy of computed results: Computations are done in ANSI standard
double precision floating point with special code to prevent comparison er-
rors introduced by radix conversion.

Format for codebooks, table requests and format requests: free format

Variable name format: up to 30 characters long, starting with letter, # or
underbar(_), and containing only letters, digits, # and _

Statistics: percentages, medians, quantiles (percentiles, quartiles, etc.),
maxima, minima, means, variances, standard deviations, standard errors;
others can be generated with COMPUTE and POST COMPUTE statements

Statement types: table, select, define, compute, post compute, conditional
compute and post compute, median, quantile, percent, rank, weighting,
footnote, note, label, and use

	 Appendix J: Utilities 818

a p p e n d i x J

Utilities

STAnd-ALOne uTiLiTy PrOgrAmS

Several stand-alone utility programs are installed with TPL TABLES. You
may find some of these programs useful in applications other than TPL
TABLES.

FOR_WORD

Note FOR_WORD is a public domain program.

Location
Windows: Installed in the TPL TABLES system directory

UNIX: Installed with TPL TABLES in the tpldebug subdirectory

File Name
for_word.exe		(if	Windows)
for_word		(if	UNIX)

Purpose
To take a file that was prepared with a line editor and convert it to word
processing format. By "line editor", we mean a program that puts one or
more return characters at the end of each line. By "word processor", we
mean a program that works with paragraphs rather than lines. The FOR_
WORD program will convert a line editor file for use with a word proces-
sor by removing the return characters from lines within paragraphs.

	 Appendix J: Utilities 819

Instructions
The program is self-documenting. On the command line, type

for_word	<Enter>

Instructions will be displayed on the screen.

HEXLIST

Location
Windows: Installed in the TPL TABLES system directory.

UNIX: Installed with TPL TABLES in the tpldebug subdirectory

File Name
hexlist.exe		(if	Windows)
hexlist		(if	UNIX)

Purpose
The hexlist program displays the contents of a file as hexidecimal values
and, when possible, as ascii characters. Where there is no ascii charac-
ter equivalent for the hexidecimal value, a % symbol is displayed on the
character line.

The hexlist program can be very useful in identifying problems in a data
file when the file has errors or is not in the format that you expected.

Instructions
On the command line, type

hexlist		arg1		arg2		arg3		<Enter>

where

arg1 is file name
arg2 (optional) is a line width <= 75. 75 is the default
arg3 (optional) indicates that the file should be opened in ascii

rather than default binary mode. It must be a lower case
letter “a” or the word “ascii” (not in quotes).

	 Appendix J: Utilities 820

If you want the file opened in ascii mode, you must provide both argu-
ments 2 and 3.

If the file is opened in binary mode (the default), all characters in the file,
including any end-of-record or end-of-file indicators, will be displayed.

If the file is opened in ascii mode, carriage returns and end-of-file markers
will not be displayed. Line feeds will be displayed.

On Windows systems, most ascii files have a carriage return and line feed
at the end of each record and a control-Z at the end of file.

The hexidecimal codes for these end-of-record and end-of-file characters
are:

0D					<CR>
0A					<LF>
1A					control-Z

UNIX Note If you are working with a UNIX system, the binary/ascii distinction is ir-
relevant since you will get the same result either way. Most UNIX ascii
files have a line feed (hexidecimal 0A) at the end of each record.

How to Stop
If you have a large file, you may wish to stop the hexlist after displaying
just a part of it. You can stop the hexlist by entering <Ctrl><Break> or
<Ctrl>C.

UNIX Note In UNIX, you can stop the hexlist with the key or key combination that
you normally use to cancel jobs.

Redirection
The screen output can also be redirected to a file. For example,

hexlist		mydata		>		hexout		<Enter>

will do a hexlist of the file mydata, displaying 75 characters per line and
saving the output in the file called hexout.

	 Appendix J: Utilities 821

PSP -- PostScript Print Program

Location
Installed in the TPL TABLES system directory.

File Name
psp.exe		(if	Windows)
psp		(if	UNIX)

Purpose
PSP is a powerful utility for selective formatting and printing regular
ASCII character files on a PostScript compatible printer.

Instructions
The program is self-documenting. On the command line, type

psp		<Enter>

Instructions will be displayed on the screen. Wild cards can be used to
print multiple files that have a portion of the name in common. For ex-
ample, to print all files that have the suffix .txt, type:

psp		*.txt		<Enter>

Note For a line of text that ends with a return character and is longer that the
width of the page, PSP will "wrap" the long line, then go to a new line for
the following text. For example:

This is the first line of text. It is too long for the page width so it
wraps when it is printed.

This is the second line of text. It starts on a new line.

If you want to print this type of text file with PSP, you can get a better
result by using the FOR_WORD program to remove the return characters
within paragraphs. When you use FOR_WORD, write the output to a tem-
porary file. Then print the temporary file with PSP. For example,

for_word		myfile		tempfile		<Enter>
psp		tempfile		<Enter>

	 Appendix J: Utilities 822

TO_SHOW (Windows only)

This program is not needed if text tables come from ex-
port instead of from POSTSCIPT = NO;

Location
Windows: Installed in the TPL TABLES system directory.

UNIX: Not available

File Name
TO_SHOW.EXE

Purpose
When TPL TABLES formats tables with POSTSCRIPT = NO, it formats
horizontal rules as extensions of other lines of the tables. This format will
gives the best possible result on any type of printer. The tables can be con-
veniently reviewed on the screen with TED, the TPL Editor, because TED
is custom-programmed to work correctly with the table format. If, instead,
you try to edit the tables or display them with other software, the horizon-
tal rules may not display the way you want.

You can use the program TO_SHOW to convert a tables file created using
POSTSCRIPT = NO; to a format that will work and editors (word proces-
sors), and display correctly on the screen using any display software.

Instructions
On the command line, type

TO_SHOW	tables-in	tables-out		<Enter>

where tables-in is the original tables file and tables-out is the converted
tables file.

Example	 TO_SHOW		TABLES		TABLES.SHO		<Enter>

	 Appendix K: Character Sets 823

a p p e n d i x K

Character Sets

ChArACTerS And COdePAgeS

The WIN character sets are recommended for the Windows version; the
ISO character sets are recommended for the UNIX version.

The default for Windows is WIN88591. The default for UNIX is
ISO88591. To select a different character set, use the CODEPAGE state-
ment described in the Format chapter.

If you want your jobs to give identical results using both the Unix and
Windows versions, you should use Windows and ISO codepages with all
of the characters you need and use character names rather than character
codes in your request.

EURO Symbol

TPL Tables provides full support for the euro symbol provided your printer
and computer fonts support it. Windows 2000 may not support the euro
symbol but Windows XP and Vista do. Sun Solaris 8 does not support the
euro but later versions do.

The country.tpl has been changed so the currency symbol is a euro for
those countries which have adopted it.

If you look in the codepage files such as win88591.cp, you will see 4 dif-
ferent euro entries, display_euro, pdf_euro, eps_euro, and psprint_euro.
This is because in certain computer environments the the correct way to
specify a euro for one purpose is different from the way to express it for a
different purpose. If for example you find that a euro symbol is displayed
correctly on the screen but does not convert to a pdf correctly, then you
should change the pdf_euro code but not the display_euro code. If you
then use € in your request, TPL Tables will select the correct euro
code to use for the action you are performing. If you have problems with
these, please give us a call.

	 Appendix K: Character Sets 824

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=WIN88591

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128
129
130 ‚
131 ƒ
132 „
133 …
134 †
135 ‡
136 ˆ
137 ‰
138 Š
139 ‹
140 Œ
141
142
143
144
145 ‘
146 ’
147 “
148 ”
149 •
150 –
151 —
152 ˜
153
154 š
155 ›
156 œ

Value Symbol

157
158
159 Ÿ
160
161 ¡
162 ¢
163 £
164 ¤
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ð

Value Symbol

209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 Ý
222 Þ
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ð
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ý
254 þ
255 ÿ

	 Appendix K: Character Sets 825

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=WIN88592

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128
129
130 ‚
131
132 „
133 …
134 †
135 ‡
136
137 ‰
138 Š
139 ‹
140 Ś
141 Ť
142 Ž
143 Ź
144
145 ‘
146 ’
147 “
148 ”
149 •
150 –
151 —
152
153
154 š
155 ›
156 ś

Value Symbol

157 ’t
158 ž
159 ź
160
161 ˇ
162 ˘
163 Ł
164 ¤
165 Ą
166 ¦
167 §
168 ¨
169 ©
170 Ş
171 «
172 ¬
173 -
174 ®
175 Ż
176 °
177 ±
178 ˛
179 ł
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ą
186 ş
187 »
188 ’L
189 ˝
190 ’l
191 ż
192 Ŕ
193 Á
194 Â
195 Ă
196 Ä
197 Ĺ
198 Ć
199 Ç
200 Č
201 É
202 Ę
203 Ë
204 Ě
205 Í
206 Î
207 Ď
208 Ð

Value Symbol

209 Ń
210 Ň
211 Ó
212 Ô
213 Ő
214 Ö
215 ×
216 Ř
217 Ů
218 Ú
219 Ű
220 Ü
221 Ý
222 Ţ
223 ß
224 ŕ
225 á
226 â
227 ă
228 ä
229 ĺ
230 ć
231 ç
232 č
233 é
234 ę
235 ë
236 ě
237 í
238 î
239 ’d
240 ð
241 ń
242 ň
243 ó
244 ô
245 ő
246 ö
247 ÷
248 ř
249 ů
250 ú
251 ű
252 ü
253 ý
254 ţ
255

	 Appendix K: Character Sets 826

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=WIN88599

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128
129
130 ‚
131 ƒ
132 „
133 …
134 †
135 ‡
136 ˆ
137 ‰
138 Š
139 ‹
140 Œ
141
142
143
144
145 ‘
146 ’
147 “
148 ”
149 •
150 –
151 —
152 ˜
153
154 š
155 ›
156 œ

Value Symbol

157
158
159 Ÿ
160
161 ¡
162 ¢
163 £
164 ¤
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ğ

Value Symbol

209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 İ
222 Ş
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ğ
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ı
254 ş
255 ÿ

	 Appendix K: Character Sets 827

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=ISO88591

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128 –
129 —
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144 ı
145 `
146 ´
147 ˆ
148 ˜
149
150 ˘
151 ˙
152
153
154 ˚
155
156

Value Symbol

157 ˝
158 ˛
159 ˇ
160
161 ¡
162 ¢
163 £
164
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ð

Value Symbol

209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 Ý
222 Þ
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ð
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ý
254 þ
255 ÿ

	 Appendix K: Character Sets 828

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=ISO88592

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128 –
129 —
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

Value Symbol

157
158
159
160
161 Ą
162 ¢
163 Ł
164
165 ’L
166 Ś
167 §
168 ¨
169 Š
170 Ş
171 Ť
172 Ź
173 ›
174 Ž
175 Ż
176 °
177 ą
178 †
179 ł
180 ·
181 ’l
182 ś
183 •
184 ‚
185 š
186 ş
187 ’t
188 ź
189 ‰
190 ž
191 ż
192 Ŕ
193 Á
194 Â
195 Ă
196 Ä
197 Ĺ
198 Ć
199 Ç
200 Č
201 É
202 Ę
203 Ë
204 Ě
205 Í
206 Î
207 Ď
208 Ð

Value Symbol

209 Ń
210 Ň
211 Ó
212 Ô
213 Ő
214 Ö
215 ×
216 Ř
217 Ů
218 Ú
219 Ű
220 Ü
221 Ý
222 Ţ
223 ß
224 ŕ
225 á
226 â
227 ă
228 ä
229 ĺ
230 ć
231 ç
232 č
233 é
234 ę
235 ë
236 ě
237 í
238 î
239 ’d
240 ð
241 ń
242 ň
243 ó
244 ô
245 ő
246 ö
247 ÷
248 ř
249 ů
250 ú
251 ű
252 ü
253 ý
254 ţ
255

	 Appendix K: Character Sets 829

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=ISO88599

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128 –
129 —
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

Value Symbol

157
158
159
160
161 ¡
162 ¢
163 £
164
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ğ

Value Symbol

209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 İ
222 Ş
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ğ
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ı
254 ş
255 ÿ

	 Appendix K: Character Sets 830

Mapping of Decimal Values to Postscript Codes for Symbol(Y) Font

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 ∀
035 #
036 ∃
037 %
038 &
039 ∋
040 (
041)
042 ∗
043 +
044 ,
045 −
046
047 /
048 0
049 1
050 2
051 3
052 4
053 5

Value Symbol

054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 ≅
065 Α
066 Β
067 Χ
068 ∆
069 Ε
070 Φ
071 Γ
072 Η
073 Ι
074 ϑ
075 Κ
076 Λ
077 Μ
078 Ν
079 Ο
080 Π
081 Θ
082 Ρ
083 Σ
084 Τ
085 Υ
086 ς
087 Ω
088 Ξ
089 Ψ
090 Ζ
091 [
092 ∴
093]
094 ⊥
095 _
096
097 α
098 β
099 χ
100 δ
101 ε
102 φ
103 γ
104 η
105 ι
106 ϕ

Value Symbol

107 κ
108 λ
109 µ
110 ν
111 ο
112 π
113 θ
114 ρ
115 σ
116 τ
117 υ
118 ϖ
119 ω
120 ξ
121 ψ
122 ζ
123 {
124 |
125 }
126 ∼
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

Value Symbol

160
161 ϒ
162 ′
163 ≤
164 ⁄
165 ∞
166 ƒ
167 ♣
168 ♦
169 ♥
170 ♠
171 ↔
172 ←
173 ↑
174 →
175 ↓
176 °
177 ±
178 ″
179 ≥
180 ×
181 ∝
182 ∂
183 •
184 ÷
185 ≠
186 ≡
187 ≈
188 …
189
190
191 ↵
192 ℵ
193 ℑ
194 ℜ
195 ℘
196 ⊗
197 ⊕
198 ∅
199 ∩
200 ∪
201 ⊃
202 ⊇
203 ⊄
204 ⊂
205 ⊆
206 ∈
207 ∉
208 ∠
209 ∇
210
211
212

Value Symbol

213 ∏
214 √
215 ⋅
216 ¬
217 ∧
218 ∨
219 ⇔
220 ⇐
221 ⇑
222 ⇒
223 ⇓
224 ◊
225 〈
226
227
228
229 ∑
230
231
232
233
234
235
236
237
238
239
240
241 〉
242 ∫
243 ⌠
244
245 ⌡
246
247
248
249
250
251
252
253
254
255

	 Appendix K: Character Sets 831

Mapping of Decimal Values to Postscript Codes for Dingbats(D) Font

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 '
040 (
041)
042 *
043 +
044 ,
045 -
046 .
047 /
048 0
049 1
050 2
051 3
052 4
053 5

Value Symbol

054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 `
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j

Value Symbol

107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128
129 ¼
130 ¼
131 ¼
132 ¼
133 ¼
134 ¼
135 ¼
136 ¼
137 ¼
138 ¼
139 ¼
140 ¼
141 ¼
142 ¼
143 ¼
144 ¼
145 ¼
146 ¼
147 ¼
148 ¼
149 ¼
150 ¼
151 ¼
152 ¼
153 ¼
154 ¼
155 ¼
156 ¼
157 ¼
158 ¼
159 ¼

Value Symbol

160 ¼
161 ¡
162 ¢
163 £
164 ¤
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ð
209 Ñ
210 Ò
211 Ó
212 Ô

Value Symbol

213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 Ý
222 Þ
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ¼
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ý
254 þ
255 ¼

	 Appendix K: Character Sets 832

Special Character Names for WIN88591

Name Symbol

Aacute Á
aacute á
acircumflex â
Acircumflex Â
acute ´
Adieresis Ä
adieresis ä
ae æ
AE Æ
Agrave À
agrave à
Aring Å
aring å
atilde ã
Atilde Ã
brokenbar ¦
bullet •
caron ˇ
ccedilla ç
Ccedilla Ç
cedilla ¸
cent ¢
circumflex ˆ
copyright ©
currency ¤
dagger †
daggerdbl ‡
degree °
dieresis ¨
divide ÷
Eacute É
eacute é
Ecircumflex Ê
ecircumflex ê
Edieresis Ë
edieresis ë
egrave è
Egrave È
ellipsis …
emdash —

Name Symbol

endash –
Eth Ð
eth ð
euro
exclamdown ¡
florin ƒ
germandbls ß
guillemotleft «
guillemotright »
guilsinglleft ‹
guilsinglright ›
hyphen -
Iacute Í
iacute í
icircumflex î
Icircumflex Î
Idieresis Ï
idieresis ï
igrave ì
Igrave Ì
logicalnot ¬
macron ¯
mu µ
multiply ×
ntilde ñ
Ntilde Ñ
Oacute Ó
oacute ó
ocircumflex ô
Ocircumflex Ô
odieresis ö
Odieresis Ö
oe œ
OE Œ
Ograve Ò
ograve ò
onehalf ½
onequarter ¼
onesuperior ¹
ordfeminine ª

Name Symbol

ordmasculine º
oslash ø
Oslash Ø
otilde õ
Otilde Õ
paragraph ¶
periodcentered ·
perthousand ‰
plusminus ±
questiondown ¿
quotedblbase „
quotedblleft “
quotedblright ”
quoteleft ‘
quoteright ’
quotesinglbase ‚
registered ®
Scaron Š
scaron š
section §
sterling £
Thorn Þ
thorn þ
threequarters ¾
threesuperior ³
tilde ˜
twosuperior ²
uacute ú
Uacute Ú
ucircumflex û
Ucircumflex Û
Udieresis Ü
udieresis ü
Ugrave Ù
ugrave ù
Yacute Ý
yacute ý
Ydieresis Ÿ
ydieresis ÿ
yen ¥

Special Character Mappings

	 Appendix K: Character Sets 833

Special Character Names for WIN88592

Name Symbol

Aacute Á
aacute á
Abreve Ă
abreve ă
Acircumflex Â
acircumflex â
acute ´
acute ´
Adieresis Ä
adieresis ä
aogonek ą
Aogonek Ą
breve ˘
breve ˘
brokenbar ¦
bullet •
cacute ć
Cacute Ć
caron ˇ
caron ˇ
Ccaron Č
ccaron č
ccedilla ç
Ccedilla Ç
cedilla ¸
cedilla ¸
copyright ©
currency ¤
dagger †
daggerdbl ‡
Dcaron Ď
degree °
dieresis ¨
divide ÷
dotaccent ˙
dquoteright ’d
eacute é
Eacute É
Ecaron Ě
ecaron ě
edieresis ë
Edieresis Ë

Name Symbol

ellipsis …
emdash —
endash –
eogonek ę
Eogonek Ę
Eth Ð
eth ð
euro
germandbls ß
guilsinglleft ‹
guilsinglright ›
hungarumlaut ˝
hungarumlaut ˝
hyphen -
iacute í
Iacute Í
Icircumflex Î
icircumflex î
Lacute Ĺ
lacute ĺ
logicalnot ¬
lquoteright ’l
Lquoteright ’L
lslash ł
Lslash Ł
mu µ
multiply ×
Nacute Ń
nacute ń
ncaron ň
Ncaron Ň
Oacute Ó
oacute ó
ocircumflex ô
Ocircumflex Ô
Odieresis Ö
odieresis ö
ogonek ˛
ogonek ˛
Ohungarumlaut Ő
ohungarumlaut ő
periodcentered ·

Name Symbol

perthousand ‰
plusminus ±
quotedblbase „
quotedblleft “
quotedblright ”
quoteleft ‘
quoteright ’
quoteright ’
quotesinglbase ‚
racute ŕ
Racute Ŕ
Rcaron Ř
rcaron ř
registered ®
ring ˚
Sacute Ś
sacute ś
scaron š
Scaron Š
scedilla ş
Scedilla Ş
Tcaron Ť
tcedilla ţ
Tcedilla Ţ
tquoteright ’t
uacute ú
Uacute Ú
Udieresis Ü
udieresis ü
Uhungarumlaut Ű
uhungarumlaut ű
Uring Ů
uring ů
yacute ý
Yacute Ý
Zacute Ź
zacute ź
Zcaron Ž
zcaron ž
zdotaccent ż
Zdotaccent Ż

	 Appendix K: Character Sets 834

Special Character Names for WIN88599

Name Symbol

Aacute Á
aacute á
acircumflex â
Acircumflex Â
acute ´
adieresis ä
Adieresis Ä
ae æ
AE Æ
Agrave À
agrave à
Aring Å
aring å
Atilde Ã
atilde ã
breve ˘
brokenbar ¦
bullet •
caron ˇ
ccedilla ç
Ccedilla Ç
cedilla ¸
cedilla ¸
cent ¢
circumflex ˆ
copyright ©
currency ¤
dagger †
daggerdbl ‡
degree °
dieresis ¨
divide ÷
dotaccent ˙
dotlessi ı
Eacute É
eacute é
ecircumflex ê
Ecircumflex Ê
Edieresis Ë
edieresis ë
egrave è

Name Symbol

Egrave È
ellipsis …
emdash —
endash –
euro
exclamdown ¡
florin ƒ
gbreve ğ
Gbreve Ğ
germandbls ß
guillemotleft «
guillemotright »
guilsinglleft ‹
guilsinglright ›
hyphen -
iacute í
Iacute Í
Icircumflex Î
icircumflex î
idieresis ï
Idieresis Ï
Idotaccent İ
igrave ì
Igrave Ì
logicalnot ¬
macron ¯
mu µ
multiply ×
ntilde ñ
Ntilde Ñ
Oacute Ó
oacute ó
Ocircumflex Ô
ocircumflex ô
odieresis ö
Odieresis Ö
oe œ
OE Œ
ograve ò
Ograve Ò
onehalf ½

Name Symbol

onequarter ¼
onesuperior ¹
ordfeminine ª
ordmasculine º
Oslash Ø
oslash ø
Otilde Õ
otilde õ
paragraph ¶
periodcentered ·
perthousand ‰
plusminus ±
questiondown ¿
quotedblbase „
quotedblleft “
quotedblright ”
quoteleft ‘
quoteright ’
quotesinglbase ‚
registered ®
scaron š
Scaron Š
scedilla ş
Scedilla Ş
section §
sterling £
threequarters ¾
threesuperior ³
tilde ˜
twosuperior ²
Uacute Ú
uacute ú
ucircumflex û
Ucircumflex Û
Udieresis Ü
udieresis ü
ugrave ù
Ugrave Ù
Ydieresis Ÿ
ydieresis ÿ
yen ¥

	 Appendix K: Character Sets 835

Special Character Names for ISO88591

Name Symbol

Aacute Á
aacute á
Acircumflex Â
acircumflex â
acute ´
acute ´
Adieresis Ä
adieresis ä
ae æ
AE Æ
agrave à
Agrave À
aring å
Aring Å
atilde ã
Atilde Ã
breve ˘
brokenbar ¦
caron ˇ
Ccedilla Ç
ccedilla ç
cedilla ¸
cent ¢
circumflex ˆ
copyright ©
degree °
dieresis ¨
divide ÷
dotaccent ˙
dotlessi ı
eacute é
Eacute É
ecircumflex ê
Ecircumflex Ê
edieresis ë
Edieresis Ë

Name Symbol

Egrave È
egrave è
emdash —
endash –
eth ð
Eth Ð
euro
exclamdown ¡
germandbls ß
grave `
guillemotleft «
guillemotright »
hungarumlaut ˝
hyphen -
iacute í
Iacute Í
Icircumflex Î
icircumflex î
Idieresis Ï
idieresis ï
igrave ì
Igrave Ì
logicalnot ¬
macron ¯
mu µ
multiply ×
Ntilde Ñ
ntilde ñ
Oacute Ó
oacute ó
Ocircumflex Ô
ocircumflex ô
odieresis ö
Odieresis Ö
ogonek ˛
Ograve Ò

Name Symbol

ograve ò
onehalf ½
onequarter ¼
onesuperior ¹
ordfeminine ª
ordmasculine º
oslash ø
Oslash Ø
Otilde Õ
otilde õ
paragraph ¶
periodcentered ·
plusminus ±
questiondown ¿
registered ®
ring ˚
section §
sterling £
thorn þ
Thorn Þ
threequarters ¾
threesuperior ³
tilde ˜
twosuperior ²
Uacute Ú
uacute ú
Ucircumflex Û
ucircumflex û
Udieresis Ü
udieresis ü
ugrave ù
Ugrave Ù
Yacute Ý
yacute ý
ydieresis ÿ
yen ¥

	 Appendix K: Character Sets 836

Special Character Names for ISO88592

Name Symbol

Aacute Á
aacute á
abreve ă
Abreve Ă
Acircumflex Â
acircumflex â
acute ´
Adieresis Ä
adieresis ä
Aogonek Ą
aogonek ą
breve ˘
Cacute Ć
cacute ć
caron ˇ
Ccaron Č
ccaron č
ccedilla ç
Ccedilla Ç
cedilla ¸
Dcaron Ď
degree °
dieresis ¨
divide ÷
dotaccent ˙
dquoteright ’d
eacute é
Eacute É
Ecaron Ě
ecaron ě
edieresis ë
Edieresis Ë

Name Symbol

emdash —
endash –
eogonek ę
Eogonek Ę
Eth Ð
eth ð
euro
germandbls ß
hungarumlaut ˝
Iacute Í
iacute í
icircumflex î
Icircumflex Î
Lacute Ĺ
lacute ĺ
lquoteright ’l
Lquoteright ’L
lslash ł
Lslash Ł
multiply ×
Nacute Ń
nacute ń
Ncaron Ň
ncaron ň
Oacute Ó
oacute ó
Ocircumflex Ô
ocircumflex ô
odieresis ö
Odieresis Ö
ogonek ˛
ohungarumlaut ő
Ohungarumlaut Ő

Name Symbol

quoteright ’
Racute Ŕ
racute ŕ
Rcaron Ř
rcaron ř
ring ˚
Sacute Ś
sacute ś
Scaron Š
scaron š
scedilla ş
Scedilla Ş
Tcaron Ť
tcedilla ţ
Tcedilla Ţ
tquoteright ’t
uacute ú
Uacute Ú
udieresis ü
Udieresis Ü
uhungarumlaut ű
Uhungarumlaut Ű
uring ů
Uring Ů
yacute ý
Yacute Ý
Zacute Ź
zacute ź
Zcaron Ž
zcaron ž
zdotaccent ż
Zdotaccent Ż

	 Appendix K: Character Sets 837

Special Character Names for ISO88599

Name Symbol

Aacute Á
aacute á
Acircumflex Â
acircumflex â
acute ´
acute ´
adieresis ä
Adieresis Ä
AE Æ
ae æ
agrave à
Agrave À
aring å
Aring Å
Atilde Ã
atilde ã
breve ˘
brokenbar ¦
caron ˇ
ccedilla ç
Ccedilla Ç
cedilla ¸
cedilla ¸
cent ¢
copyright ©
degree °
dieresis ¨
divide ÷
dotaccent ˙
dotlessi ı
eacute é
Eacute É
Ecircumflex Ê
ecircumflex ê
edieresis ë

Name Symbol

Edieresis Ë
egrave è
Egrave È
emdash —
endash –
euro
exclamdown ¡
Gbreve Ğ
gbreve ğ
germandbls ß
guillemotleft «
guillemotright »
hungarumlaut ˝
hyphen -
iacute í
Iacute Í
icircumflex î
Icircumflex Î
idieresis ï
Idieresis Ï
Idotaccent İ
igrave ì
Igrave Ì
logicalnot ¬
macron ¯
mu µ
multiply ×
Ntilde Ñ
ntilde ñ
oacute ó
Oacute Ó
ocircumflex ô
Ocircumflex Ô
odieresis ö
Odieresis Ö
ogonek ˛

Name Symbol

ograve ò
Ograve Ò
onehalf ½
onequarter ¼
onesuperior ¹
ordfeminine ª
ordmasculine º
Oslash Ø
oslash ø
otilde õ
Otilde Õ
paragraph ¶
periodcentered ·
plusminus ±
questiondown ¿
quoteright ’
registered ®
ring ˚
scedilla ş
Scedilla Ş
section §
sterling £
threequarters ¾
threesuperior ³
twosuperior ²
Uacute Ú
uacute ú
Ucircumflex Û
ucircumflex û
Udieresis Ü
udieresis ü
ugrave ù
Ugrave Ù
ydieresis ÿ
yen ¥

	 Index 838

Index
Symbols

.
as decimal point in mask 357

*
as multiplication symbol 45

**
as exponentiation symbol 45
footnote symbol 377

*/
ending comment 45

/
as division symbol 45
as unconditional label break 329–330, 331

/*
beginning comment 45

\
for entering characters not on keyboard , 323
in labels 324
in string 43

\\
for \ in labels 324
for \ in string 43

%. See Percent; See also Percent symbol
arguments for Windows scripts 758
as string in mask 359
effect of spanner labels 340
in masks 357
used for name, label or number substitution 47

+
as addition symbol 45
in CHAR statement 269

||
in CHAR statement 269

$
effect of spanner labels 340
in masks 357

<0
footnote symbol 377, 687

>0
footnote symbol 377, 687

4-digit year 591
-b

UNIX argument 780, 783
-c

UNIX argument
in codebook run 778

in conditions run 780
Windows script argument 761

: (colon) in conditional COMPUTE 171, 175
.cp 516–517
-d

UNIX argument
in conditions run 780
in tables run 783

Windows script argument 760
- (dash symbol). See also Dash

as subtraction symbol 45
footnote symbol 377
use in labels

for hyphenation 331
. (dot character in stub). See FILLER CHARAC-

TER
-e

UNIX argument 783, 795
-E

UNIX argument for screen display 783, 785
.eps

under UNIX 789–793
under Windows 750

-f
UNIX argument

in tables run 783, 795
Windows script argument 760, 762

-h
argument for HTML

under UNIX 783, 791, 795, 792–800
.htm (UNIX) 791
-i

include path argument
under UNIX 783, 789

%INCLUDE 45–51
for formulas 50
in database codebooks 465
path to include file

under UNIX 783, 789
with REPLACE statements 49–51

.ini file for Windows version 740
-K

Windows script argument 761
.K

under UNIX 779, 781
under Windows 746

	 Index 839

-l
Windows script argument 760

.L
under UNIX 778, 779
under Windows 745

-n
UNIX argument 783

-N
argument to create new subdirectory

under UNIX 785
under Windows 748

-O
argument to use old subdirectory

under UNIX 783, 785
under Windows 748, 760

.O
under UNIX 778

in conditions run 780
under Windows 745

_OBS
created for repeating group 298–299, 304–305

-p
argument for path

under Windows 760, 761
-P

UNIX argument
in conditions run 780
in tables run 783

-P database password
Windows script argument 760, 761, 768

%pipe. See Piping, standard pipes
.profile (UNIX) 776
.ps (UNIX) 785, 788, 790
-q

UNIX argument
in conditions run 780
in tables run 783

Windows script argument 760, 768
-Q

Windows script argument 760, 768
-r

UNIX argument 783
Windows script argument 760

-s
UNIX argument 780

-S
UNIX argument

in conditions run 780
in tables run 783

.S
under Windows

generated codebook source 452, 746

-u
Windows script argument 761

-U
UNIX argument

in conditions run 780, 783
in tables run 783

Windows script argument 760, 761, 768
_ (underscore character) 42
-V

argument for CSV output
under UNIX 783, 795

-w
UNIX argument 795
Windows script argument 762

A
A3 size paper 594
A4 size paper 594
Abbreviations for relational operators 137–

138, 149, 248
ABS built-in function 167
Absolute value 166, 167
Abstract of codebook

for SQL database 465–466
under UNIX 779
under Windows 745

Accessible HTML 418, 567
Accuracy of computations 166, 816

DIV function 168
explanation of differences in POST COMPUTE

186
Acrobat (Adobe) 417
Actions

conflicting 483
in profile 491–492
levels of 482
size specification 483

Addition operator 165
AFTER ROW 653
ALIGN. See also Alignment

COLUMN HEAD 494
HEAD 495
HEADING 495
HEADING LABELS 495

interaction with alignment of stub heads 495
HEAD LABELS 495
HEADNOTE 496
STUB HEAD 497
STUB LABELS 498–499

interaction with stub indentation 498
interaction with STUB RIGHT 498

	 Index 840

no effect on SPANNER labels 498
TABLE 500
TITLE 501
WAFER LABELS 502

Alignment
in table cells. See Mask
markers

defined 332
inserting in labels 332–336
more than one in same label 332–334

numbers. See Mask
of footnote symbols

by specifying maximum width 577–581
with RIGHT IN SPACE 390–392
with SYM 390–392

of footnote text 377, 577–581
of heading labels 495
of headnote 496
of label above column 494
of labels 332–338. See also ALIGN

effect on sections 333–334
RIGHT to a specific location 336–338

of notes
with RIGHT IN SPACE 390–392

of PAGE MARKER 589
defined 334

of stub head 497
of stub labels 498–499

interaction of STUB RIGHT and CENTER
335–336

of table title , 349
of wafer labels , 340

ALL
in DEFINE statement 149, 152, 159, 162
in format FOR clause 484
in RANK statement 248, 252

with residuals 257
Alphabet. See also ASCII

and CODEPAGE 516–517, 809
for languages other than English 516–

517, 528, 809
for user-specified names 517, 810

Alphanumeric codes 160
Anchor 419
Anchors

in HTML Export , 350
Anchors in HTML tables 420
AND

in TPL-SQL association statements 464
AND logical operator

in SELECT statement 142
Anova

F-Test 438

ANSI 166, 181, 816
rounding 358

Arithmetic operators 165
ASCENDING in RANK statement 247
ASCII 94–95, 99, 118, 545, 815, 818, 820

editor (Windows) 743
Associations in TPL-SQL databases 447

in requests 468
with multiple fields 464

Asterisk
as exponentiation operator 165
as multiplication operator 165

Automatic
condition labels 110

AUTOMATIC
COLUMN WIDTH 503–505
STUB WIDTH 503–505

Autosized HTML 419, 764
Avant-Garde font 552
Averages 180, 182, 183, 184. See also Mean

B
B5 size paper 594
Background shading. See Shading
Background (UNIX)

running in 777, 781–782
Background (Windows)

running in 757
Backslash

in labels 324
in string 43

Balancing
row banks 668

with joined wafers 670
BANK

AFTER COLUMN 506
AFTER ROW 507–508, 666

balancing banks 507–508, 668
lining up rows 669, 712

DIVIDER 635
PER PAGE 510–512

ROW 666–671
SKIP AFTER 709–711

Banks 393, 506, 510–512
and background shading 706
column 510
row 666–671

balancing 507–508, 668
balancing joined wafers 670
changing dividers between them 635–738

	 Index 841

lining up rows 669, 712
wafer label position 669

Base markers for percents 196–218
Batch files

for running under Windows 754
Batch processing

under Windows 754
BAT file

for running under Windows 754
Big value

footnote 377
Binary data

codebook description 94–95, 115
errors in 82

Bit fields 192–194
Blank

as mask 359
in observation field 119
treatment in codebook observation 114

Blank delimited data. See Delimited data files
Blank label. See also Null label

compared to null label 325
Blank lines

adding. See SKIP AFTER ROW; See
also Slash; See also Slash

Blanks
in codebook names 94, 134
in condition values

fill specifications 104
non-numeric defaults 102
numeric defaults 103

in delimited data files 132
in rank display column 258

BLANK = ZERO
in codebook 114, 118–119

for delimited data files 132
Blue. See COLOR
BOLD

RULE 513
WEIGHT 680

Bold font. See Font
Bold print labels with PostScript. See FONT
BOLD RULE

DOUBLE or SINGLE 674
WEIGHT 674

Bookman font 552
BOTTOM

MARGIN 575–576
PAGE MARKER 586, 589
RULE

BOLD 649
spanning data 649
spanning row 649

Bottom values. See MIN; See also RANK state-
ment

BOTTTOM
RULE

BOLD 635
spanning data 635
spanning row 635

Brackets. See Parentheses
Built-in footnotes 377

changing or deleting 377, 380
Built-in function

ABS 166, 167
SQRT 166, 167

BY in FOR clauses
for increments 485

BY operator 56
combined with THEN operator 58

C
CALL

command in Windows scripts 762
Carriage return 94

treatment in labels 43
Case

ODBC database field names 459
Sybase field names 459

Case, treatment of 42
cat (UNIX)

for viewing outputs 788
CBUILDER

command in Windows scripts 761
CEL2CHAR 88–89

under UNIX 88
Cell buffer

messages 515
unloads 515, 515–517

Cellfiles
converting

CEL2CHAR 87–89
CHAR2CELL 87–89

from different computers 87–89
from different operating systems 87–89
in TPL subdirectory 86
merging 85–89
outside of TPL subdirectories 87
retaining 86

Cell font
defined 387

CELL MEMORY
changing size 515
under UNIX

changing size 796

	 Index 842

under Windows
changing size 753

Cells 54
color 408
default alignment 360
default font 365

replacing for cells only 622
font for footnote symbols 387–388
large values 363–365
mask

replacing color only 411, 621
replacing values 630–631
replacing with text 364, 619–620
shading background 696

Center
alignment of labels 332–336. See also ALIGN
alignment of tables. See ALIGN
mask alignment 361
stub labels

interaction with STUB RIGHT 335–336
Centering

data 360
of labels 332–336
page marker 589

Centre. See Center
Change

Numeric 219
Percent 219

CHAR2CEL 88
under UNIX 88

Character data. See ASCII; See also CHAR vari-
able

Character date (TPL-SQL)
TPL data type 456

Character Names 43, 323
Characters

not on keyboard 43–44, 324
printing

alphabets other than English 516–517, 810
unprintable 43–44

Character sets 822
and CODEPAGE 809
EURO symbol 822
for languages other than English 516–

517, 809, 822. See also CODEPAGE
Character variable. See CHAR variable
CHAR statement 269
CHAR variable

codebook entry 98–99, 120
format 120

compared to control variable 120
creating with CHAR statement 269

in Conditional COMPUTE 171
in DEFINE statement 150, 151, 160

with relations 151
in SELECT statement 139, 140
when to use 120

Char varying (TPL-SQL)
TPL data type 456

CHDIR
command in Windows scripts 762

Chi Squared Test 441
CMYK

color separations 405
Coalescing of heading labels 394–395, 610–611
Codebook 90–133

abstract 90
date and time stamping (UNIX) 779
date and time stamping (Windows) 745
under UNIX 779
under Windows 745

BEGIN entry 94
for delimited data 128

CHAR variable 98–99, 120
coding format. See Format
CONDITION LABEL clause 110–111
condition names 108
CONTROL variable 99

in delimited data files 131, 132
CONTROL variable. See Condition values
CSV examples 130
database 447
database source

under Windows 746
delimited data files

field numbers 130
describing repeating groups 297
display order 105–107
END entry 125
example

flat file 34–35
hierarchies 274–275

FILLER entry 121
and delimited data files 131

FILL specifications 102, 104
in delimited control variables 131

general format 91–93
hierarchical 274–275
interactive. See also Interactive codebook genera-

tion
interactive generation

under Windows 90, 128
MASK clause 115
names

blanks in 94, 134

	 Index 843

object 91
under UNIX 779, 781
under Windows 746

observation variable 113
errors 118–120
errors in delimited data files 132

path
in USE statement 135

record length 815
REDEFINE clause 123
redefining in delimited data file 131
source 91

under UNIX 777, 778, 801
under Windows 744

START postition 125
TPL-SQL 447–466

flat file example 448–449
hierarchy example 461
using information from the database 449

CODEBOOK
command in Windows scripts 761

Codebook Builder (Windows)
for ODBC databases 446

Codebook processing
under UNIX 777–779

CODEPAGE 516–517, 528
and COUNTRY 516, 809
for alphabet and sort order 516–517, 809
selecting for languages other than English 517

Coding format. See Format
Collapsing

banks 709–711
stub label into higher level of nest 396
stub label into higher nest level 396
tables 713–716
wafer

with spanning wafer labels 717
wafers 717–718

with spanning wafer labels 736–738
Colon delimited data. See Delimited data files
COLOR 399–414, 680

chart for print colors 400
colors.ps file 400
color.tpl file 402, 519

editing 402
example 403
installation 402

combined with FONT 522
DEFAULT 410, 518–520

changing for cells only 411
defaults 399, 403, 406, 408, 518–520
definitions in color.tpl 402, 519

changing 404–405

format 402
footnote 408–410

symbol 408–410
text 408

for table cells 519
GREY 405–406
in conditional masks 407
in conditional POST COMPUTE 407
in individual labels 406
in individual masks 406
in individual TEXT masks 407
in labels and masks

interaction with COLOR defaults 410, 518
in NOTE 408
in SET FOOTNOTE 408–410
in stub labels

effect on FILLER CHARACTER 406
in tables

general information 399
LABEL 411, 518–520
LINE 411, 518–520
names

assigning in color.tpl 402–405
in COLOR default statements 403, 519
in SHADE statements 404, 691

NO 521–522
for monochrome printers 399, 521–522
to replace color with font 521–522

on monochrome printers 399, 412, 521, 691
printers

variation 400, 402
replacing for mask 411, 621
replacing with a font 521–522, 603
r g b

in SHADE statements 691
r g b specifications 400

assigning names 402–405
in COLOR default statements 403, 518
in color.tpl 402–405
in SHADE statements 404

RULE 411, 518–520
separations

CMYK 405
shading 412, 691–708. See also SHADE

conflicts 694–696
in Encapsulated PostScript 694–696

SYMBOL 408, 411, 518–520
underlining 519
WHITE

in Encapsulated PostScript 694–696
with shading conflicts 695–696

colors.ps file 400

	 Index 844

color.tpl file. See COLOR
COLOUR. See COLOR
Column

default divider 394
default width 394
empty 143–144
margins 678
minimum width 523
shading background 698
warning when too narrow

under UNIX 800
under Windows 752

COLUMN
DELETE 639
DELETE EMPTY 642
RETAIN 639
RETAIN EMPTY 642
WIDTH 523
WIDTH AUTOMATIC

adjusting to available space 503–505
Column divider

replacing or removing. See DELETE DOWN
RULES; See also REPLACE DIVIDE
CHARACTER

Column Dividers 640
Column head

defined 494
COLUMN HEAD

ALIGN 494
COLUMNS

FOOTNOTE 557–559
Combining. See Joining
Comma

expression separator in TABLE statement 53
in observation values 114
replacing with non-US character 529
suppressing in data 529
use in mask 357

Comma delimited data. See Delimited data files
Command line. See Run
Comma separated data. See Delimited data files
Comments 45

in codebook source
treatment in tpl conditions (UNIX) 808

restriction in USE statement 135
Compound conditions

in conditional COMPUTE 171
in SELECT statement 142

Compress
table size overall 683–685
table vertically 732–733

COMPRESS HEADING 524–527, 565–566
and alignment of boxes 526, 527

Computation error footnote 181
Computation errors 181

in conditional COMPUTE 172
in DEFINE on multiple variables 162

Computations
dependent on conditions. See Conditional COM-

PUTE; See also Conditional POST COM-
PUTE

COMPUTE statement 165–179
hierarchical file 287–288
weighting 169–170

CON. See Control variable
Concatenation in TABLE statement 57. See

also THEN concatenate operator
Conditional breaks in labels 331
Conditional COMPUTE 170–179

based on sets of values 171
comparison of the two types 170
DEFINE style 174
depending on a single variable 174
depending on multiple variables 171
result when no conditions satisfied 173
SELECT style 171
term evaluation order 172

Conditional footnoting 189–191
Conditional masks 189–191
Conditional POST COMPUTE 187–195
CONDITION LABEL

codebook clause 110–111
Condition labels

automatic 110
from SQL label-code tables 457

Condition names
in codebook 108
in DEFINE statement 148, 151, 152
in RANK statement 247

conditions procedure (UNIX) 779. See also tpl
conditions; See also tpl conditions

Condition test
in DEFINE statement 162

Condition values
completing and updating list (UNIX) 779, 801–

808
count in codebook abstract 745
from SQL label-code tables 457
generating list from SQL database 449
in DEFINE statement 148, 151–154
in RANK statement 247
limit 815
listing 107–110
updating list for database (Windows) 761

Confidence as Percent 432

	 Index 845

CONTINUATION
replacing in title 629
STUB

indent for multi-line labels 725
label for multi-page tables 625–626

Continued
in table title , 339

CONTINUE option
in repeating groups 296–297, 297–298

Control date (TPL-SQL)
TPL data type 456

Control variable
codebook entry 99

format 100
format for copying to DEFINE 156–157
getting conditions from SQL data 449

compared to CHAR variable 99, 120
default data storage assumptions 102–103
errors in 81
in delimited data files 131, 132
labels 111–112
listing values 107–110

in DEFINE format with IF 101, 156–157
types of values 99
value assumptions 102

non-numeric defaults 102
numeric defaults 103

control viariables
in table statement 64

Con varying (TPL-SQL)
TPL data type 455

COPY
command in Windows scripts 762

wild cards 756
COPY option

in DEFINE statement 155–156
in RANK statement 252–253

count
in table statement 68

Count
condition values in codebook abstract 745

COUNT
defining on to create a label 329
in hierarchical files 286
in repeating groups 292, 304, 305
in SQL databases 474
in TABLE statement 68
pages in PAGE MARKER 588

COUNTRY 811
effect on currency symbols and format 530, 811
effect on date and time formats 532, 811

effect on decimal point 529, 811
effect on PAGE MARKER 590
effect on thousands separator 529, 811

Country.tpl
for 4-digit year 591
for non-US standards 528–532

Courier font 552
Cross tabulation 30. See also TABLE statement
Cross Tabulation 77
CSV

OUTPUT
under UNIX 788

CSV data. See Delimited data files
CSV DIVIDER statement 533
CSV OUTPUT statement (UNIX) 534
Currency formats

non-US 530–532
Currency symbols

non-US 530–532

D
Dash 44

EMPTY footnote symbol 378
in PostScript , 44–51

DASH 680
Data 79–89

alignment using masks 356, 360–362
binary 82, 115
delimited 128
errors 81–82

in multiple input files 85
file list 83–89

merging outputs 85–87
multiple input files 83–85

floating point 82, 115
hierarchical file 270–290
in different directories 82
input types 81
in repeating group structure 291–319
in SQL databases 815

conversion to TPL data types 452
TPL data types for SQL only 455–457

multiple input files 83–85
on different computers 82, 87–89
on different drives 82, 84–89
piping (UNIX) 89, 797–799. See also Piping
record 79
representation types 81
shading background 699
types in codebook 98–99
types of observation variables 114–115

	 Index 846

DATA
ERROR 167

codebook clause 119
SPAN 534, 672

for rules after rows 653
SPANNER. See Spanner labels; See also WA-

FER LABEL as SPANNER
TABLES 427, 480

and empty lines 427
ZERO FILL 427

Database interface 446–479. See also TPL-SQL
Data Drilling 430
DATA ERROR = NULL

in codebook 114
for delimited data files 132

Data file
as output with DATA TABLES 427

DATA RULE MARGIN 678
DATA SPAN 680
Date

displaying 4-digit year 591
effect of COUNTRY statement 532, 811
substituting with REPLACE statement 48

DATE
in PAGE MARKER 589

Date stamping
of codebook abstract

under UNIX 779
under Windows 745

Deciles 230
Decimal

places 358, 360, 618
point

in masks 357
in observation values 114
replacing with non-US character 529

points
displaying 358, 360, 618
shifting left or right 360, 618

printing. See Mask
shifting 169

in codebook 116–118
Decimal point

effect of COUNTRY statement 811
shifting

in COMPUTE statement 169, 172
zeros to left 359, 651

DEFAULT COLOR 410, 518
for table cells only 411, 519

Define
on multiple variables 223

Defines clause (TPL-SQL) 449, 458–460
for duplicate names 459

DEFINE statement 147–164
ALL 149, 152, 162
condition name 151
condition test 162
condition value 151–152
COPY option 155
EACH 155–156
filters 161
NULL 149, 152
on a single variable 148
on multiple variables 161
OTHER 149, 152, 158, 159, 162
range of values 151
sets of values 162
using labels from codebook 155–156, 156–157
using value lists from codebook 156–157
with hierarchical file 290

DEFINE style
conditional COMPUTE 174

DELETE. See RETAIN
commands in Windows Script

wild cards 756
EMPTY COLUMNS

use with SELECT statement 143–144
LEADING ZEROS EXCEPT FIRST

interaction with rules 651
interaction with SPANNER labels 651

STUB 731
Deleting footnotes 380
Deleting records. See DEFINE statement; See

also SELECT statement
Deleting values

with DEFINE statement 155
Delimited data files

codebooks for 128
field sizes 131
header records 129
hierarchies 131
quotes around data values 129
redefining variables 131
repeating groups 131
types of delimiters 128, 129
variable entries 130

exporting 424
choosing the divider (delimiter) 533
TED arguments in Windows scripts 763
under UNIX 783, 790, 795
under Windows 751, 763

Delimited fields
with blank or no value 132

DESCENDING in RANK statement 247
Desktop publishing. See Encapsulated PostScript

	 Index 847

Disk space 814
Display. See also TED

mask 356–368
order of codebook variables 105–107

DISPLAY
AS LISTED 105, 153
AS SORTED 106, 139, 153, 154

with COPY in DEFINE 155
function in POST COMPUTE 186
NUMERIC 106, 154
PostScript tables

NAME (UNIX) 540, 786
Windows. See TED

DISPLAY DECIMAL clause
and masks 360, 615, 618

Divide character 394
Dividers

Column 640
Division by zero 167
DIV operator 168

limits on accuracy 168
Dollar sign

effect of spanner labels 340
in mask 357

DOT 680
Dot leader in stub 606. See also FILLER CHAR-

ACTER
DOUBLE 680
Double lines

after rows 653
for lines between columns 640–641

Double-space
between data rows 711

DOWN in RANK statement 247
Drill

Data 430
Dummy labels 150
Dummy variables

compared to LABEL variables 328
for extra labels 328–329

Duplicate names 98–99, 101

E
EACH

use in DEFINE 155–156
Edit

PostScript tables
under Windows 747, 749

profile
under UNIX 796
under Windows 749

Editor
for codebook 90
for FORMAT request 481
for table request 52

EDITOR 545
FILE 545
NAME 545

Editor (UNIX) 776
for viewing outputs 788
selection at installation time 774

Editor (Windows) 545, 743–744
TED 743

Edit/Print button (Windows) 747, 749
EJECT 546, 547–548

AFTER ROW 547
row banking 666

AFTER TABLE 546, 713
AFTER WAFER 546

EMPTY
footnote 377

Empty cells. See EMPTY footnote; See also Emp-
ty lines

Empty lines
defined 643
retaining 643

Encapsulated PostScript
identifying pages with PAGE MARKER 590–591
in desktop publishing

color separations 405
requesting

under UNIX 789–793
under Windows 750

use with desktop publishing software
under UNIX 789
under Windows 750

with shading 694
encaps (UNIX)

for encapsulating PostScript tables 789
ENCAPS (Windows)

for encapsulating PostScript tables 750
END

codebook entry 125
English text

built-in
replacing in other languages 811

Environment. See Profile
Environment Variables

TPL_INI 741
TPLPATH7.0 741

eps. See Encapsulated PostScript
EPS. See Encapsulated PostScript

OUTPUT
under UNIX 548, 788

	 Index 848

Error
common messages

under UNIX 799–800
under Windows 751–753

displayed in output file
under UNIX 784

finding in data 818
in calculations 167–168, 181
in codebook observation variables 114, 118–120
in codebook processing

under UNIX 778
in conditions run

under UNIX 780
in control variables 81
in data 81–82
in delimited data 131

blank or nothing in value 132
in hierarchy 275, 276
in observation variables 82
in table run

under UNIX 784
SQL database field not found 459
transferring to editor for correction

under UNIX 776
under Windows 743–744

ERROR footnote 377
ETED 762
EURO 822
Evaluated to

TPL-SQL database codebook 451
TPL data types for SQL only 455–457
using label-code SQL tables 457–458

Evaluation order 166
in conditional COMPUTE 172

Excluding values
with DEFINE statement 155
with SELECT statement 143

Exponential notation 45
Exponentiation operator 165
Export

CSV 424
CSV files (UNIX) 783, 790, 795
DATA TABLE 427
Delimited 424
EPS 416
EPS files (UNIX) 789
file types. See also Encapsulated PostScript

CSV (delimited) 424
HTML 417
PC-Axis 427
PDF 417

from TED (Windows) 749

HTML 417
HTML files (UNIX) 790
in Windows scripts 762

core name for files 766
export directory 765

ODS 425
PC-Axis 428
PDF 417
prompts (UNIX) 786
TEXT TABLE 425
Unix

control
CVS 534
Data Table 538
EPS 548
HTML 570
ODS 581
PDF 595
TEXT TABLE 734
XLS 738

XLS 425
EXTRA LEADING 549–550
Extra memory (UNIX) 796

for cells 796
Extra memory (Windows) 753

for cells 753

F
Field 98. See also Variable

in SQL database 447, 449
SQL 447

Field numbers
delimited data file codebooks 130

FIFO. See Piping, named pipes
File. See also Data

displaying in hexidecimal format 818–819
piping (UNIX) 89
structure

hierarchical 97. See also Hierarchical file
multiple data sets 37, 82–89
multiple record types 97–98
single level (flat) 38, 96
single level (flat) in database 448–449

File list 83
merging outputs 85–89
multiple input files 83–89
Pause in 84, 85, 86

Files
for substitutions in requests 45–51
%INCLUDE 45–51

	 Index 849

used in job
recorded in output file (UNIX) 786
recorded in OUTPUT file (Windows) 748

FILL
codebook fields 102–103, 104

FILLER
CHARACTER 606

specifying number of dots 606
with color in stub label 406

codebook entry 121
and delimited data files 131

Fill specifications
control variables 104, 131

Filtering data. See DEFINE statement; See
also SELECT statement

with DEFINE 155
with SELECT 136–146

Flat file 80, 96
SQL database 448–449

Floating point data 115
errors in 82

FMEDIAN Statement 225, 227
Font 551–556

bold 352–354
defaults 353
footnote symbols

effect on width 577
fractional using SCALE 683
global specifications 551–556
italic 352–354
profile defaults 553
proportional 556
replacing for cells 622
replacing for mask 622
resetting 352
size 553–554

scaling down or up 683
use in labels 351–354

defaults 353
vertical spacing 354

use of MATCH 556
varying in mask 366
with underlining 352–354

FONT 551–556
as replacement for COLOR 521–522
combined with COLOR 522
DEFAULT 365

replacing for cells only 551, 622
FOOTNOTE SYMBOL 555–556
in masks 365–366
location in mask 366
with underlining 554

Footnote 369–392. See also NOTE

- 377, 378
** 377, 378
<0 377, 687
>0 377, 378
adjusting the level of the symbol 600
alignment in mask 361
assigning symbols 372
built-in 377, 687
changing built-in English text 811
changing or deleting built-in 377, 380, 687
color. See COLOR
compared to NOTE 369
conditional 189–195
Confidence as Percent 432
default symbols 372

alignment in cells 375
order of number assignments 372

deleting 380
display at end of table 376

adjusting alignment 577–581
display of symbol in labels 373
display of symbol in mask 373–375
EMPTY 377
ERROR 377
in conditional COMPUTE 171
indentation 376, 577–581
in labels 338–339
in stub continuation 626
in table cells 380
in title continuation 560, 629
justification in columns 557–559

effect of blank lines 557
preventing with SPACE TO 558–559

keeping unused 381
lowering the symbol 600
nf 377
NORANK 260, 377, 379
number

as footnote identifier 371
as symbol 372

order 376, 561
raising the symbol 600
restrictions 688
retaining when mask is replaced 189, 572, 615
SEE_END 377
See footnotes at end of table 378
shading background 700
SMALL 377
SMALL_NEG 377, 379, 687
symbol

choosing 372
in TEXT masks 388

	 Index 850

symbol alignment 361, 374–375
for symbols of different widths , 338
with RIGHT IN SPACE 390–392, 338
with SYM 390–392

symbol font
matching 374

symbols
changing color 389–390
changing indent 389, 577–581
changing placement 389–392
formatting with the text 389–392
in TEXT masks 365
referencing with SYM 389–392
removing parentheses 365

Template 432
TEXT

alignment 377
as label 320

with no symbol 686, 689–690. See also NOTE
ZERO 378, 379

FOOTNOTE. See also NOTE
COLUMNS 557–559
DELETE 573
EACH PAGE 376, 560
EACH WAFER 560
KEEP 573
MAXIMUM SYMBOL WIDTH 577–581
ON EACH PAGE 560
ON EACH WAFER 560
ON LAST PAGE 560
REPLACE IN MASK 623
RETAIN 573, 645
SEQUENCE 376, 561
SET 370, 686–688
SYMBOL FONT 555–556

Footnotes
and percents 217

FOR clause 481, 483–485
use of ranges and increments 484–485
with multiple variables and conditions 484

FOR EACH clause in quantiles 231
Foreign language 516–517, 809–811
Format

changing without reprocessing data. See For-
mat, changing with rerun; See also Format
request; See also FORMAT statements

changing with rerun
under UNIX 793, 795–796
under Windows 748

codebook
BEGIN entry 94, 128
CHAR variable entry 120

CONTROL variable entry 100
delimited data files 128
END entry 125
general 91–93
GROUP variable entry 122, 123
OBSERVATION variable entry 113
RECORD 96
REDEFINE entry 123

color definitions 402
COMPUTE statement 165
conditional COMPUTE statement 171, 175
conditional POST COMPUTE 188
DEFINE statement

on a single variable 148
on multiple variables 161

FOOTNOTE reference 371
label indent 345
LABEL statement 326
MEAN statement 240
MEDIAN statement 227
PAGE MARKER 586
PERCENT statement 197
QUANTILE statement 229
RANK statement 247
SELECT statement 136, 137, 145
SET FOOTNOTE 370
SET NOTE 386
STDERR statement 244
STDEVP statement 243
STDEV statement 242
TABLE statement 53
USE statement 134
VARP statement 242
VAR statement 241
WEIGHTING statement 262

Format request 32, 481
FORMAT statements

actions listed by type 485–492
composition 481
FOR clause 483
language reference guide 493–550, 551–614
profile-only 491
use in profile 491–492

Formula
replacing variables in 50

FOR_WORD 817, 820
Four digit year

display 591
FQUANTILE 229

Algorithm 235
Weighted 230

FQUANTILE Statement 225

	 Index 851

From data. See Get conditions (TPL-SQL)
F-Test

Anova 438
Standard Deviation 440

G
Get conditions (TPL-SQL)

from data 449
using label-code SQL tables 457–458

Ghostscript 417
GRAY. See GREY; See also GREY
Green. See COLOR
GREY

color in tables 405
ignored in color.tpl file 402, 406
shading 399, 405–406, 412, 691–708. See

also SHADE
conflicts 694–696
in Encapsulated PostScript 694–696

Grouping tables on page. See SKIP AFTER
TABLE

Grouping values
in DEFINE statement 147–150, 154
in RANK statement 246

GROUP variable. See also Repeating groups
describing in codebook 99, 121
repeating 122, 291–319
simple 121

H
Hardware

minimum 814
optional 814

HEAD. See Heading
header record in delimited files 129

Heading
label alignment. See ALIGN
minimum vertical space 524, 565
shading background 700
SPANNER labels 719–724
vertical compression 524–527, 565–566

Heading expression 53
Heading labels 394–395
HEADING SPACE 562, 565
HEADNOTE

ALIGN 496
as wafer label position 736
REPLACE 608
shading background 701

Helvetica font 552

hexadecimal 818
HEXLIST 818
Hierarchical files 80, 97, 97–98, 270–290

codebook 126, 274–275
definition 270
effect on COMPUTE statement 287–288
effect on DEFINE statement 290
effect on MEDIAN statement 290
effect on POST COMPUTE statement 288–290
effect on QUANTILE statement 290
effect on SELECT statement 287
errors 272
file structure 272
incomplete 275–278
in multiple files 84
interaction with repeating groups 270, 280
LEVEL number codebook clause 97–98
marker 271, 272
MARKER 273
meaning of COUNT 286
missing levels in 272, 275–278
with SELECT number 145
with SELECT percent 145
with SELECT statement 136

Hierarchical processing 278–279
Hierarchical unit 136, 271

incomplete 275
in multiple files 84

Hierarchies. See also Hierarchical files
database 447

codebook 461–464
incomplete

controlling treatment in codebook 95, 277
controlling treatment in table request 96, 277
described 275–276
effect on SELECT statement 278
effect on tabulation 278
REPORT 95
suppressing messages 95, 278
TABULATE 95

interaction with TPL statements 278–290
missing levels in 95
missing middle levels 277
processing 270–290
TPL-SQL 447

hierarchical path 470–471, 471–472
Hourglass

running under UNIX 784
HSD

Tukey Test 443
htm file 418
HTML

Anchor 419

	 Index 852

Link 419
OUTPUT

under UNIX 570, 788
under Windows 751

HTML ACCESS statement 418, 567
when data cell has link 421

HTML export
Links and Anchors in labels 350
Links and Anchors in masks 363

HTML tables 417
anchors 420
autosized for multiple pages 419, 764
browser differences 417
export from Windows script 763, 765, 766
how to request 424
in spreadsheets 417
links 420

to external or absolute URLs 423
navigation bar for multiple pages 418
page markers 419
pagination 418
Section 508 accessible 418, 567
single file for multiple pages 419, 764
under UNIX 790, 791

navigation bar for multiple pages 791, 792
Hyperlink , 350
hyperlinks

Acrobat 3
Hyperlinks in HTML tables 420
Hyphen

use in labels 331
Hyphenation of labels 331

I
Identifiers 42
IF 137

in codebook condition value list 100
in conditional COMPUTE 171, 175

include 45
substitutions in formulas 47

INCLUDE. See %INCLUDE; See also %IN-
CLUDE

path to include file
under UNIX 783, 789

Incomplete hierarchies 275–278. See also Hierar-
chies

error messages 276
INCREMENT

STUB 726
Increments

in FOR clauses 485

Indent
default units 345, 348
footnotes at end of table 376, 577–581
interaction with SPACE TO

for multiline labels 349
interaction with stub increment and continuation

347
positive and negative 345
restrictions 347
rules for use 346
use in labels 345–348
use with PostScript 347
with proportional fonts 347–348

Indexing SQL fields 462, 475
Installation. See also Setup

of color.tpl file 402
under UNIX 770–775

changing settings 774
under Windows 739–742

compatibility with previous versions 741
more than one version 740
profile settings for defaults 742
replacing an earlier version 740

utiltity programs 817
Integer division 168. See also DIV operator

limits on accuracy 168
Interactive

codebook generation
for ODBC databases (Windows) 446
under Windows 90

Interface
to SQL databases 446–479

International formats, symbols and languages
809–811

Intersection operator 192–194
Interval Size Designator 232–240
I operator 192–194
ISD 232–240
Italic print labels with PostScript. See Font

J
JOB

number in PAGE MARKER 589
Job Directory (Windows) 744
Joining banks on the same page. See BANKS PER

PAGE; See also SKIP AFTER BANKS
Joining tables to look like a single table. See SKIP

AFTER TABLE
Joining wafers on the same page. See SKIP AFTER

WAFER
Justification

of footnote text. See Footnote; See also FOOT-
NOTE COLUMNS

	 Index 853

of table to width of page. See AUTOMATIC
COLUMN WIDTH; See also AUTOMATIC
STUB WIDTH

K
KEEP. See RETAIN

DATA FOOTNOTE 572, 615
FOOTNOTE 573. See also NOTE
in RANK statement 247, 253–255
unused footnotes 381

Keywords 43
definition 43
list of 812

Kghostview (Linux) 540

L
Label

substitution for with REPLACE statement
in table request 47–51

LABEL
REPLACE 609–614

for a condition value 611
for a variable 609

WAFER 632, 633
in row-banked tables 669

Label-code SQL tables 457–458
LABEL COLOR 411, 518–520
LABEL MEMORY (UNIX) 796
LABEL MEMORY (Windows) 753
Labels 43, 320–355

alignment of 332–338. See also ALIGN; See
also Alignment of labels

automatic 320, 321
breaking with slashes 329–330, 331
built-in

replacing English text 811
changing fonts in 351–354
characters in 323, 324
coalescing in heading 394–395, 610–611
collapsing in stub 396
color. See COLOR
COMPUTE 165
default 321–322
dummy variables 328–329

compared to LABEL variables 328
entering backslashes in 324
entering characters not on keyboard 323–324
FONT control with PostScript 551–556
font resetting in 352

footnote texts 320
heading

coalescing 394–395, 610–611
HTML links and anchors 420
hyphen for conditional breaks 331
indent specification 345–348
long 323, 329
maximum size 324
multi-line 329–331
multiple segments 326
null 325

collapsing into higher nest level 396
null strings as 325
quotes and backslashes in 324
result when omitted 321
rules for dividing 331
sections

for alignment purposes 333–334, 336
recommendation for alignment 334

shading background 702
skipping space with SPACE 348–349
SPACE 348
SPACE TO 348
spanner 340

in heading 719–724
stub

collapsing into higher nest level 396
stub continuation

for multi-page tables 625–626
superscripts and subscripts 354–355
suppressing 325
table titles 320
tabs in 323
tabs with SPACE TO 348–349. See also SPACE

TO
TEXT masks 320
title continuation 339

for multi-page tables 629
treatment of carriage returns in 323
treatment of <Enter> in 323
use of footnotes in 338–339
WEIGHTING 262
where used 321

LABEL statement 326. See also LABEL variable
format 326

LABEL variable. See also LABEL statement
as substitute for TOTAL 71, 326, 328
in TABLE statement 71
replacing label in format request 326
use in TABLE statement 326–328

Landscape 664

	 Index 854

Largest value. See MAX; See also RANK state-
ment

Large values 363–365
warning when column too narrow

under UNIX 800
under Windows 752

Leader in stub. See FILLER CHARACTER
LEADING 549–550
Leading zeros

deletion of 359, 651
display of 359

Left
alignment of labels 332. See also ALIGN
alignment of tables. See ALIGN

LEFT
MARGIN 575–576
STUB 727

LEFT BLANK FILL
control variables 104

LEFT ZERO FILL
control variables 104

LEGAL
size paper 594

LENGTH
PAGE 582–583

LETTER
size paper 594

LEVEL number 270–274
codebook clause 97

Levels
of FORMAT actions 482

Limits 815–816
LINE. See RULE
Line break. See Slash
LINE COLOR 411, 518–520
Lines. See also Rules

adjusting thickness. See BANK DIVIDER; See
also BOLD RULE; See also BOTTOM
RULE; See also DOWN RULE; See
also RULE; See also RULE AFTER ROW

color. See COLOR
LINES. See also RULES

retaining when empty of data 643
Line spacing , 329
Link 419
Links

in HTML Export , 350
Links in HTML tables 420
Linux. See UNIX version
LISTED. See Display order
Logical connectors 136
Lp 599

lp (UNIX) 775
for printing outputs 788

ls (UNIX)
to find TPL subdirectories 785

M
MARGIN 575–576

minimum 576
Margins

default 393
for alternate pages with TED 575
in columns 678

Marker
Hierarchical file 272
Mask 624

MARKER
codebook clause 97
PAGE 586–591

location 588–589
Mask 356–368

$ treatment 357
alignment 356, 360–362

footnote symbol only 361
alignment from row to row 361–362

with PostScript proportional fonts 362
alignment with footnotes 361
blank 359
character string only 359

alignment 361
codebook clause 115
color. See COLOR
commas 357
decimal points 357
default 398
effect of COUNTRY statement 529
HTML links and anchors 420
in COMPUTE statement 168–169
in conditional POST COMPUTE 189–191
in percents 217
in POST COMPUTE 182
in WEIGHTING statement 268
Marker 624
placement in codebook entry 113
REPLACE MASK COLOR 411, 621
replacing color only 411, 621
replacing FONT only 622
results when specifications conflict 618
rounding 360
strings in 359
TEXT 364, 619–620

color. See COLOR

	 Index 855

with background shading 699
% treatment 357
with multiple fonts 366

MASK
REPLACE 615–620
REPLACE FOOTNOTE 623
REPLACE MASK FONT 622
REPLACE WITH TEXT 619–620

interaction with REPLACE VALUE 620
MATCH

font specification 556
MAXIMUM

automatic column width 503
automatic stub width 503
FOOTNOTE SYMBOL WIDTH 577–581

MAX Operator 181–182, 225, 226
MEAN 225, 240
MEDIAN statement 225, 227

hierarchical file 290
weighting 228–229

MEDIAN Statement 225
Memory

for cells 515
when extra memory is beneficial 515

Menus
for running under Windows 743

MERGE
in file list 86

Merging outputs 85–89
MIN operator 182, 225, 226
Minus sign 165
MKDIR

command in Windows scripts 762
mknod. See Piping, named pipes, creating
Money (TPL-SQL)

TPL data type 456
more (UNIX)

for viewing outputs 788
MOVE

command in Windows scripts 762
Moving the system

by installing under UNIX 770
Multiple

HTML OUTPUT 570
Multiple banks on page. See BANKS PER

PAGE; See also ROW BANKS PER
PAGE; See also SKIP AFTER BANKS

Multiple record types 97–98
Multiple tables on page. See SKIP AFTER TABLE
Multiple wafers on page. See SKIP AFTER WA-

FER
Multiplication operator 165

N
Name

substitution for with REPLACE statement 47–51
Named pipes. See also Piping

for input under UNIX 797–799
Names

uniqueness 167
in TPL-SQL codebooks 459

Narrow column warning
under UNIX 800
under Windows 752

Narrow tables
sections side by side on page 666–671

Navigation
HTML OUTPUT 570, 571

Navigation bar
in HTML tables 418

under UNIX 791, 792
Nested observation variables 67
Nested repeating groups 298
Nested with

meaning 56
Nesting in TABLE statement 56. See also BY

operator
Network Installation 741
Networks

for PCs 742, 753
UNIX

treatment of profile 796
New Century Schoolbook font 552
nf footnote 363–365, 377
Nf footnote 687, 688
NO_FIT footnote 377
Non-parametric

Chi Squared 441
NORANK footnote 260–261, 377, 379
NORMAL

in label
after superscript or subscript 354–355

NOTE 385, 689–690. See also Footnote; See
also FOOTNOTE; See also HEADNOTE

alignment
with RIGHT IN SPACE 390–392

applying to selected tables 689
compared to FOOTNOTE 369
compared to use of KEEP FOOTNOTE

381, 385, 689
effect of FOOTNOTES EACH PAGE 560
effect of FOOTNOTE SEQUENCE 561
restricting to particular tables 689

	 Index 856

Notes
restrictions 690

Notify
for UNIX jobs in background 782–783

Not logical operator
in SELECT statement 136, 137

NOT logical operator
in DEFINE statement 151, 160

NULL
IF OTHER 178
in conditional POST COMPUTE 188
in DEFINE statement 149, 152
in RANK ON VALUES 601
in RANK statement 248, 252

Null label 325
collapsing in stub 396

NULL value
assigning and testing in conditional compute

176–177
effect on averages 176
effect on COMPUTE statement 167
effect on conditional COMPUTE 177
effect on DEFINE 177
effect on MIN 227
effect on POST COMPUTE 181, 191, 195
effect on SELECT 177
efficiency considerations 178
in observation field 119

in delimited data file 132
in REPLACE VALUE statement 630–631
to prevent divide errors 176

Number
substitution for with REPLACE statement 47–51

NUMBER
page 587

Numbers
effect of COUNTRY statement 529
format for printing. See Mask

Numeric
Change 219

Numeric literals 166
in SELECT statement 138

O
OBS. See Observation variable
Obs date (TPL-SQL)

TPL data type 456–457
with time unit 456

Observation variable. See also TABLE statement
codebook 113
codebook entry

format 113

created for repeating group 291, 298–299, 304–
305

data types 114–115
errors 118–120

in delimited data files 132
errors in

binary and float 82
character 82

for weighted tabulations 71
in delimited data files 132
nested with another observation variable 67
restrictions and guidelines 67–68
types of values 114–115

observation viariables
in table statement 64

Obs money (TPL-SQL)
TPL data type 456

Obs varying (TPL-SQL)
TPL data type 455

ODBC (Windows) 446–479. See also TPL-SQL
script arguments 768

Offset
from column dividers 678

Operating instructions. See Run instructions
Operating systems 814
Operators

arithmetic 165
relational

in SELECT statement 137–138
Oracle 446–479

data types 453, 454
Ordering rows

with RANK 246–261
Order of evaluation for compound conditions 142
Order of footnotes 376, 561
Order statistics

sample request 236–245
OR logical operator

in SELECT statement 142
OTHER

in conditional COMPUTE 171, 173
in conditional POSTCOMPUTE 188
in DEFINE statement 149, 152, 158, 162
in RANK statement 248, 252

for residuals 257
Other Output 433
Output

Report Rows 633
output file (UNIX)

date and time stamping 786
for error review 784
in TPL subdirectory 785
names of files used in jobs 786

	 Index 857

OUTPUT file (Windows) 748
date and time stamping 748
names of files used in job 748

Outputs. See also Run instructions
merging 83

P
Pad

codebook fields
control variables 102–103, 131

Padding. See FILL
Page

count 588, 586–591
numbering 587, 586–591
size

setting at installation time (Windows) 742
PAGE

MARKER 586–591
alignment and spacing 589
in exported HTML 419
location 588–589, 589
multiple markers 589

WIDTH 592–593
Page break. See EJECT
PageMaker

color separations 405
PAGE MARKER

alignment 334
Page numbering. See PAGE MARKER
Pageview (Sun Solaris) 540
Palatino font 552–553
Paper

size
setting at installation time (UNIX) 773

PAPER 594
Parent

in association of SQL tables 462
Parentheses

in arithmetic expressions 166
in compound conditions 142
in TABLE statements 58–59
removing from footnote symbols 365

Path
for running jobs (UNIX) 776
for running jobs (Windows) 760, 761
in USE statement 135

PC 814
PC-Axis

exporting 427
TED arguments

in Windows scripts 763, 765

PDF 417
in Windows scripts 763

Percent 196–218
and hierarchies 212
base clause 198
base location in title line 202
base markers 203, 205–209, 209–210
Change 219
common errors 212–216, 218
conditions 200–201, 210–212
in title line 198
marker nesting 209–210
masks 217
mixing values and percents 210–212
multiple in one table 216
nested 217
on different observations 212
rules for using 218
where clause 198
without markers 198

Percent distributions. See Percent
Percentiles 230
Percent symbol

effect of spanner labels 340
in masks 357

Performance
accessing multiple SQL tables 462
effect of extra memory 515
optimizing in TPL-SQL 475–478

Piping (UNIX)
named pipes 89, 797–799

benefits 797–798
creating 798
silent use 798–799
with data from other programs 798

standard pipes 89, 797–799
foreground only 797
no prompt for arguments 797

Plan for processing multiple SQL tables 468. See
also TPL-SQL

choosing a plan 472–473
specifying the chosen plan 473

Point
size 553

Post Compute
In Statistics Tests 433

POST COMPUTE 180–195
conditional 187
referencing post computed variables 185
restrictions 194–195
using displayed rounded values 186
with hierarchical file 288–290

	 Index 858

PostScript
and installation under Windows 742
character set 822

for languages other than English 822. See
also CODEPAGE

character sets 822
converting to HTML 417
display of footnote symbol in labels 373
display of footnote symbol in mask 373–375
display of tables

UNIX 540, 786
Windows. See TED

output
under UNIX 788, 789

printer 814
printing non-PostScript outputs 820

TED arguments
in Windows scripts 763

POSTSCRIPT 595–598
PostScript printer

printing non-PostScript outputs. See PSP
Precision of computations 181, 816

DIV function 168
PRIMARY

keyword 813
Print

on PostScript printer
under UNIX 788

tables and output
under UNIX 786

PRINT
OUTPUT

under UNIX 599, 788
TABLES

under UNIX 599, 788
PRINT COMMAND 599

and installation under UNIX 775
Printer 814

changing default under UNIX 775
monochrome

and COLOR specifications 521
selection

PRINT COMMAND (UNIX) 599
Printers

multiple. See also PRINT COMMAND
under UNIX 775

Print label. See Label; See also Labels
Processing plan for multiple SQL tables 468–

474. See also TPL-SQL
Processing unit. See Hierarchical unit
Profile

and installation under Windows 740, 742

editing
under UNIX 796

font specifications 553
setting memory 515
under UNIX 796

choosing editor 545
DISPLAY NAME for PostScript tables

540, 786
under Windows 749
use of format statements 491–492

under UNIX 796
profile.tpl. See Profile
Prompts (UNIX)

preventing 490–492, 788
Proportional fonts

size of blank space 556
PSP

PostScript print utility 820
Publication quality. See PostScript
Publishability 190–191

Q
Qualified names

in TPL-SQL requests 467–468
QUANTILE 225, 229–245

algorithm 235–245
use in POST COMPUTE 231

restriction on quantity number 231
use in TABLE statement 231
weighted 230
with hierarchical file 290

QUANTILE Statement 225
Quartiles 231
Quit

how to
under UNIX 770, 777

Quotes 43, 320
in delimited data files 129
in labels 320, 324

R
RAISE FOOTNOTE SYMBOL 600
RAM. See Memory
Random selection of records. See SELECT state-

ment
Range of values

in DEFINE statement 151
in FOR clauses 484–485

RANK DISPLAY statement 258–260. See
also RANK statement

	 Index 859

Ranking
reordering data rows 246–261
replacing values with rank numbers 601

RANK ON VALUES 601
RANK statement 246–261

ALL 248, 252
with residuals 257

COPY 252–253
displaying rank numbers 258–260

troubleshooting 260
KEEP top or bottom rows 253–255

treatment of ties 255, 259
nested variables 251
NULL 248, 252
OTHER 248, 252

for residuals 256, 257
ranked-on column 247
referencing rows in Format statements 261
residuals 256, 257–258

Rank variable
in Quantile statement 227, 230

Ratios 178
based on control variable values 178

Record
delimited 129
length 97, 815
level 270–274
level number 97–98
mask 96
name as observation variable 96
selection. See DEFINE; See also SELECT
types 97
variable 68

record name
in table statement 68

Red. See COLOR
Redefine

in delimited data files 131
in SQL databases 458

using substr to create subfields 460
REDEFINE

and repeating groups 292, 298
codebook entry 123

when last entry for record 125
Regrouping. See Grouping values
Relational operators 149, 248

in SELECT statement 137–138
Relational (SQL) 447
Relation (SQL) 447
Reordering

with DEFINE statement 154
with RANK statement 246–261

Repeating groups 291–319
and REDEFINE 292, 298
as control variable 298
compared to control variables 293
compared to hierarchies 291, 294, 301
continued 296–297, 298

format for codebook description 297
creation of associated observation variable

298–299, 304–305
describing in codebook 99, 122
effect on COUNT 292, 305
effect on tabulations 299–307
format for codebook description 297
for questionnaire responses 291, 294
for time series 291, 292
in computations 306
in DEFINE statements 306–307
interaction with hierarchies 270, 280, 292, 305
labels for repetitions 291, 293, 298
level for COUNT 292, 304, 305
limits on use

in delimited data files 131
in hierarchical data files 306
in SQL databases 447
multiple groups 305

nested 298
use of dummy groups to associate repetitions

307–309
REPLACE

COLOR 603
COLOR WITH FONT

for monochrome printers 521
FILLER CHARACTER 606
HEADNOTE 608
LABEL 609–614

for a condition value 611
for a variable 609

MASK 615–620
keeping data footnotes 572, 615

MASK COLOR 411, 621
MASK FONT 622
MASK FOOTNOTE 623
MASK WITH TEXT

including VALUE 619–620
interaction with REPLACE VALUE 620

STUB CONTINUATION 625–626
STUB HEAD 627
TITLE 628
TITLE CONTINUATION 629
VALUE

empty cells 631
interaction with TEXT mask 620
interaction with VALUE in TEXT mask 631

	 Index 860

with a number 630–631
with NULL 630–631

WAFER LABEL 632, 633
REPLACE statement 47–51

in %INCLUDE file 49–51
Replacing

names, labels and numbers
with REPLACE statement 47

Report
format for editing 821
screen display 821

REPORT
command in Windows scripts 760

REPORT ERROR
codebook clause 119
in codebook 114

REPORT INCOMPLETE HIERARCHIES 95–
96, 276–278

in TPL-SQL databases 463
Request

codebook
running under Windows 744–745

format 32, 481
substituting sections with INCLUDE and RE-

PLACE 45–51
table 32, 52

running under Windows 746
Rerun. See Run
RERUN

command in Windows scripts 761
Reserved words 812
Residuals. See RANK statement
Resource requirements 814
RETAIN

ALL RULES 633
BANK DIVIDER 635
BOTTTOM RULE 637
CELLFILE 86, 638
COLUMNS 639
DOWN RULES 640
EMPTY COLUMNS 642
EMPTY LINES 643
END RULE 644
FOOTNOTE 645
HEADER BOTTOM RULE 645
HEADER CROSS RULE 646
HEADING 647
HEADNOTE 648
LAST RULES 649
LEADING ZEROS 651
ROWS 652
RULE AFTER ROW 653

RULE AFTER STUB 656
SPANNER RULES 657
STUB 659
TABLES 661
TITLE 661
TOP RULE 662
WAFER 662
WAFER LABEL 663

r g b colors 400
R g b colors 518
Right

alignment of labels 332. See also ALIGN
alignment of tables. See ALIGN
mask alignment 361

RIGHT
interaction with spanners and banks 335
MARGIN 575–576
STUB 727–728

RIGHT BLANK FILL
control variables 104

in delimited data files 131
RIGHT IN SPACE

and footnote symbols 338
for aligning PAGE MARKER 335
labels 336–338
when space is insufficient 337

RIGHT ZERO FILL
control variables 104

RMTPL
command in Windows scripts 762

rmtpl (UNIX)
for removing TPL subdirectories 793

effect on TPL REPORT subdirectories 793
Roots

of negative numbers 167, 181
ROTATE 664
ROUND

EVEN 665
UP 665

Round even 358, 665
Rounding 357

effect on totals 358
rule 358, 665
up 358, 665
using mask 360
values used in POST COMPUTE 186

ROW
BANK AFTER 507
BANKS PER PAGE 666–671
RULE AFTER 653, 653–655
shading background 703
SKIP AFTER 711

	 Index 861

SPAN 534, 672
and bottom rule of table 635, 649

SPANNER. See Spanner labels; See also WA-
FER LABEL as SPANNER

UNDERLINE 681–680
Rows

referencing to bank after row 507–508
referencing to specify page breaks 547–548
Report printed rows in output 633

ROWS
RETAIN 652

ROW SPACE 681–680
default 681

ROW SPAN 680
RULE

AFTER ROW 653–655. See also UNDERLINE
ROW

in joined tables 713
AFTER STUB 656
ALL 633
BANK DIVIDER 635
BOLD 513
BOTTOM

spanning entire row 635, 649
color 674
COLOR 411, 518–520

for liines between columns 640
default

color 674
style 674
weight 674

Double or Single 653
DOUBLE or SINGLE 674
DOWN 640
END 640
for lines after rows 653
Gaps 562
HEADER BOTTOM 645
HEADER CROSS 646
LAST 649
MARGIN 678
properties 680
ROW SPAN 662
SPANNER 657
style 674

for liines between columns 640
TOP 662
weight 674

for liines between columns 640
RULE AFTER ROW

RETAIN 653
UNDERLINE 681–680

RULE MARGIN 678
Rules 644, 657

changing thickness 635, 649, 674
for rules after rows 653

color. See COLOR
effect on leading zeros 651
weight

for rules after rows 653
Run instructions

for UNIX version 776–800
for Windows version 743–753

Running jobs. See also Run
overview 40
under UNIX

in background 777, 781–782
with CSV output 790–791
with HTML output 790–791
with PostScript output 788, 789

under Windows. See Windows
Run (UNIX)

codebook 777–779
from command line 778
from prompts 777–778

conditions 779
rerun 793–795

from command line 795
from prompts 794

tables 781–793
from command line 783
from prompts 781

Run (Windows) 743–753. See also Windows
codebook 744–746

from menus 744
Edit Table

from menus 749
rerun 748

from menus 748
table 746–747

from menus 746
TPL REPORT

from BAT file 754
from command line 754
from scripts 754–768

TPL TABLES
from menus 743

S
Sample. See SELECT statement
SCALE 683–685
Screen display

Controlling (UNIX) 785
of reports 821

	 Index 862

suppressing (UNIX). See Background; See
also Piping

Scripts (Windows)
commands and arguments 760–768
forground and background 757
ODBC database arguments 768

eliminating prompts 768
REM for remarks or comments 762
Script log 757
substitution arguments 758
wild cards in commands 756–768
WTPL arguments 759

Section 508
accessible HTML 418, 567

SEE_END footnote 377
SELECT

TPL-SQL databases 475–478
Selecting subsets of data. See DEFINE state-

ment; See also SELECT statement
SELECT statement 136–146

applied to a single table 137, 143
compared to DEFINE statement 155

arithmetic expressions 140
based on data values 136–144
based on sets of values 138, 141–142
FOR TABLE 137, 143, 155
hierarchical files 287
IF 137
interaction of multiple statements 146
number

format 145
number and percent options 144–145
number of records 145
percent 145–146

format 145
random subset of records 145–146
relations 137–138
sample 145–146
skipping part of the data file 145
types of conditions 138–140
UNLESS 137
use of AND and OR 142–143

SELECT style
conditional COMPUTE 171

Semicolon delimited data files. See Delimited data
files

SET FOOTNOTE. See Footnote; See also FOOT-
NOTE; See also NOTE

SET NOTE
compared to use of KEEP FOOTNOTE 573
statement. See NOTE

Sets of values
in Conditional COMPUTE 171
in DEFINE on multiple variables 162
in SELECT statement 138, 139, 141–142

Setup
for installation under UNIX 770

prompts 771
to move the system 770

for installation under Windows 739
SHADE 691–708

CELL 696
compared to SHADE DATA 696

COLUMN 698
DATA 699

compared to SHADE ROW 700
effect on TEXT masks 699

FOOTNOTES 700
HEADING 700
HEADNOTE 701
LABEL 702
options 696–708
overview 691–696
ROW 703

compared to SHADE DATA 704
effect on stub label 703

STUB 704
STUB HEAD 705
TABLE 706
table elements 412, 691
TITLE 706
TOP 707
WAFER LABEL 708

Shading. See also SHADE
COLOR 412, 691–708
conflicts 694–696

order of application 694–696
effect on Encapsulated PostScript 694
GREY 405–406, 412, 691–708
intersecting specifications

order of application 694–696
order 694
overlapping 694–696

SHIFT DECIMAL clause
and masks 358
effect on computations 169, 172
in codebook 114

interaction with MASK 117
Sibling (or Sib)

in association of SQL tables 462
Sideways 664
Single

HTML OUTPUT 570

	 Index 863

Single file HTML 419, 764
SKIP

AFTER BANKS 709–711
AFTER ROW 711

compared to slash in labels 711
AFTER TABLE 546, 713–716
AFTER WAFER 546, 717–718

with spanning wafer labels 736–738
Slash

as unconditional label break 329–330, 331
compared to SKIP AFTER ROW 711
symbol for line spacing 329

Smallest value. See MIN; See also RANK state-
ment

SMALL footnote 377
SMALL_NEG footnote 377, 687
Small value

footnote 378, 379
SOLID 680
Sorting rows. See RANK statement
Sort order

codebook conditions 105–107
Sort sequence

and CODEPAGE 517, 810
and sort.tpl 517, 810
dependence on character set 516–517, 810
for languages other than English 516–517, 810

sort.tpl 810
Sort.tpl 517
Space

vertical
adding after data rows 711
between table elements 732–733
effect of font sizes 354

SPACE
HEADING 565–566
in labels 348–349
TABLE 732–733

SPACE TO
for aligning PAGE MARKER 334
in labels 348–349
interaction with INDENT 349

Spacing of lines 549–550
effect of font sizes 354

SPAN 672
and bottom rule of table 635
DATA 680
for rules after rows 653

SPANNER HEADING 719–724
Spanner labels 340–344

alignment 340, 342
deleting rules 657–658

effect on $ and % 340
effect on leading zeros 651
for wafers , 340
in heading 719–724
RIGHT

interaction with banks 335, 342
shading background 702. See also WAFER LA-

BEL as SPANNER
SPANNER RULES

RETAIN 657
Special characters 43, 822

in labels 323–324
SQL Database 446–479

data types 452–455
SQL databases 815. See also TPL-SQL
SQL FETCH COUNT statement 478–479
SQL SELECT statement 475–478
Square root

built-in function 166
SQRT 167

Standard deviation 185
STDEV for sample 225
STDEVP for whole population 225, 243

Standard Deviation
F-Test 440

Standard error 225, 244
Standard pipes (UNIX) 797. See also Piping
STANDARD WEIGHT 680
START

STUB 729
START position

Codebook example 92–94, 120
in codebook FILLER 121
redefining space 125

Statements
rules for preparing 42–51

Statistical Tests
Chi Squared 441
F-Test of Standard Deviations 440

Statistics 225–245. See also Mean; See also ME-
DIAN statement; See also Post Com-
pute; See also QUANTILE; See also Stan-
dard deviation; See also Standard error; See
also Variance

Tests 431–445
Statistics Tests

Anova F-Test 438
Confidence as Percent 432
Post Compute 433
stats.log 433
Student's T-Test 436
Template 432

	 Index 864

Template Example 433
Tukey HSD 443
Undo 434
Z-Test 437

Status 192–194
STDERR 225, 244
STDEV 225, 242
STDEVP 225, 243
STOP

STUB 730
Stop (UNIX)

how to 770, 777
Strings

in CHAR statement 269
in mask 359

Stub
collapsing with null labels 396
color in label

effect on FILLER CHARACTER 406
default continuation 395
default indent 395
default width 395
indentation

interaction with ALIGN STUB LABELS 498
on the right 811
shading background 704

STUB
CONTINUATION

indent for multi-line labels 725
label for multi-page tables 625–626

DELETE 731
HEAD

defined 627
replacing 627

INCREMENT 726
LEFT 727
RIGHT 727–728

combined with other stub options 728
START 729
STOP 730
WIDTH AUTOMATIC

adjusting to available space 503–505
effect on banked tables 505

Stub expression 53
STUB HEAD

shading background 705
Student's T-Test 436
SUB

for subscripts 354–355
Subdirectories

TPLnnnnn
under Windows 747

Subdirectory
TPL. See TPL subdirectories

Subfields
for SQL database fields 460–461

Subscripts
in labels 354–355

Subset of data. See DEFINE statement; See
also SELECT statement

Substitution
in requests

names, labels and numbers 47–51
of parts of request with %INCLUDE 45–51

Substitution arguments
in Windows scripts 758

Substr
creating subfields for SQL data 460–461
substrings in CHAR statements 269

Subtotals
in DEFINE statement 147, 154, 159–160

Subtraction operator 165
SUP

for superscripts 354–355
SUPER

for superscripts 354–355
Superscripts

in footnote text 389–390
in labels 354–355

Suppressing cell values. See Conditional footnot-
ing; See also Mask; See also REPLACE
MASK WITH TEXT

Sybase 446–479
data types 455

SYM. See Footnote symbols
inserting footnote symbols in text 389–392

Symbol
footnote. See also Footnote

choosing 372
display 373, 577–581

PostScript font 553
effect on alignment 577
use in footnotes 555
uses 555–556

SYMBOL COLOR 408, 411, 518–520
Syntax error

under UNIX 799
under Windows 751

T
Tab

in exported CSV (delimited) files 424, 763

	 Index 865

Table
cells 54, 398
default layout 394–398
default location 393
fitting more on page 683–685
formatting

overview 78
joining tables on one page. See SKIP AFTER

TABLE
location on page 709–711
multiple tables on page. See SKIP AFTER

TABLE
request 32, 52

example 35
running under UNIX 781
running under Windows 746

scaling size down or up 683–685
shading background 706
SQL data 447
title 394
vertical compression 732–733

TABLE
DATA 427

Export 427
SKIP AFTER 713–716

Tables
running jobs. See Run

TABLES
RETAIN 661

tables file
in TPL subdirectory (UNIX) 785
in TPL subdirectory (Windows) 748

TABLE SPACE 732–733
tables.ps file

under UNIX 788, 789
under Windows 748

TABLE statement 52–78
combining nesting and concatenation 58
concatenation

with THEN operator 57, 58
control variable 64–65

TOTAL 71–76
COUNT observation variable 68
general format 53
heading expression 53
LABEL variable 71
nesting

meaning of "nested with" 56
with BY operator 56, 58

observation variable 64–65, 65
COUNT 68
record name 68
weight 71

parentheses used in 58–59
record name in 68
stub expression 53
title 394

format options. See Labels
TOTAL control variable 71–76
wafer expression 53
weighted frequency counts 71, 169. See

also Weight variables
weighted tabulations 71
weighted variables 170

Tabs
in labels

converted to blanks 323
with SPACE TO 348–349

treatment in labels 43
TABULATE INCOMPLETE HIERARCHIES

95–96, 276–278
in TPL-SQL databases 463

TED
for printing PostScript tables 814
TPL editor 545

TED (Windows)
commands in Script 762

export directory 765
export file names 766
for display, print, and export 763
wild cards 756

TPL editor 743
viewing tables and output files 747

Template
Example 433

Templates 432
Tests

Statistics 431–445
Text

in cells. See Mask; See also Mask; See also RE-
PLACE MASK

TEXT
footnote. See Footnote TEXT
masks. See also Mask; See also REPLACE

MASK WITH TEXT
as labels 320

Text delimited files. See Delimited data files
THEN concatenate operator 57

combined with BY operator 58
Thousands separator

effect of COUNTRY statement 529, 811
suppressing 529

Time
effect of COUNTRY statement 532, 811

TIME
in PAGE MARKER 589

	 Index 866

Time series
as repeating group 291, 292–294

Times font 552
Time stamping

of codebook abstract
under UNIX 779
under Windows 745

TITLE
REPLACE 628

Titles. See also Labels
as labels 320
color. See COLOR
continuation option 339
shading background 706

TOP
MARGIN 575–576
of table

shading background 707
Top values. See MAX; See also RANK statement
TO_SHOW

converting reports to screen format 821
TOTAL control variable 71–76

in hierarchies 283
interaction with DEFINE 75–76
removing label 76, 396
replacing English label 811
replacing with LABEL variable 71

Totals. See also TOTAL control variable
in DEFINE statement 147, 159–160, 162, 163

tpl conditions (UNIX) 450, 779, 801–808
CSV and other delimited files 804–806
error detection 806
fixed format sequential files 802–804
SQL databases 806–808
treatment of comments 808

TPLDIR
command in Windows script 762, 767

TPL_INI
environment variable 741

tpl.ini file for Windows version 740
TPLnnnnn. See TPL subdirectories
TPLPATH7.0

environment variable 741
TPL-SQL 79, 90, 446–479

association statements
in codebooks 461–464
in requests 468

chains 469–470, 469–478
codebook 447–466

abstract 465–466
association statements 461–464
associations with multiple fields 464

databases with multiple SQL tables 461–464
defines clause 449, 458–460
duplicate database names 459
evaluated to 451
getting conditions from label-code SQL tables

449
hierarchies 461–464
%INCLUDE 465
parent-child relationship 462
sibling relationship 462
using information from the database 449, 451

conversions from database to TPL types 452–455
data type conversions

ODBC 453
Oracle 454
Sybase 455

effect on requests 467–478
qualified names 467–468

hierarchical paths 470–471, 471–474
incomplete hierarchies 463
optimizing performance 475–478

indexing for multi-table processing 475
indexing for SQL Select 476
over network 478
SQL Fetch Count statement 478
SQL Select statement 475–478

processing plans for multiple SQL tables 468–
474

choosing a plan 472–473
specifying the plan of your choice 473
treatment of COUNT 474

terminology 447
TPL types for SQL databases only 455–457

TPL subdirectories (UNIX) 785–786
choosing your own number 783, 785
maintenance 793
use in rerun 794

TPL subdirectories (Windows) 747
choosing your own number 747–748, 748
maintenance 748

from menus 748
notes 748
where saved 748

TPL subdirectory number
printing on table output 589–590

TPL/TPLR subdirectories (Windows)
choosing your own number

in scripts 760
maintenance

from scripts 762
where saved 760

T-test 436
Tukey HSD 443

	 Index 867

U
Undefined variable error

under UNIX 800
under Windows 752

UNDERLINE 680. See also ROW SPACE
Retain Rule after row 653
ROW 681–680
Row Properties 681
Row Space 681
RULE AFTER ROW 681–680

Underlining
color 519
data

with UNDERLINE ROW. See RULE AFTER
ROW

with FONT specifications , 352–354
Underscore 42
Undo 434
Union operator 192–194
UNIX version 814

installing for 770–775
running jobs 776–800

Unless 136, 137
U operator 192–194
UP in RANK statement 247
URL

in HTML tables 423
USE statement

naming codebook 134
naming codebook with path 135
restriction on comments in 135
under Windows 746

Utility programs 817

V
VALUE

in condition label clause 110
in TEXT masks 364–365, 619–620
replacing in cells 630–631

Values 43
condition 107
sets of 138, 139, 141–142, 162, 163, 171

VAR 225, 241
Variable. See also TABLE statement

CHAR 120. See also CHAR variable
CONTROL 64–65, 99

TOTAL 71–76
error when undefined

under UNIX 800
under Windows 752

GROUP 121–123
in delimited data file codebook 130
in SQL table 447

duplicate names 459–460
using database information for codebook 449

LABEL 326
OBSERVATION 64–65, 65, 113–120
RECORD 68
repeating group 291–319
weight 71, 169–170

Variance
VAR for sample 225, 241
VARP for whole population 225, 242

VARP 225, 242
vi editor (UNIX) 776
Visually impaired

accessible HTML tables 418, 567

W
Wafer

default label 396–398
label

location 736–738
spanning table 736–738

label location 396
WAFER

label
in row-banked tables 669
shading background 708

LABEL as HEADNOTE 736–738
LABEL as SPANNER

shading background 708
spanning data 736–738
spanning row 736–738

LABEL REPLACE 632, 633
SKIP LINES AFTER 717–718

Wafer expression 53
Warning message

in Windows script log 758
narrow column (UNIX) 800
narrow column (Windows) 752

Web publishing
HTML tables 417
PDF 417

WEIGHT 680
BOLD 513, 680
RULE 513
STANDARD 680

Weighting
in COMPUTE statement 169–170
in MEDIAN statement 228–229

	 Index 868

in QUANTILE statement 230
in TABLE statements 71

WEIGHTING statement 262–268
Weight of lines. See RULE
Weight variables

applied in COMPUTE statements 169–170
creating with Conditional COMPUTE 173
used in tables 71

Where
in associations for SQL tables 462

WHITE
definition in color.tpl file 695
shading 695–696. See also COLOR; See

also Shading
Width

column 523
AUTOMATIC 503–505

stub
AUTOMATIC 503–505

WIDTH
MAXIMUM FOOTNOTE SYMBOL 577–581

Wild cards
with PSP utility program 820

Wild cards (Windows)
in COPY Script commands 756, 762
in DELETE Script commands 756, 762
in TED Script commands 756, 763

Windows version 814
installing for 739–742
running jobs 743–753

Working directories. See TPL subdirectories
WTPL (Windows)

script arguments 759

Y
Year

displaying 4 digits 528, 591

Z
Zapf Chancery font 553
Zapf Dingbats font 553

use in footnotes 555
Zero

in RANK DISPLAY column 260
instead of blanks in DATA TABLE 427

Zero division 167, 181, 191
ZERO footnote 378, 379

Zeros
in condition values

fill specifications 104
numeric defaults 103

leading to left of decimal point 359
Z-Test 437

	Contents (Summary)
	Introduction
	Overview
	Entering Statements
	Tables
	Data
	Codebook
	Use
	Select
	Define
	Compute
	Post Compute
	Percent
	Percent Change
	Statistics
	Ranking
	Weighting
	Char
	Hierarchies
	Repeating Groups
	Labels
	Masks
	Footnotes
	Automatic Formatting
	Color and Grey
	Printing and Export
	Data Drill (Windows Only)
	Statistical Tests (Windows Only)
	TPL-SQL
	Format
	Installation (Windows)
	Run Instructions (Windows)
	Scripts (Windows)
	Installation (UNIX/Linux)
	Run Instructions (UNIX/Linux)
	TPL Conditions (UNIX/Linux)
	International
	Keywords
	Limits
	Utilities
	Character Sets
	Index

	Contents (Full)
	Introduction
	What Does TPL TABLES Do?
	How Does TPL TABLES Work?
	The Data File
	The Codebook
	The Table Request
	The Format Request

	An Example

	Overview
	An Overview of TPL TABLES Features
	Defining the Structure and Content of a Table
	Data Files
	Describing the Data
	Selecting Subsets of the Data
	Reclassifying Data
	Computing New Values and Weighting
	Computing New Values from Final Tabulations
	Percentages
	Statistics
	Ranking
	Labels
	Masks
	Footnotes
	Table Formatting

	Installing and Running TPL TABLES

	Entering Statements
	Rules and Notations for Codebooks and Requests
	Statement Rules
	Identifiers
	Values
	Keywords
	Print Labels
	Backslash
	Entering Characters that Are Not on the Keyboard
	Dashes in TPL TABLES
	Mathematical Operators
	Comment Entries

	Notation Used in Presenting Statement Formats
	The "INCLUDE" Feature
	Substitutions for Names, Labels and Numbers
	Putting REPLACE Statements in %INCLUDE Files
	Using Substitutions with Formulas in %INCLUDE Files

	Tables
	Defining the Structure and Content of a Table: The TABLE Statement
	Specifying Column, Row, and Wafer Dimensions
	The Nesting Operator: BY
	The Concatenate Operator: THEN
	Combining the Nesting and Concatenate Operators
	CONTROL and OBSERVATION Variables
	Adding Observation Variables to TABLE Statements
	Using Record Names and COUNT
	Weight Variables
	The TOTAL Control Variable
	Interaction of TOTAL and DEFINE

	What is a Cross Tabulation?
	Table Formatting

	Data
	Organization of Input Data Files
	Types of Files and Data
	Data Records
	Flat File Structure
	Hierarchical File Structure
	Data Types

	Treatment of Data Errors
	CONTROL Variables
	OBSERVATION Variables
	Character (ASCII) Observations
	Binary and Floating Point Observations

	Using File Lists to Process Multiple Data Files and Merge Outputs
	Processing Data from Multiple Files
	Treatment of Data Errors

	Merging Output from Multiple Runs to Create a Single Output
	Combining Cellfiles from Jobs Run on Different Types of Computers

	Piping Data to TPL TABLES (UNIX only)

	Codebook
	Describing an Input Data File
	Introduction
	General Format of the Codebook
	An Example Using Start Position

	Codebook Entries
	The BEGIN Entry
	Incomplete Hierarchy Entries
	The RECORD Entry
	For Files with a Single Record Type
	For Files with More than One Record Type

	Variable Entries
	CONTROL Variable Entries
	Default Assumptions about Values
	Fill Specifications for Values
	Display Order for Condition Values
	Listing Condition Values
	The CONDITION LABEL Clause for Automatic Generation of Formatted Labels
	Control Variable Labels
	Control Variable Notes

	OBSERVATION Variable Entries
	Types of Observation Values
	The Mask Clause
	The SHIFT DECIMAL Clause
	Errors in Character (ASCII) Observation Values
	Errors in Binary and Floating Point Observations

	CHAR Variable Entries
	Using START Position in Variable Entries

	FILLER Entries
	GROUP Entries
	Simple Groups
	Repeating Groups

	REDEFINES Entries
	Redefining Space with START Position

	The END Entry
	A Codebook Example Describing Multiple Record Types

	Codebooks for CSV and other Types of Delimited Data Files
	The BEGIN Entry
	Variable Entries
	Key Points to Note about the Codebook
	Delimited Fields that Have Blank or No Value

	Use
	Accessing the Codebook

	Select
	Selecting Subsets of the Data
	Selection Based on Data Values
	Types of Conditions
	Relationships
	Sets of Values

	Compound Conditions
	Selecting Data for a Specific Table
	Deleting Empty Columns

	Selection Using the NUMBER and PERCENT Options
	Interaction Between Multiple SELECT Statements

	Define
	Reclassifying Data by Deleting, Regrouping, and Reordering Variable Values
	Define on a Single Variable
	Description of the DEFINE Statement
	Old Variable Entries
	New Variable Entries
	Note on Value Order in Relations and Ranges
	Referencing Values Not Listed in the Codebook

	Grouping Values with DEFINE
	Reordering Values with DEFINE
	Excluding Values with DEFINE
	The COPY Option for Using Labels from the Codebook
	Tip on Using Value Lists from the Codebook
	Applications
	A Technique for Working with Alphanumeric Codes
	Tip on Using NOT in DEFINE

	Define on Multiple Variables

	Compute
	Computing New Variables
	Introduction
	Compute Entries
	Absolute Value
	Square Root
	Integer Division

	Masks for Output Formatting

	Weighting

	The Conditional Compute Statement
	Introduction
	Select Style Conditional Compute
	Condition Term
	Compute Term

	Define Style Conditional Compute
	Entries on the Right
	Computations on the Left

	 Assigning NULL Values
	NULL or Zero for OTHER
	A Technique for Computing Ratios

	Post Compute
	Computing New Variables on Final Tabulated Values
	Post Compute Entries
	MAX
	MIN
	Masks for Output Formatting

	Sample Applications
	Standard Deviation

	Using Post Computed Variables in Post Computes
	The DISPLAY Function

	The Conditional Post Compute Statement
	Introduction
	Conditional Masks and Footnotes
	Status Variables
	Testing Aggregate Properties with Status Variables

	Restrictions

	Percent
	Calculating Percents from Tabulated Values
	Introduction
	Percent Variables
	Tables without Percent Markers
	Percents in Parts of Tables
	Base Markers
	Use of Base Markers
	Nesting Percent Markers
	Tables of Original Values and Percents
	Using Percents with Different Observation Variables
	Multiple Percent Variables within a Table
	Treatment of Masks in Percents
	Summary of Rules for Producing Percents
	Checking for Percent Errors in Post Translator

	Percent Change
	Creating Table Requests with Percent Change or Numeric Change
	How Percent Change is Calculated
	Examples

	Statistics
	Statistical Functions and Statements
	MAX
	MIN
	MEDIAN and FMEDIAN
	Weighted Medians

	Quantile and Fquantile Statements
	Referencing the Quantile Variable
	The FOR EACH Option
	Choosing the ISD
	Processing Time and the ISD
	Quantile Algorithm
	Sample Quantile Tables

	MEAN
	VAR - Variance of a Sample
	VARP - Variance of Whole Population
	STDEV - Standard Deviation of a Sample
	STDEVP - Standard Deviation of Whole Population
	STDERR - Standard Error of the Mean
	Example Showing Multiple Statistics

	Ranking
	Ordering Rows Based on the Values in a Table Column
	The RANK Statement
	NULL value-entries
	OTHER value-entries
	ALL value-entries

	Nested RANK Variables
	COPY as a Shortcut for Ranking on Codebook Variables
	Keeping the Top or Bottom Ranked Rows
	Treatment of Ties

	Using OTHER to Get Residuals
	Using ALL and OTHER

	Displaying the Rank Number with RANK DISPLAY
	Treatment of Ties in the RANK DISPLAY Column
	Troubleshooting the RANK DISPLAY Column

	The NORANK Footnote

	Referencing Ranked Rows in Format Statements

	Weighting
	Creating Multipliers with the Weighting Statement
	Effect of WEIGHTING on Variables Created with other Statements
	Masks for Output Formatting

	Char
	Creating a new Character Variable
	Char Split: Divide a Character Variable

	Hierarchies
	Processing Hierarchical Files
	Introduction
	Codebook Entries

	Using Incomplete Hierarchies
	Default Treatment
	Forcing Tabulation of Incomplete Hierarchies
	Message Suppression

	How Hierarchies Interact with TPL TABLES Statements
	TABLE Statement
	SELECT Statement
	COMPUTE Statement
	Conditional Compute Statement
	POST COMPUTE Statement
	DEFINE Statement
	MEDIAN and QUANTILE Statement

	Repeating Groups
	Tabulating Variables That Repeat Within Records
	Introduction
	Effect in Hierarchical Files
	A Time Series Example
	A Survey Questionnaire Example
	The CONTINUE Option

	Describing Repeating Groups in the Codebook
	The Special Repeating Group Observation Variable

	How Repeating Groups Affect Tabulations
	Limits on the Use of Repeating Groups in Tables
	Repeating Group Variables in Computations
	Limiting Tabulations to Certain Occurrences with DEFINE Statements

	Using Dummy Repeating Groups to Associate Repetitions
	Additional Sample Tables Using Repeating Groups

	Labels
	Creating and Formatting Print Labels
	Automatic Print Labels
	Observation Variables
	Control Variables and Their Values
	Table Titles

	Creating Your Own Print Labels
	Characters Allowed in Label Strings
	Quotes and Back slashes in Labels
	Label Length
	The Null Label
	Labels with Multiple Segments

	Creating Extra Labels
	The LABEL Statement
	Dummy Variables for Extra Labels

	Control of Label Breaks
	Slashes
	Conditional Hyphens
	Hierarchy of Label Break Points

	Label Alignment
	LEFT, RIGHT and CENTER
	Alignment in Page Markers
	RIGHT with Spanning Stub Labels in Banked Tables
	Effect of CENTER when Stub is on the Right

	RIGHT IN SPACE for Right-Alignment to a Selected Point in a Label
	Using RIGHT IN SPACE to Align Footnote Symbols

	Footnote References in Labels
	Continuation Labels for Table Titles
	SPANNER Labels
	Spanning the Table with Wafer Labels
	Spanning the Table with Stub Labels
	Alignment of Spanning Stub Labels in Banked Tables
	Inserting Spanners at the Lowest Level of Nest
	Spanners for Nested Variables

	Indentation and Spacing in Labels
	Changing Label Alignment with INDENT
	Interaction of Indent with Automatic Indentation
	Indent Restrictions
	Indent with Proportional Fonts

	Spacing within Labels Using SPACE and SPACE TO
	Using SPACE TO and INDENT Together

	Links and Anchors in HTML Export
	Font Control in Labels
	Font Defaults
	Vertical Spacing

	Superscripts and Subscripts

	Masks
	Formatting the Data Cells with Masks
	Adding Decimal Points, Commas, $ and %
	Rounding Rule
	Creating Decimal Places
	Leading Zeros

	Character Strings in Masks
	Moving the Decimal Point before Display
	Replacing Rounded Digits with Zeros
	Alignment of Values
	Tip on Aligning Different Masks within Columns

	Footnote References and Cell Markers in Masks
	Treatment of Large Cell Values
	Links and Anchors in HTML Export

	TEXT Masks
	Font Control in Masks
	Sample Tables Using Masks

	Footnotes
	Footnotes and Notes for Tables
	Introduction
	Entering and Referencing Footnotes
	The SET FOOTNOTE Statement
	Entering Footnote References
	Choosing Footnote Symbols
	User-Assigned Symbols
	Default Footnote Symbols

	Display of Footnote Symbols in Tables
	Display of Footnote Symbols in Labels and Text Masks
	Display of Footnote Symbols in Masks

	Display of Footnotes at End of Table
	Order
	Indentation
	Adjusting Alignment of Footnote Text

	Footnote Symbol Level
	Built-in Footnotes
	Font for Built-in Footnote Symbols
	Forcing Automatic Numbering for Built-in Footnotes
	Conflicts with Other Footnotes in Table Cells

	Deleting Footnotes
	Using Null Strings
	Using FORMAT Statements

	Forcing Printing of Unused Footnotes with KEEP
	Example of Table with Footnotes
	The SET NOTE Statement
	Font Controls in Footnotes
	Matching the Footnote Symbol Font to the Adjacent Font
	Quick Reference Summary of Font Treatment for Symbols

	Using Footnotes in TEXT Masks
	Using SYM in Footnote Text for More Control of Symbol Format
	Using SYM with RIGHT IN SPACE to Align Footnote Symbols and Notes

	Automatic Formatting
	Default Format for Tables
	Page Format
	Table Title Format
	Heading and Column Format
	Coalescing of Labels

	Stub and Row Format
	Wafer Label Format
	Data Cell Format

	Color and Grey
	Using Color, Color Shading and Grey Shading in Tables
	General Information on Color and Grey
	Effect on Monochrome Printers
	r g b colors
	Color Chart
	Color Definitions in color.tpl
	Printing Color Separations for Tables

	The Special Color GREY
	Color Specifications for Individual Labels and Masks
	Labels
	Masks
	TEXT Masks
	Example of Color Mask in Conditional Post Compute

	Color Specifications for Footnotes and Notes
	Text
	Symbols

	Setting COLOR Defaults for Characters and Rules
	Replacing Mask Color
	Background Shading with COLOR or GREY

	Printing and Export
	Printing Tables and Converting them to Different Formats
	Introduction
	Printing
	How to Export
	Windows
	UNIX

	Autosize
	EPS Export
	PDF Export
	HTML Export
	Footnote Display at the End of a Table
	Navigation Bar
	Links and Anchors

	Autosized and Single File HTML
	Page Markers
	HTML Links and Anchors
	Links
	Using Links with Anchors

	HTML Links to External or Absolute URLs
	How to Request HTML Tables
	Windows
	UNIX

	CSV (delimited) Export
	CSV Files

	ODS and XLS Export
	Text Table Export
	Data Table Export
	PC-Axis Export (Windows only)
	PC-Axis Files

	Data Drill (Windows Only)
	Looking at the Contributors to Your Table Cells

	Statistical Tests (Windows Only)
	Statistical Testing And Display
	How Statistics Test Results are Displayed
	Templates
	Template Example
	Other Output
	Notes and Restrictions on Statistics Tests
	Undo
	Restricting Variables and Conditions in Statistics Testing
	Restricting Conditions

	Student's T-Test
	Z Test
	Anova F-Test
	F-Test of Standard Deviations
	Chi Squared Test
	Tukey HSD Test

	TPL-SQL
	Introduction to the Database Interface
	Terminology - Yes, you want to read this
	TPL-SQL Codebook
	A Simple TPL-SQL Codebook Example
	Defines Clause

	A Better Solution - Using Information from the Database
	Conversions from Database to TPL Data Types
	ODBC Data Type Conversions
	Oracle Data Type Conversions
	Sybase Data Type Conversions

	New Data Types
	Label-Code Tables
	Alternate Names - The DEFINES Clause
	Creating Subfields with Substr
	Multiple SQL Tables and Association Statements
	An Example
	More on Association Statements

	Use of %INCLUDE in Codebooks
	Codebook Abstract

	Table and Report Requests for SQL Databases
	Qualified Names
	Association Statements in Table or Report Requests
	The Processing Plan
	What is a Chain?
	How Can A SQL Table Be Chained to Itself?
	What is a "Single Hierarchical Path"?
	Why Does TPL Need a Single Hierarchical Path?
	Plan Selection
	How to Specify a Plan
	Plans and the COUNT Variable

	Optimizing Performance
	Indexing for Multi-Table Processing
	SQL Select
	Importance of Indexing and an Efficient SQL Select Statement
	Description of SQL Select
	Difference in Results between Regular Select and SQL Select

	SQL Fetch

	Summary

	Format
	The Format Language
	Introduction
	Where to Put FORMAT Statements
	Composition of FORMAT Statements
	Action Levels
	Action Conflicts
	Action Size Specifications
	What can be in the FOR Clause?

	The Format Actions
	Use of FORMAT Statements in Profile
	Profile-only Statements

	Format Language Reference
	Introduction

	ALIGN COLUMN HEAD
	ALIGN HEADING LABELS
	ALIGN HEADNOTE
	ALIGN STUB HEAD
	ALIGN STUB LABELS
	ALIGN TABLE
	ALIGN TITLE
	ALIGN WAFER LABELS
	AUTOMATIC STUB AND COLUMN WIDTHS
	BANK AFTER COLUMN
	BANK AFTER ROW
	BANK DIVIDER
	BANKS PER PAGE
	BOLD RULE
	BOTTOM RULE SPAN
	CELL MEMORY (PROFILE only)
	CODEPAGE (PROFILE only)
	Alphabet for Names
	The Character Set for Printing
	The Sort Sequence

	If You Need to Select a CODEPAGE

	COLOR Defaults
	COLOR = NO
	COLUMN WIDTH
	COMPRESS HEADING
	COUNTRY (PROFILE only)
	Separators in Masks and Decimal Constants
	Effect on Currency Formats
	Special Treatment for Currency Symbols in Output
	Date and Time Formats

	CSV DIVIDER
	CSV OUTPUT (UNIX only)
	DATA SPAN
	DATA TABLES
	ZERO FILL

	DATA TABLE OUTPUT (UNIX only)
	DELETE
	DISPLAY NAME (UNIX/Linux Profile only)
	DO NOT RANK ON VALUES
	DO NOT REPORT ROWS
	DOWN LINE
	DOWN RULE
	EDITOR (UNIX Profile only)
	Editor Name
	Editor File

	EJECT
	EJECT AFTER ROW
	EPS OUTPUT (UNIX only)
	EXTRA LEADING
	FONT
	Table Elements
	Font Names
	Font Sizes

	Adding Underline to Fonts
	Using the Symbol and Zapf Dingbats Fonts
	For Footnote Symbols
	For Labels

	Matching the Footnote Symbol Font to the Adjacent Font
	Spaces in Proportional Fonts

	FOOTNOTE COLUMNS
	FOOTNOTES ON EACH PAGE / WAFER
	FOOTNOTE SEQUENCE
	GAP IN HEADER
	HEADING SPACE
	HTML ACCESS
	HTML OUTPUT (UNIX only)
	KEEP
	KEEP DATA FOOTNOTE
	KEEP FOOTNOTE
	LINE
	MARGINS (LEFT, RIGHT, TOP, BOTTOM)
	MAXIMUM FOOTNOTE SYMBOL WIDTH
	Aligning Footnote Symbols of Varying Widths
	Aligning Footnotes to the Left

	ODS OUTPUT (UNIX only)
	PAGE LENGTH
	PAGE LENGTH AUTOMATIC
	PAGE MARKER
	Page Numbering
	ODD and EVEN
	Page Count
	Marker Location
	Multiple Page Markers
	Alignments and Spacing within Page Markers
	Other Options
	Windows Note
	UNIX Note

	4-Digit Year

	PAGE WIDTH
	PAGE WIDTH AUTOMATIC
	PAPER
	PDF OUTPUT (UNIX only)
	POSTSCRIPT
	Page and Margin Sizes
	Treatment of Footnote Symbols in PostScript
	Built-in Footnotes
	All Other Footnotes

	PRINT (UNIX only)
	PRINT COMMAND (UNIX profile only)
	RAISE FOOTNOTE SYMBOL
	RANK ON VALUES
	REPLACE COLOR
	REPLACE DIVIDE CHARACTER
	REPLACE FILLER CHARACTER
	REPLACE FOOTNOTE / NOTE
	REPLACE HEADNOTE
	REPLACE LABEL
	Replacing a Variable Label
	Replacing a Condition Value Label

	REPLACE MASK
	Keeping Data Footnotes
	Replacing Mask by Location
	Replacing Mask by Variable
	Treatment of Conflicting Masks
	Moving the Decimal Point before Display

	Replacing Masks with Text
	Interaction with REPLACE VALUE

	REPLACE MASK COLOR
	REPLACE MASK FONT
	REPLACE MASK FOONOTE
	REPLACE MASK MARKER
	REPLACE STUB CONTINUATION
	REPLACE STUB HEAD
	REPLACE TITLE
	REPLACE TITLE CONTINUATION
	REPLACE VALUE
	Interaction with VALUE in TEXT Mask

	REPLACE WAFER LABEL
	REPORT ROWS
	RETAIN ALL RULES
	RETAIN BANK DIVIDER
	RETAIN BOTTTOM RULE
	RETAIN CELLFILE
	RETAIN COLUMNS
	RETAIN DOWN RULES
	RETAIN EMPTY COLUMNS
	RETAIN EMPTY LINES
	RETAIN END RULE
	RETAIN FOOTNOTE
	RETAIN HEADER BOTTOM RULE
	RETAIN HEADER CROSS RULE
	RETAIN HEADING
	RETAIN HEADNOTE
	RETAIN LAST RULES
	RETAIN LEADING ZEROS
	RETAIN ROWS
	RETAIN RULE AFTER ROW
	RETAIN RULE AFTER STUB
	RETAIN SPANNER RULES
	RETAIN STUB
	RETAIN TABLES FILE
	RETAIN TABLES
	RETAIN TITLE
	RETAIN TOP RULE
	RETAIN WAFER
	RETAIN WAFER LABEL
	ROTATE
	ROUND
	ROW BANKS PER PAGE
	Balancing Banks of Unequal Length
	Lining Up Rows with SKIP AFTER ROW
	Wafer Labels in Banked Wafers
	Balancing Banks with Joined Wafers

	ROW SPAN
	Row Span
	Data Span

	RULE
	RULE AFTER ROW
	RULE MARGIN
	RULE PROPERTIES
	SCALE
	SET FOOTNOTE
	SET NOTE
	SHADE
	Placing Tables in Other Documents
	Unshaded
	Shaded

	How Shading Conflicts are Resolved
	Using WHITE with Shading Conflicts

	SHADE Options
	Shade Cell
	Shade Column
	Shade Data
	Shade Footnotes
	Shade Heading
	Shade Headnote
	Shade Label
	Shade Row
	Shade Stub
	Shade Stub Head
	Shade Table
	Shade Title
	Shade Top
	Shade Wafer Label

	SKIP AFTER BANKS
	SKIP AFTER ROW
	SKIP AFTER TABLE
	SKIP AFTER WAFER
	SPANNER HEADING
	STUB CONTINUATION
	STUB INCREMENT
	STUB LEFT
	STUB RIGHT
	STUB START
	STUB STOP
	STUB WIDTH
	TABLE SPACE
	TEXT TABLE OUTPUT (UNIX only)
	UNDERLINE ROW
	WAFER LABEL SPANNER
	XLS OUTPUT (UNIX only)

	Installation (Windows)
	Installing from the CD
	Installing from Download
	If You Have an Earlier Version of TPL TABLES
	.tpl Files
	Replacing a Previous Version of TPL TABLES
	Using More than One Version of TPL TABLES
	tpl.ini
	Network Installation
	Compatibility
	"Source" Files
	Codebooks and TPL Subdirectories

	Default Settings in Profile.tpl
	Networks
	Licensing Note

	Run Instructions (Windows)
	Instructions For Running TPL TABLES Under Windows
	Introduction
	TED and Other Editors
	Description of Jobs and Files
	Getting Started
	Selecting the Job Directory
	Creating and Processing Codebooks
	Codebook Abstract
	Codebook Object

	Database Codebook Source
	Producing Tables
	The TPL Subdirectory
	Subdirectory Maintenance

	Rerunning the Format Step to Make Modifications
	Interactive Edit and Export of Tables
	Customizing with PROFILE.TPL
	Encapsulated PostScript (EPS)
	ENCAPS

	Other Export Formats

	Common Error and Warning Messages
	Specifying Extra Memory
	Networks
	Licensing Note

	Scripts (Windows)
	Running Batch Jobs with TPL Scripts
	Job Script Example
	Wild Cards (* and ?) in TED, COPY, and DELETE Commands
	Running a Script in Foreground or Background
	Script Log

	Substitutions in Scripts
	Commands and Arguments
	WTPL Arguments for Starting Scripts
	Script Commands and Arguments
	Notes on Exporting
	Notes on HTML Export
	Autosized and Single File HTML
	Notes on Data Table Export
	Notes on PDF Properties
	Notes on Export to PC-Axis

	Setting the TED Export Directory in Scripts
	Export Core Name in Scripts
	TPLDIR Script Command
	Arguments for ODBC

	Installation (UNIX/Linux)
	How To Install TPL TABLES Under UNIX
	How to Stop
	Before You Start

	Installation Steps
	Detailed Description of Setup Prompts
	Where Do You Want the System Installed?
	Table Viewer
	Paper Size
	Editor
	If You Change Your Mind
	Completion of Installation

	If You Have Multiple Printers Connected to Your Computer

	Run Instructions (UNIX/Linux)
	Instructions For Running TPL TABLES Under UNIX
	General Information
	Editor
	Where to Run Jobs: Paths and Files
	How to Stop
	Note on Running in Background

	Codebook Processing
	How to Run codebook
	Codebook Command Line Arguments
	Error Handling
	Codebook Abstract
	Codebook Object

	Producing a Codebook Source with the conditions Procedure
	How to Run a conditions Request
	Command Line arguments for conditions
	Error Handling

	Producing Tables with the tables Procedure
	How to Run a Table Request
	Tables Command Line Arguments
	Table Request Processing
	Controlling the Amount of Screen Display in Foreground
	The TPL Subdirectory
	Printing and Exporting
	Preventing Prompts for Printing and Exporting

	Final Disposition of Generated Files
	Path for INCLUDE files
	Encapsulated PostScript (eps)
	CSV
	HTML
	HTML Table Arguments
	Note on Autosized and Single File HTML

	ODS and XLS
	PDF
	TXT
	DAT
	DAT Table Arguments

	Removing Subdirectories with the rmtpl Command
	How to Run rmtpl

	Modifying Tables with the rerun Procedure
	How to Run rerun
	Rerun Command Line Arguments
	If you wish, you can bypass the prompts by entering your rerun command with the following parameters:
	Rerun Processing

	Creating Your Own Environment with the profile.tpl File
	Specifying Extra Memory
	Piping Data to TPL TABLES
	Standard Piping
	Named Pipes
	Silent Use of Pipes

	Common Error and Warning Messages

	TPL Conditions (UNIX/Linux)
	What is tpl conditions?
	Control Variable Conditions
	Fixed Format Sequential File Example
	Delimited (CSV) Sequential File Example
	SQL Database Example
	Comments

	International
	Formats, Symbols and Languages
	Alphabets and Sort Order: The CODEPAGE Statement
	The COUNTRY Statement
	Specifying Right-hand Stubs with the FORMAT Statement STUB RIGHT
	Replacing Default English Text

	Keywords
	TPL TABLES Keywords

	Limits
	Summary Of Features And System Constraints
	Platforms and Operating Systems
	Minimum Hardware Configuration
	Optional Hardware
	Features/Constraints

	Utilities
	Stand-Alone Utility Programs
	FOR_WORD
	HEXLIST
	PSP -- PostScript Print Program
	TO_SHOW (Windows only)

	Character Sets
	Characters and Codepages
	EURO Symbol

	Index

	Index
	Symbols
	.
	as decimal point in mask 357

	*
	as multiplication symbol 45

	**
	as exponentiation symbol 45
	footnote symbol 377

	*/
	ending comment 45

	/
	as division symbol 45
	as unconditional label break 329–330, 331

	/*
	beginning comment 45

	\
	for entering characters not on keyboard , 323
	in labels 324
	in string 43

	\\
	for \ in labels 324
	for \ in string 43

	%. See Percent; See also Percent symbol
	arguments for Windows scripts 758
	as string in mask 359
	effect of spanner labels 340
	in masks 357
	used for name, label or number substitution 47

	+
	as addition symbol 45
	in CHAR statement 269

	||
	in CHAR statement 269

	$
	effect of spanner labels 340
	in masks 357

	<0
	footnote symbol 377, 687

	>0
	footnote symbol 377, 687

	4-digit year 591
	-b
	UNIX argument 780, 783

	-c
	UNIX argument
	in codebook run 778
	in conditions run 780

	Windows script argument 761

	: (colon) in conditional COMPUTE 171, 175
	.cp 516–517
	-d
	UNIX argument
	in conditions run 780
	in tables run 783

	Windows script argument 760

	- (dash symbol). See also Dash
	as subtraction symbol 45
	footnote symbol 377
	use in labels
	for hyphenation 331

	. (dot character in stub). See FILLER CHARACTER
	-e
	UNIX argument 783, 795

	-E
	UNIX argument for screen display 783, 785

	.eps
	under UNIX 789–793
	under Windows 750

	-f
	UNIX argument
	in tables run 783, 795

	Windows script argument 760, 762

	-h
	argument for HTML
	under UNIX 783, 791, 795, 792–800

	.htm (UNIX) 791
	-i
	include path argument
	under UNIX 783, 789

	%INCLUDE 45–51
	for formulas 50
	in database codebooks 465
	path to include file
	under UNIX 783, 789

	with REPLACE statements 49–51

	.ini file for Windows version 740
	-K
	Windows script argument 761

	.K
	under UNIX 779, 781
	under Windows 746

	-l
	Windows script argument 760

	.L
	under UNIX 778, 779
	under Windows 745

	-n
	UNIX argument 783

	-N
	argument to create new subdirectory
	under UNIX 785
	under Windows 748

	-O
	argument to use old subdirectory
	under UNIX 783, 785
	under Windows 748, 760

	.O
	under UNIX 778
	in conditions run 780

	under Windows 745

	_OBS
	created for repeating group 298–299, 304–305

	-p
	argument for path
	under Windows 760, 761

	-P
	UNIX argument
	in conditions run 780
	in tables run 783

	-P database password
	Windows script argument 760, 761, 768

	%pipe. See Piping, standard pipes
	.profile (UNIX) 776
	.ps (UNIX) 785, 788, 790
	-q
	UNIX argument
	in conditions run 780
	in tables run 783

	Windows script argument 760, 768

	-Q
	Windows script argument 760, 768

	-r
	UNIX argument 783
	Windows script argument 760

	-s
	UNIX argument 780

	-S
	UNIX argument
	in conditions run 780
	in tables run 783

	.S
	under Windows
	generated codebook source 452, 746

	-u
	Windows script argument 761

	-U
	UNIX argument
	in conditions run 780, 783
	in tables run 783

	Windows script argument 760, 761, 768

	_ (underscore character) 42
	-V
	argument for CSV output
	under UNIX 783, 795

	-w
	UNIX argument 795
	Windows script argument 762

	A
	A3 size paper 594
	A4 size paper 594
	Abbreviations for relational operators 137–138, 149, 248
	ABS built-in function 167
	Absolute value 166, 167
	Abstract of codebook
	for SQL database 465–466
	under UNIX 779
	under Windows 745

	Accessible HTML 418, 567
	Accuracy of computations 166, 816
	DIV function 168
	explanation of differences in POST COMPUTE 186

	Acrobat (Adobe) 417
	Actions
	conflicting 483
	in profile 491–492
	levels of 482
	size specification 483

	Addition operator 165
	AFTER ROW 653
	ALIGN. See also Alignment
	COLUMN HEAD 494
	HEAD 495
	HEADING 495
	HEADING LABELS 495
	interaction with alignment of stub heads 495

	HEAD LABELS 495
	HEADNOTE 496
	STUB HEAD 497
	STUB LABELS 498–499
	interaction with stub indentation 498
	interaction with STUB RIGHT 498
	no effect on SPANNER labels 498

	TABLE 500
	TITLE 501
	WAFER LABELS 502

	Alignment
	in table cells. See Mask
	markers
	defined 332
	inserting in labels 332–336
	more than one in same label 332–334

	numbers. See Mask
	of footnote symbols
	by specifying maximum width 577–581
	with RIGHT IN SPACE 390–392
	with SYM 390–392

	of footnote text 377, 577–581
	of heading labels 495
	of headnote 496
	of label above column 494
	of labels 332–338. See also ALIGN
	effect on sections 333–334
	RIGHT to a specific location 336–338

	of notes
	with RIGHT IN SPACE 390–392

	of PAGE MARKER 589
	defined 334

	of stub head 497
	of stub labels 498–499
	interaction of STUB RIGHT and CENTER 335–336

	of table title , 349
	of wafer labels , 340

	ALL
	in DEFINE statement 149, 152, 159, 162
	in format FOR clause 484
	in RANK statement 248, 252
	with residuals 257

	Alphabet. See also ASCII
	and CODEPAGE 516–517, 809
	for languages other than English 516–517, 528, 809
	for user-specified names 517, 810

	Alphanumeric codes 160
	Anchor 419
	Anchors
	in HTML Export , 350

	Anchors in HTML tables 420
	AND
	in TPL-SQL association statements 464

	AND logical operator
	in SELECT statement 142

	Anova
	F-Test 438

	ANSI 166, 181, 816
	rounding 358

	Arithmetic operators 165
	ASCENDING in RANK statement 247
	ASCII 94–95, 99, 118, 545, 815, 818, 820
	editor (Windows) 743

	Associations in TPL-SQL databases 447
	in requests 468
	with multiple fields 464

	Asterisk
	as exponentiation operator 165
	as multiplication operator 165

	Automatic
	condition labels 110

	AUTOMATIC
	COLUMN WIDTH 503–505
	STUB WIDTH 503–505

	Autosized HTML 419, 764
	Avant-Garde font 552
	Averages 180, 182, 183, 184. See also Mean

	B
	B5 size paper 594
	Background shading. See Shading
	Background (UNIX)
	running in 777, 781–782

	Background (Windows)
	running in 757

	Backslash
	in labels 324
	in string 43

	Balancing
	row banks 668
	with joined wafers 670

	BANK
	AFTER COLUMN 506
	AFTER ROW 507–508, 666
	balancing banks 507–508, 668
	lining up rows 669, 712

	DIVIDER 635
	PER PAGE 510–512
	ROW 666–671

	SKIP AFTER 709–711

	Banks 393, 506, 510–512
	and background shading 706
	column 510
	row 666–671
	balancing 507–508, 668
	balancing joined wafers 670
	changing dividers between them 635–738
	lining up rows 669, 712
	wafer label position 669

	Base markers for percents 196–218
	Batch files
	for running under Windows 754

	Batch processing
	under Windows 754

	BAT file
	for running under Windows 754

	Big value
	footnote 377

	Binary data
	codebook description 94–95, 115
	errors in 82

	Bit fields 192–194
	Blank
	as mask 359
	in observation field 119
	treatment in codebook observation 114

	Blank delimited data. See Delimited data files
	Blank label. See also Null label
	compared to null label 325

	Blank lines
	adding. See SKIP AFTER ROW; See also Slash; See also Slash

	Blanks
	in codebook names 94, 134
	in condition values
	fill specifications 104
	non-numeric defaults 102
	numeric defaults 103

	in delimited data files 132
	in rank display column 258

	BLANK = ZERO
	in codebook 114, 118–119
	for delimited data files 132

	Blue. See COLOR
	BOLD
	RULE 513
	WEIGHT 680

	Bold font. See Font
	Bold print labels with PostScript. See FONT
	BOLD RULE
	DOUBLE or SINGLE 674
	WEIGHT 674

	Bookman font 552
	BOTTOM
	MARGIN 575–576
	PAGE MARKER 586, 589
	RULE
	BOLD 649
	spanning data 649
	spanning row 649

	Bottom values. See MIN; See also RANK statement
	BOTTTOM
	RULE
	BOLD 635
	spanning data 635
	spanning row 635

	Brackets. See Parentheses
	Built-in footnotes 377
	changing or deleting 377, 380

	Built-in function
	ABS 166, 167
	SQRT 166, 167

	BY in FOR clauses
	for increments 485

	BY operator 56
	combined with THEN operator 58

	C
	CALL
	command in Windows scripts 762

	Carriage return 94
	treatment in labels 43

	Case
	ODBC database field names 459
	Sybase field names 459

	Case, treatment of 42
	cat (UNIX)
	for viewing outputs 788

	CBUILDER
	command in Windows scripts 761

	CEL2CHAR 88–89
	under UNIX 88

	Cell buffer
	messages 515
	unloads 515, 515–517

	Cellfiles
	converting
	CEL2CHAR 87–89
	CHAR2CELL 87–89

	from different computers 87–89
	from different operating systems 87–89
	in TPL subdirectory 86
	merging 85–89
	outside of TPL subdirectories 87
	retaining 86

	Cell font
	defined 387

	CELL MEMORY
	changing size 515
	under UNIX
	changing size 796

	under Windows
	changing size 753

	Cells 54
	color 408
	default alignment 360
	default font 365
	replacing for cells only 622

	font for footnote symbols 387–388
	large values 363–365
	mask
	replacing color only 411, 621

	replacing values 630–631
	replacing with text 364, 619–620
	shading background 696

	Center
	alignment of labels 332–336. See also ALIGN
	alignment of tables. See ALIGN
	mask alignment 361
	stub labels
	interaction with STUB RIGHT 335–336

	Centering
	data 360
	of labels 332–336
	page marker 589

	Centre. See Center
	Change
	Numeric 219
	Percent 219

	CHAR2CEL 88
	under UNIX 88

	Character data. See ASCII; See also CHAR variable
	Character date (TPL-SQL)
	TPL data type 456

	Character Names 43, 323
	Characters
	not on keyboard 43–44, 324
	printing
	alphabets other than English 516–517, 810

	unprintable 43–44

	Character sets 822
	and CODEPAGE 809
	EURO symbol 822
	for languages other than English 516–517, 809, 822. See also CODEPAGE

	Character variable. See CHAR variable
	CHAR statement 269
	CHAR variable
	codebook entry 98–99, 120
	format 120

	compared to control variable 120
	creating with CHAR statement 269
	in Conditional COMPUTE 171
	in DEFINE statement 150, 151, 160
	with relations 151

	in SELECT statement 139, 140
	when to use 120

	Char varying (TPL-SQL)
	TPL data type 456

	CHDIR
	command in Windows scripts 762

	Chi Squared Test 441
	CMYK
	color separations 405

	Coalescing of heading labels 394–395, 610–611
	Codebook 90–133
	abstract 90
	date and time stamping (UNIX) 779
	date and time stamping (Windows) 745
	under UNIX 779
	under Windows 745

	BEGIN entry 94
	for delimited data 128

	CHAR variable 98–99, 120
	coding format. See Format
	CONDITION LABEL clause 110–111
	condition names 108
	CONTROL variable 99
	in delimited data files 131, 132

	CONTROL variable. See Condition values
	CSV examples 130
	database 447
	database source
	under Windows 746

	delimited data files
	field numbers 130

	describing repeating groups 297
	display order 105–107
	END entry 125
	example
	flat file 34–35
	hierarchies 274–275

	FILLER entry 121
	and delimited data files 131

	FILL specifications 102, 104
	in delimited control variables 131

	general format 91–93
	hierarchical 274–275
	interactive. See also Interactive codebook generation
	interactive generation
	under Windows 90, 128

	MASK clause 115
	names
	blanks in 94, 134

	object 91
	under UNIX 779, 781
	under Windows 746

	observation variable 113
	errors 118–120
	errors in delimited data files 132

	path
	in USE statement 135

	record length 815
	REDEFINE clause 123
	redefining in delimited data file 131
	source 91
	under UNIX 777, 778, 801
	under Windows 744

	START postition 125
	TPL-SQL 447–466
	flat file example 448–449
	hierarchy example 461
	using information from the database 449

	CODEBOOK
	command in Windows scripts 761

	Codebook Builder (Windows)
	for ODBC databases 446

	Codebook processing
	under UNIX 777–779

	CODEPAGE 516–517, 528
	and COUNTRY 516, 809
	for alphabet and sort order 516–517, 809
	selecting for languages other than English 517

	Coding format. See Format
	Collapsing
	banks 709–711
	stub label into higher level of nest 396
	stub label into higher nest level 396
	tables 713–716
	wafer
	with spanning wafer labels 717

	wafers 717–718
	with spanning wafer labels 736–738

	Colon delimited data. See Delimited data files
	COLOR 399–414, 680
	chart for print colors 400
	colors.ps file 400
	color.tpl file 402, 519
	editing 402
	example 403
	installation 402

	combined with FONT 522
	DEFAULT 410, 518–520
	changing for cells only 411

	defaults 399, 403, 406, 408, 518–520
	definitions in color.tpl 402, 519
	changing 404–405
	format 402

	footnote 408–410
	symbol 408–410
	text 408

	for table cells 519
	GREY 405–406
	in conditional masks 407
	in conditional POST COMPUTE 407
	in individual labels 406
	in individual masks 406
	in individual TEXT masks 407
	in labels and masks
	interaction with COLOR defaults 410, 518

	in NOTE 408
	in SET FOOTNOTE 408–410
	in stub labels
	effect on FILLER CHARACTER 406

	in tables
	general information 399

	LABEL 411, 518–520
	LINE 411, 518–520
	names
	assigning in color.tpl 402–405
	in COLOR default statements 403, 519
	in SHADE statements 404, 691

	NO 521–522
	for monochrome printers 399, 521–522
	to replace color with font 521–522

	on monochrome printers 399, 412, 521, 691
	printers
	variation 400, 402

	replacing for mask 411, 621
	replacing with a font 521–522, 603
	r g b
	in SHADE statements 691

	r g b specifications 400
	assigning names 402–405
	in COLOR default statements 403, 518
	in color.tpl 402–405
	in SHADE statements 404

	RULE 411, 518–520
	separations
	CMYK 405

	shading 412, 691–708. See also SHADE
	conflicts 694–696
	in Encapsulated PostScript 694–696

	SYMBOL 408, 411, 518–520
	underlining 519
	WHITE
	in Encapsulated PostScript 694–696
	with shading conflicts 695–696

	colors.ps file 400
	color.tpl file. See COLOR
	COLOUR. See COLOR
	Column
	default divider 394
	default width 394
	empty 143–144
	margins 678
	minimum width 523
	shading background 698
	warning when too narrow
	under UNIX 800
	under Windows 752

	COLUMN
	DELETE 639
	DELETE EMPTY 642
	RETAIN 639
	RETAIN EMPTY 642
	WIDTH 523
	WIDTH AUTOMATIC
	adjusting to available space 503–505

	Column divider
	replacing or removing. See DELETE DOWN RULES; See also REPLACE DIVIDE CHARACTER

	Column Dividers 640
	Column head
	defined 494

	COLUMN HEAD
	ALIGN 494

	COLUMNS
	FOOTNOTE 557–559

	Combining. See Joining
	Comma
	expression separator in TABLE statement 53
	in observation values 114
	replacing with non-US character 529
	suppressing in data 529
	use in mask 357

	Comma delimited data. See Delimited data files
	Command line. See Run
	Comma separated data. See Delimited data files
	Comments 45
	in codebook source
	treatment in tpl conditions (UNIX) 808

	restriction in USE statement 135

	Compound conditions
	in conditional COMPUTE 171
	in SELECT statement 142

	Compress
	table size overall 683–685
	table vertically 732–733

	COMPRESS HEADING 524–527, 565–566
	and alignment of boxes 526, 527

	Computation error footnote 181
	Computation errors 181
	in conditional COMPUTE 172
	in DEFINE on multiple variables 162

	Computations
	dependent on conditions. See Conditional COMPUTE; See also Conditional POST COMPUTE

	COMPUTE statement 165–179
	hierarchical file 287–288
	weighting 169–170

	CON. See Control variable
	Concatenation in TABLE statement 57. See also THEN concatenate operator
	Conditional breaks in labels 331
	Conditional COMPUTE 170–179
	based on sets of values 171
	comparison of the two types 170
	DEFINE style 174
	depending on a single variable 174
	depending on multiple variables 171
	result when no conditions satisfied 173
	SELECT style 171
	term evaluation order 172

	Conditional footnoting 189–191
	Conditional masks 189–191
	Conditional POST COMPUTE 187–195
	CONDITION LABEL
	codebook clause 110–111

	Condition labels
	automatic 110
	from SQL label-code tables 457

	Condition names
	in codebook 108
	in DEFINE statement 148, 151, 152
	in RANK statement 247

	conditions procedure (UNIX) 779. See also tpl conditions; See also tpl conditions
	Condition test
	in DEFINE statement 162

	Condition values
	completing and updating list (UNIX) 779, 801–808
	count in codebook abstract 745
	from SQL label-code tables 457
	generating list from SQL database 449
	in DEFINE statement 148, 151–154
	in RANK statement 247
	limit 815
	listing 107–110
	updating list for database (Windows) 761

	Confidence as Percent 432
	CONTINUATION
	replacing in title 629
	STUB
	indent for multi-line labels 725
	label for multi-page tables 625–626

	Continued
	in table title , 339

	CONTINUE option
	in repeating groups 296–297, 297–298

	Control date (TPL-SQL)
	TPL data type 456

	Control variable
	codebook entry 99
	format 100
	format for copying to DEFINE 156–157
	getting conditions from SQL data 449

	compared to CHAR variable 99, 120
	default data storage assumptions 102–103
	errors in 81
	in delimited data files 131, 132
	labels 111–112
	listing values 107–110
	in DEFINE format with IF 101, 156–157

	types of values 99
	value assumptions 102
	non-numeric defaults 102
	numeric defaults 103

	control viariables
	in table statement 64

	Con varying (TPL-SQL)
	TPL data type 455

	COPY
	command in Windows scripts 762
	wild cards 756

	COPY option
	in DEFINE statement 155–156
	in RANK statement 252–253

	count
	in table statement 68

	Count
	condition values in codebook abstract 745

	COUNT
	defining on to create a label 329
	in hierarchical files 286
	in repeating groups 292, 304, 305
	in SQL databases 474
	in TABLE statement 68
	pages in PAGE MARKER 588

	COUNTRY 811
	effect on currency symbols and format 530, 811
	effect on date and time formats 532, 811
	effect on decimal point 529, 811
	effect on PAGE MARKER 590
	effect on thousands separator 529, 811

	Country.tpl
	for 4-digit year 591
	for non-US standards 528–532

	Courier font 552
	Cross tabulation 30. See also TABLE statement
	Cross Tabulation 77
	CSV
	OUTPUT
	under UNIX 788

	CSV data. See Delimited data files
	CSV DIVIDER statement 533
	CSV OUTPUT statement (UNIX) 534
	Currency formats
	non-US 530–532

	Currency symbols
	non-US 530–532

	D
	Dash 44
	EMPTY footnote symbol 378
	in PostScript , 44–51

	DASH 680
	Data 79–89
	alignment using masks 356, 360–362
	binary 82, 115
	delimited 128
	errors 81–82
	in multiple input files 85

	file list 83–89
	merging outputs 85–87
	multiple input files 83–85

	floating point 82, 115
	hierarchical file 270–290
	in different directories 82
	input types 81
	in repeating group structure 291–319
	in SQL databases 815
	conversion to TPL data types 452
	TPL data types for SQL only 455–457

	multiple input files 83–85
	on different computers 82, 87–89
	on different drives 82, 84–89
	piping (UNIX) 89, 797–799. See also Piping
	record 79
	representation types 81
	shading background 699
	types in codebook 98–99
	types of observation variables 114–115

	DATA
	ERROR 167
	codebook clause 119

	SPAN 534, 672
	for rules after rows 653

	SPANNER. See Spanner labels; See also WAFER LABEL as SPANNER
	TABLES 427, 480
	and empty lines 427
	ZERO FILL 427

	Database interface 446–479. See also TPL-SQL
	Data Drilling 430
	DATA ERROR = NULL
	in codebook 114
	for delimited data files 132

	Data file
	as output with DATA TABLES 427

	DATA RULE MARGIN 678
	DATA SPAN 680
	Date
	displaying 4-digit year 591
	effect of COUNTRY statement 532, 811
	substituting with REPLACE statement 48

	DATE
	in PAGE MARKER 589

	Date stamping
	of codebook abstract
	under UNIX 779
	under Windows 745

	Deciles 230
	Decimal
	places 358, 360, 618
	point
	in masks 357
	in observation values 114
	replacing with non-US character 529

	points
	displaying 358, 360, 618
	shifting left or right 360, 618

	printing. See Mask
	shifting 169
	in codebook 116–118

	Decimal point
	effect of COUNTRY statement 811
	shifting
	in COMPUTE statement 169, 172

	zeros to left 359, 651

	DEFAULT COLOR 410, 518
	for table cells only 411, 519

	Define
	on multiple variables 223

	Defines clause (TPL-SQL) 449, 458–460
	for duplicate names 459

	DEFINE statement 147–164
	ALL 149, 152, 162
	condition name 151
	condition test 162
	condition value 151–152
	COPY option 155
	EACH 155–156
	filters 161
	NULL 149, 152
	on a single variable 148
	on multiple variables 161
	OTHER 149, 152, 158, 159, 162
	range of values 151
	sets of values 162
	using labels from codebook 155–156, 156–157
	using value lists from codebook 156–157
	with hierarchical file 290

	DEFINE style
	conditional COMPUTE 174

	DELETE. See RETAIN
	commands in Windows Script
	wild cards 756

	EMPTY COLUMNS
	use with SELECT statement 143–144

	LEADING ZEROS EXCEPT FIRST
	interaction with rules 651
	interaction with SPANNER labels 651

	STUB 731

	Deleting footnotes 380
	Deleting records. See DEFINE statement; See also SELECT statement
	Deleting values
	with DEFINE statement 155

	Delimited data files
	codebooks for 128
	field sizes 131
	header records 129
	hierarchies 131
	quotes around data values 129
	redefining variables 131
	repeating groups 131
	types of delimiters 128, 129
	variable entries 130

	exporting 424
	choosing the divider (delimiter) 533
	TED arguments in Windows scripts 763
	under UNIX 783, 790, 795
	under Windows 751, 763

	Delimited fields
	with blank or no value 132

	DESCENDING in RANK statement 247
	Desktop publishing. See Encapsulated PostScript
	Disk space 814
	Display. See also TED
	mask 356–368
	order of codebook variables 105–107

	DISPLAY
	AS LISTED 105, 153
	AS SORTED 106, 139, 153, 154
	with COPY in DEFINE 155

	function in POST COMPUTE 186
	NUMERIC 106, 154
	PostScript tables
	NAME (UNIX) 540, 786
	Windows. See TED

	DISPLAY DECIMAL clause
	and masks 360, 615, 618

	Divide character 394
	Dividers
	Column 640

	Division by zero 167
	DIV operator 168
	limits on accuracy 168

	Dollar sign
	effect of spanner labels 340
	in mask 357

	DOT 680
	Dot leader in stub 606. See also FILLER CHARACTER
	DOUBLE 680
	Double lines
	after rows 653
	for lines between columns 640–641

	Double-space
	between data rows 711

	DOWN in RANK statement 247
	Drill
	Data 430

	Dummy labels 150
	Dummy variables
	compared to LABEL variables 328
	for extra labels 328–329

	Duplicate names 98–99, 101

	E
	EACH
	use in DEFINE 155–156

	Edit
	PostScript tables
	under Windows 747, 749

	profile
	under UNIX 796
	under Windows 749

	Editor
	for codebook 90
	for FORMAT request 481
	for table request 52

	EDITOR 545
	FILE 545
	NAME 545

	Editor (UNIX) 776
	for viewing outputs 788
	selection at installation time 774

	Editor (Windows) 545, 743–744
	TED 743

	Edit/Print button (Windows) 747, 749
	EJECT 546, 547–548
	AFTER ROW 547
	row banking 666

	AFTER TABLE 546, 713
	AFTER WAFER 546

	EMPTY
	footnote 377

	Empty cells. See EMPTY footnote; See also Empty lines
	Empty lines
	defined 643
	retaining 643

	Encapsulated PostScript
	identifying pages with PAGE MARKER 590–591
	in desktop publishing
	color separations 405

	requesting
	under UNIX 789–793
	under Windows 750

	use with desktop publishing software
	under UNIX 789
	under Windows 750

	with shading 694

	encaps (UNIX)
	for encapsulating PostScript tables 789

	ENCAPS (Windows)
	for encapsulating PostScript tables 750

	END
	codebook entry 125

	English text
	built-in
	replacing in other languages 811

	Environment. See Profile
	Environment Variables
	TPL_INI 741
	TPLPATH7.0 741

	eps. See Encapsulated PostScript
	EPS. See Encapsulated PostScript
	OUTPUT
	under UNIX 548, 788

	Error
	common messages
	under UNIX 799–800
	under Windows 751–753

	displayed in output file
	under UNIX 784

	finding in data 818
	in calculations 167–168, 181
	in codebook observation variables 114, 118–120
	in codebook processing
	under UNIX 778

	in conditions run
	under UNIX 780

	in control variables 81
	in data 81–82
	in delimited data 131
	blank or nothing in value 132

	in hierarchy 275, 276
	in observation variables 82
	in table run
	under UNIX 784

	SQL database field not found 459
	transferring to editor for correction
	under UNIX 776
	under Windows 743–744

	ERROR footnote 377
	ETED 762
	EURO 822
	Evaluated to
	TPL-SQL database codebook 451
	TPL data types for SQL only 455–457
	using label-code SQL tables 457–458

	Evaluation order 166
	in conditional COMPUTE 172

	Excluding values
	with DEFINE statement 155
	with SELECT statement 143

	Exponential notation 45
	Exponentiation operator 165
	Export
	CSV 424
	CSV files (UNIX) 783, 790, 795
	DATA TABLE 427
	Delimited 424
	EPS 416
	EPS files (UNIX) 789
	file types. See also Encapsulated PostScript
	CSV (delimited) 424
	HTML 417
	PC-Axis 427
	PDF 417

	from TED (Windows) 749
	HTML 417
	HTML files (UNIX) 790
	in Windows scripts 762
	core name for files 766
	export directory 765

	ODS 425
	PC-Axis 428
	PDF 417
	prompts (UNIX) 786
	TEXT TABLE 425
	Unix
	control

	XLS 425

	EXTRA LEADING 549–550
	Extra memory (UNIX) 796
	for cells 796

	Extra memory (Windows) 753
	for cells 753

	F
	Field 98. See also Variable
	in SQL database 447, 449
	SQL 447

	Field numbers
	delimited data file codebooks 130

	FIFO. See Piping, named pipes
	File. See also Data
	displaying in hexidecimal format 818–819
	piping (UNIX) 89
	structure
	hierarchical 97. See also Hierarchical file
	multiple data sets 37, 82–89
	multiple record types 97–98
	single level (flat) 38, 96
	single level (flat) in database 448–449

	File list 83
	merging outputs 85–89
	multiple input files 83–89
	Pause in 84, 85, 86

	Files
	for substitutions in requests 45–51
	%INCLUDE 45–51
	used in job
	recorded in output file (UNIX) 786
	recorded in OUTPUT file (Windows) 748

	FILL
	codebook fields 102–103, 104

	FILLER
	CHARACTER 606
	specifying number of dots 606
	with color in stub label 406

	codebook entry 121
	and delimited data files 131

	Fill specifications
	control variables 104, 131

	Filtering data. See DEFINE statement; See also SELECT statement
	with DEFINE 155
	with SELECT 136–146

	Flat file 80, 96
	SQL database 448–449

	Floating point data 115
	errors in 82

	FMEDIAN Statement 225, 227
	Font 551–556
	bold 352–354
	defaults 353
	footnote symbols
	effect on width 577

	fractional using SCALE 683
	global specifications 551–556
	italic 352–354
	profile defaults 553
	proportional 556
	replacing for cells 622
	replacing for mask 622
	resetting 352
	size 553–554
	scaling down or up 683

	use in labels 351–354
	defaults 353
	vertical spacing 354

	use of MATCH 556
	varying in mask 366
	with underlining 352–354

	FONT 551–556
	as replacement for COLOR 521–522
	combined with COLOR 522
	DEFAULT 365
	replacing for cells only 551, 622

	FOOTNOTE SYMBOL 555–556
	in masks 365–366
	location in mask 366
	with underlining 554

	Footnote 369–392. See also NOTE
	- 377, 378
	** 377, 378
	<0 377, 687
	>0 377, 378
	adjusting the level of the symbol 600
	alignment in mask 361
	assigning symbols 372
	built-in 377, 687
	changing built-in English text 811
	changing or deleting built-in 377, 380, 687
	color. See COLOR
	compared to NOTE 369
	conditional 189–195
	Confidence as Percent 432
	default symbols 372
	alignment in cells 375
	order of number assignments 372

	deleting 380
	display at end of table 376
	adjusting alignment 577–581

	display of symbol in labels 373
	display of symbol in mask 373–375
	EMPTY 377
	ERROR 377
	in conditional COMPUTE 171
	indentation 376, 577–581
	in labels 338–339
	in stub continuation 626
	in table cells 380
	in title continuation 560, 629
	justification in columns 557–559
	effect of blank lines 557
	preventing with SPACE TO 558–559

	keeping unused 381
	lowering the symbol 600
	nf 377
	NORANK 260, 377, 379
	number
	as footnote identifier 371
	as symbol 372

	order 376, 561
	raising the symbol 600
	restrictions 688
	retaining when mask is replaced 189, 572, 615
	SEE_END 377
	See footnotes at end of table 378
	shading background 700
	SMALL 377
	SMALL_NEG 377, 379, 687
	symbol
	choosing 372
	in TEXT masks 388

	symbol alignment 361, 374–375
	for symbols of different widths , 338
	with RIGHT IN SPACE 390–392, 338
	with SYM 390–392

	symbol font
	matching 374

	symbols
	changing color 389–390
	changing indent 389, 577–581
	changing placement 389–392
	formatting with the text 389–392
	in TEXT masks 365
	referencing with SYM 389–392
	removing parentheses 365

	Template 432
	TEXT
	alignment 377
	as label 320

	with no symbol 686, 689–690. See also NOTE
	ZERO 378, 379

	FOOTNOTE. See also NOTE
	COLUMNS 557–559
	DELETE 573
	EACH PAGE 376, 560
	EACH WAFER 560
	KEEP 573
	MAXIMUM SYMBOL WIDTH 577–581
	ON EACH PAGE 560
	ON EACH WAFER 560
	ON LAST PAGE 560
	REPLACE IN MASK 623
	RETAIN 573, 645
	SEQUENCE 376, 561
	SET 370, 686–688
	SYMBOL FONT 555–556

	Footnotes
	and percents 217

	FOR clause 481, 483–485
	use of ranges and increments 484–485
	with multiple variables and conditions 484

	FOR EACH clause in quantiles 231
	Foreign language 516–517, 809–811
	Format
	changing without reprocessing data. See Format, changing with rerun; See also Format request; See also FORMAT statements
	changing with rerun
	under UNIX 793, 795–796
	under Windows 748

	codebook
	BEGIN entry 94, 128
	CHAR variable entry 120
	CONTROL variable entry 100
	delimited data files 128
	END entry 125
	general 91–93
	GROUP variable entry 122, 123
	OBSERVATION variable entry 113
	RECORD 96
	REDEFINE entry 123

	color definitions 402
	COMPUTE statement 165
	conditional COMPUTE statement 171, 175
	conditional POST COMPUTE 188
	DEFINE statement
	on a single variable 148
	on multiple variables 161

	FOOTNOTE reference 371
	label indent 345
	LABEL statement 326
	MEAN statement 240
	MEDIAN statement 227
	PAGE MARKER 586
	PERCENT statement 197
	QUANTILE statement 229
	RANK statement 247
	SELECT statement 136, 137, 145
	SET FOOTNOTE 370
	SET NOTE 386
	STDERR statement 244
	STDEVP statement 243
	STDEV statement 242
	TABLE statement 53
	USE statement 134
	VARP statement 242
	VAR statement 241
	WEIGHTING statement 262

	Format request 32, 481
	FORMAT statements
	actions listed by type 485–492
	composition 481
	FOR clause 483
	language reference guide 493–550, 551–614
	profile-only 491
	use in profile 491–492

	Formula
	replacing variables in 50

	FOR_WORD 817, 820
	Four digit year
	display 591

	FQUANTILE 229
	Algorithm 235
	Weighted 230

	FQUANTILE Statement 225
	From data. See Get conditions (TPL-SQL)
	F-Test
	Anova 438
	Standard Deviation 440

	G
	Get conditions (TPL-SQL)
	from data 449
	using label-code SQL tables 457–458

	Ghostscript 417
	GRAY. See GREY; See also GREY
	Green. See COLOR
	GREY
	color in tables 405
	ignored in color.tpl file 402, 406
	shading 399, 405–406, 412, 691–708. See also SHADE
	conflicts 694–696
	in Encapsulated PostScript 694–696

	Grouping tables on page. See SKIP AFTER TABLE
	Grouping values
	in DEFINE statement 147–150, 154
	in RANK statement 246

	GROUP variable. See also Repeating groups
	describing in codebook 99, 121
	repeating 122, 291–319
	simple 121

	H
	Hardware
	minimum 814
	optional 814

	HEAD. See Heading
	header record in delimited files 129

	Heading
	label alignment. See ALIGN
	minimum vertical space 524, 565
	shading background 700
	SPANNER labels 719–724
	vertical compression 524–527, 565–566

	Heading expression 53
	Heading labels 394–395
	HEADING SPACE 562, 565
	HEADNOTE
	ALIGN 496
	as wafer label position 736
	REPLACE 608
	shading background 701

	Helvetica font 552
	hexadecimal 818
	HEXLIST 818
	Hierarchical files 80, 97, 97–98, 270–290
	codebook 126, 274–275
	definition 270
	effect on COMPUTE statement 287–288
	effect on DEFINE statement 290
	effect on MEDIAN statement 290
	effect on POST COMPUTE statement 288–290
	effect on QUANTILE statement 290
	effect on SELECT statement 287
	errors 272
	file structure 272
	incomplete 275–278
	in multiple files 84
	interaction with repeating groups 270, 280
	LEVEL number codebook clause 97–98
	marker 271, 272
	MARKER 273
	meaning of COUNT 286
	missing levels in 272, 275–278
	with SELECT number 145
	with SELECT percent 145
	with SELECT statement 136

	Hierarchical processing 278–279
	Hierarchical unit 136, 271
	incomplete 275
	in multiple files 84

	Hierarchies. See also Hierarchical files
	database 447
	codebook 461–464

	incomplete
	controlling treatment in codebook 95, 277
	controlling treatment in table request 96, 277
	described 275–276
	effect on SELECT statement 278
	effect on tabulation 278
	REPORT 95
	suppressing messages 95, 278
	TABULATE 95

	interaction with TPL statements 278–290
	missing levels in 95
	missing middle levels 277
	processing 270–290
	TPL-SQL 447
	hierarchical path 470–471, 471–472

	Hourglass
	running under UNIX 784

	HSD
	Tukey Test 443

	htm file 418
	HTML
	Anchor 419
	Link 419
	OUTPUT
	under UNIX 570, 788

	under Windows 751

	HTML ACCESS statement 418, 567
	when data cell has link 421

	HTML export
	Links and Anchors in labels 350
	Links and Anchors in masks 363

	HTML tables 417
	anchors 420
	autosized for multiple pages 419, 764
	browser differences 417
	export from Windows script 763, 765, 766
	how to request 424
	in spreadsheets 417
	links 420
	to external or absolute URLs 423

	navigation bar for multiple pages 418
	page markers 419
	pagination 418
	Section 508 accessible 418, 567
	single file for multiple pages 419, 764
	under UNIX 790, 791
	navigation bar for multiple pages 791, 792

	Hyperlink , 350
	hyperlinks
	Acrobat 3

	Hyperlinks in HTML tables 420
	Hyphen
	use in labels 331

	Hyphenation of labels 331

	I
	Identifiers 42
	IF 137
	in codebook condition value list 100
	in conditional COMPUTE 171, 175

	include 45
	substitutions in formulas 47

	INCLUDE. See %INCLUDE; See also %INCLUDE
	path to include file
	under UNIX 783, 789

	Incomplete hierarchies 275–278. See also Hierarchies
	error messages 276

	INCREMENT
	STUB 726

	Increments
	in FOR clauses 485

	Indent
	default units 345, 348
	footnotes at end of table 376, 577–581
	interaction with SPACE TO
	for multiline labels 349

	interaction with stub increment and continuation 347
	positive and negative 345
	restrictions 347
	rules for use 346
	use in labels 345–348
	use with PostScript 347
	with proportional fonts 347–348

	Indexing SQL fields 462, 475
	Installation. See also Setup
	of color.tpl file 402
	under UNIX 770–775
	changing settings 774

	under Windows 739–742
	compatibility with previous versions 741
	more than one version 740
	profile settings for defaults 742
	replacing an earlier version 740

	utiltity programs 817

	Integer division 168. See also DIV operator
	limits on accuracy 168

	Interactive
	codebook generation
	for ODBC databases (Windows) 446
	under Windows 90

	Interface
	to SQL databases 446–479

	International formats, symbols and languages 809–811
	Intersection operator 192–194
	Interval Size Designator 232–240
	I operator 192–194
	ISD 232–240
	Italic print labels with PostScript. See Font

	J
	JOB
	number in PAGE MARKER 589

	Job Directory (Windows) 744
	Joining banks on the same page. See BANKS PER PAGE; See also SKIP AFTER BANKS
	Joining tables to look like a single table. See SKIP AFTER TABLE
	Joining wafers on the same page. See SKIP AFTER WAFER
	Justification
	of footnote text. See Footnote; See also FOOTNOTE COLUMNS
	of table to width of page. See AUTOMATIC COLUMN WIDTH; See also AUTOMATIC STUB WIDTH

	K
	KEEP. See RETAIN
	DATA FOOTNOTE 572, 615
	FOOTNOTE 573. See also NOTE
	in RANK statement 247, 253–255
	unused footnotes 381

	Keywords 43
	definition 43
	list of 812

	Kghostview (Linux) 540

	L
	Label
	substitution for with REPLACE statement
	in table request 47–51

	LABEL
	REPLACE 609–614
	for a condition value 611
	for a variable 609

	WAFER 632, 633
	in row-banked tables 669

	Label-code SQL tables 457–458
	LABEL COLOR 411, 518–520
	LABEL MEMORY (UNIX) 796
	LABEL MEMORY (Windows) 753
	Labels 43, 320–355
	alignment of 332–338. See also ALIGN; See also Alignment of labels
	automatic 320, 321
	breaking with slashes 329–330, 331
	built-in
	replacing English text 811

	changing fonts in 351–354
	characters in 323, 324
	coalescing in heading 394–395, 610–611
	collapsing in stub 396
	color. See COLOR
	COMPUTE 165
	default 321–322
	dummy variables 328–329
	compared to LABEL variables 328

	entering backslashes in 324
	entering characters not on keyboard 323–324
	FONT control with PostScript 551–556
	font resetting in 352
	footnote texts 320
	heading
	coalescing 394–395, 610–611

	HTML links and anchors 420
	hyphen for conditional breaks 331
	indent specification 345–348
	long 323, 329
	maximum size 324
	multi-line 329–331
	multiple segments 326
	null 325
	collapsing into higher nest level 396

	null strings as 325
	quotes and backslashes in 324
	result when omitted 321
	rules for dividing 331
	sections
	for alignment purposes 333–334, 336
	recommendation for alignment 334

	shading background 702
	skipping space with SPACE 348–349
	SPACE 348
	SPACE TO 348
	spanner 340
	in heading 719–724

	stub
	collapsing into higher nest level 396

	stub continuation
	for multi-page tables 625–626

	superscripts and subscripts 354–355
	suppressing 325
	table titles 320
	tabs in 323
	tabs with SPACE TO 348–349. See also SPACE TO
	TEXT masks 320
	title continuation 339
	for multi-page tables 629

	treatment of carriage returns in 323
	treatment of <Enter> in 323
	use of footnotes in 338–339
	WEIGHTING 262
	where used 321

	LABEL statement 326. See also LABEL variable
	format 326

	LABEL variable. See also LABEL statement
	as substitute for TOTAL 71, 326, 328
	in TABLE statement 71
	replacing label in format request 326
	use in TABLE statement 326–328

	Landscape 664
	Largest value. See MAX; See also RANK statement
	Large values 363–365
	warning when column too narrow
	under UNIX 800
	under Windows 752

	Leader in stub. See FILLER CHARACTER
	LEADING 549–550
	Leading zeros
	deletion of 359, 651
	display of 359

	Left
	alignment of labels 332. See also ALIGN
	alignment of tables. See ALIGN

	LEFT
	MARGIN 575–576
	STUB 727

	LEFT BLANK FILL
	control variables 104

	LEFT ZERO FILL
	control variables 104

	LEGAL
	size paper 594

	LENGTH
	PAGE 582–583

	LETTER
	size paper 594

	LEVEL number 270–274
	codebook clause 97

	Levels
	of FORMAT actions 482

	Limits 815–816
	LINE. See RULE
	Line break. See Slash
	LINE COLOR 411, 518–520
	Lines. See also Rules
	adjusting thickness. See BANK DIVIDER; See also BOLD RULE; See also BOTTOM RULE; See also DOWN RULE; See also RULE; See also RULE AFTER ROW
	color. See COLOR

	LINES. See also RULES
	retaining when empty of data 643

	Line spacing , 329
	Link 419
	Links
	in HTML Export , 350

	Links in HTML tables 420
	Linux. See UNIX version
	LISTED. See Display order
	Logical connectors 136
	Lp 599
	lp (UNIX) 775
	for printing outputs 788

	ls (UNIX)
	to find TPL subdirectories 785

	M
	MARGIN 575–576
	minimum 576

	Margins
	default 393
	for alternate pages with TED 575
	in columns 678

	Marker
	Hierarchical file 272
	Mask 624

	MARKER
	codebook clause 97
	PAGE 586–591
	location 588–589

	Mask 356–368
	$ treatment 357
	alignment 356, 360–362
	footnote symbol only 361

	alignment from row to row 361–362
	with PostScript proportional fonts 362

	alignment with footnotes 361
	blank 359
	character string only 359
	alignment 361

	codebook clause 115
	color. See COLOR
	commas 357
	decimal points 357
	default 398
	effect of COUNTRY statement 529
	HTML links and anchors 420
	in COMPUTE statement 168–169
	in conditional POST COMPUTE 189–191
	in percents 217
	in POST COMPUTE 182
	in WEIGHTING statement 268
	Marker 624
	placement in codebook entry 113
	REPLACE MASK COLOR 411, 621
	replacing color only 411, 621
	replacing FONT only 622
	results when specifications conflict 618
	rounding 360
	strings in 359
	TEXT 364, 619–620
	color. See COLOR
	with background shading 699

	% treatment 357
	with multiple fonts 366

	MASK
	REPLACE 615–620
	REPLACE FOOTNOTE 623
	REPLACE MASK FONT 622
	REPLACE WITH TEXT 619–620
	interaction with REPLACE VALUE 620

	MATCH
	font specification 556

	MAXIMUM
	automatic column width 503
	automatic stub width 503
	FOOTNOTE SYMBOL WIDTH 577–581

	MAX Operator 181–182, 225, 226
	MEAN 225, 240
	MEDIAN statement 225, 227
	hierarchical file 290
	weighting 228–229

	MEDIAN Statement 225
	Memory
	for cells 515
	when extra memory is beneficial 515

	Menus
	for running under Windows 743

	MERGE
	in file list 86

	Merging outputs 85–89
	MIN operator 182, 225, 226
	Minus sign 165
	MKDIR
	command in Windows scripts 762

	mknod. See Piping, named pipes, creating
	Money (TPL-SQL)
	TPL data type 456

	more (UNIX)
	for viewing outputs 788

	MOVE
	command in Windows scripts 762

	Moving the system
	by installing under UNIX 770

	Multiple
	HTML OUTPUT 570

	Multiple banks on page. See BANKS PER PAGE; See also ROW BANKS PER PAGE; See also SKIP AFTER BANKS
	Multiple record types 97–98
	Multiple tables on page. See SKIP AFTER TABLE
	Multiple wafers on page. See SKIP AFTER WAFER
	Multiplication operator 165

	N
	Name
	substitution for with REPLACE statement 47–51

	Named pipes. See also Piping
	for input under UNIX 797–799

	Names
	uniqueness 167
	in TPL-SQL codebooks 459

	Narrow column warning
	under UNIX 800
	under Windows 752

	Narrow tables
	sections side by side on page 666–671

	Navigation
	HTML OUTPUT 570, 571

	Navigation bar
	in HTML tables 418
	under UNIX 791, 792

	Nested observation variables 67
	Nested repeating groups 298
	Nested with
	meaning 56

	Nesting in TABLE statement 56. See also BY operator
	Network Installation 741
	Networks
	for PCs 742, 753
	UNIX
	treatment of profile 796

	New Century Schoolbook font 552
	nf footnote 363–365, 377
	Nf footnote 687, 688
	NO_FIT footnote 377
	Non-parametric
	Chi Squared 441

	NORANK footnote 260–261, 377, 379
	NORMAL
	in label
	after superscript or subscript 354–355

	NOTE 385, 689–690. See also Footnote; See also FOOTNOTE; See also HEADNOTE
	alignment
	with RIGHT IN SPACE 390–392

	applying to selected tables 689
	compared to FOOTNOTE 369
	compared to use of KEEP FOOTNOTE 381, 385, 689
	effect of FOOTNOTES EACH PAGE 560
	effect of FOOTNOTE SEQUENCE 561
	restricting to particular tables 689

	Notes
	restrictions 690

	Notify
	for UNIX jobs in background 782–783

	Not logical operator
	in SELECT statement 136, 137

	NOT logical operator
	in DEFINE statement 151, 160

	NULL
	IF OTHER 178
	in conditional POST COMPUTE 188
	in DEFINE statement 149, 152
	in RANK ON VALUES 601
	in RANK statement 248, 252

	Null label 325
	collapsing in stub 396

	NULL value
	assigning and testing in conditional compute 176–177
	effect on averages 176
	effect on COMPUTE statement 167
	effect on conditional COMPUTE 177
	effect on DEFINE 177
	effect on MIN 227
	effect on POST COMPUTE 181, 191, 195
	effect on SELECT 177
	efficiency considerations 178
	in observation field 119
	in delimited data file 132

	in REPLACE VALUE statement 630–631
	to prevent divide errors 176

	Number
	substitution for with REPLACE statement 47–51

	NUMBER
	page 587

	Numbers
	effect of COUNTRY statement 529
	format for printing. See Mask

	Numeric
	Change 219

	Numeric literals 166
	in SELECT statement 138

	O
	OBS. See Observation variable
	Obs date (TPL-SQL)
	TPL data type 456–457
	with time unit 456

	Observation variable. See also TABLE statement
	codebook 113
	codebook entry
	format 113

	created for repeating group 291, 298–299, 304–305
	data types 114–115
	errors 118–120
	in delimited data files 132

	errors in
	binary and float 82
	character 82

	for weighted tabulations 71
	in delimited data files 132
	nested with another observation variable 67
	restrictions and guidelines 67–68
	types of values 114–115

	observation viariables
	in table statement 64

	Obs money (TPL-SQL)
	TPL data type 456

	Obs varying (TPL-SQL)
	TPL data type 455

	ODBC (Windows) 446–479. See also TPL-SQL
	script arguments 768

	Offset
	from column dividers 678

	Operating instructions. See Run instructions
	Operating systems 814
	Operators
	arithmetic 165
	relational
	in SELECT statement 137–138

	Oracle 446–479
	data types 453, 454

	Ordering rows
	with RANK 246–261

	Order of evaluation for compound conditions 142
	Order of footnotes 376, 561
	Order statistics
	sample request 236–245

	OR logical operator
	in SELECT statement 142

	OTHER
	in conditional COMPUTE 171, 173
	in conditional POSTCOMPUTE 188
	in DEFINE statement 149, 152, 158, 162
	in RANK statement 248, 252
	for residuals 257

	Other Output 433
	Output
	Report Rows 633

	output file (UNIX)
	date and time stamping 786
	for error review 784
	in TPL subdirectory 785
	names of files used in jobs 786

	OUTPUT file (Windows) 748
	date and time stamping 748
	names of files used in job 748

	Outputs. See also Run instructions
	merging 83

	P
	Pad
	codebook fields
	control variables 102–103, 131

	Padding. See FILL
	Page
	count 588, 586–591
	numbering 587, 586–591
	size
	setting at installation time (Windows) 742

	PAGE
	MARKER 586–591
	alignment and spacing 589
	in exported HTML 419
	location 588–589, 589
	multiple markers 589

	WIDTH 592–593

	Page break. See EJECT
	PageMaker
	color separations 405

	PAGE MARKER
	alignment 334

	Page numbering. See PAGE MARKER
	Pageview (Sun Solaris) 540
	Palatino font 552–553
	Paper
	size
	setting at installation time (UNIX) 773

	PAPER 594
	Parent
	in association of SQL tables 462

	Parentheses
	in arithmetic expressions 166
	in compound conditions 142
	in TABLE statements 58–59
	removing from footnote symbols 365

	Path
	for running jobs (UNIX) 776
	for running jobs (Windows) 760, 761
	in USE statement 135

	PC 814
	PC-Axis
	exporting 427
	TED arguments
	in Windows scripts 763, 765

	PDF 417
	in Windows scripts 763

	Percent 196–218
	and hierarchies 212
	base clause 198
	base location in title line 202
	base markers 203, 205–209, 209–210
	Change 219
	common errors 212–216, 218
	conditions 200–201, 210–212
	in title line 198
	marker nesting 209–210
	masks 217
	mixing values and percents 210–212
	multiple in one table 216
	nested 217
	on different observations 212
	rules for using 218
	where clause 198
	without markers 198

	Percent distributions. See Percent
	Percentiles 230
	Percent symbol
	effect of spanner labels 340
	in masks 357

	Performance
	accessing multiple SQL tables 462
	effect of extra memory 515
	optimizing in TPL-SQL 475–478

	Piping (UNIX)
	named pipes 89, 797–799
	benefits 797–798
	creating 798
	silent use 798–799
	with data from other programs 798

	standard pipes 89, 797–799
	foreground only 797
	no prompt for arguments 797

	Plan for processing multiple SQL tables 468. See also TPL-SQL
	choosing a plan 472–473
	specifying the chosen plan 473

	Point
	size 553

	Post Compute
	In Statistics Tests 433

	POST COMPUTE 180–195
	conditional 187
	referencing post computed variables 185
	restrictions 194–195
	using displayed rounded values 186
	with hierarchical file 288–290

	PostScript
	and installation under Windows 742
	character set 822
	for languages other than English 822. See also CODEPAGE

	character sets 822
	converting to HTML 417
	display of footnote symbol in labels 373
	display of footnote symbol in mask 373–375
	display of tables
	UNIX 540, 786
	Windows. See TED

	output
	under UNIX 788, 789

	printer 814
	printing non-PostScript outputs 820

	TED arguments
	in Windows scripts 763

	POSTSCRIPT 595–598
	PostScript printer
	printing non-PostScript outputs. See PSP

	Precision of computations 181, 816
	DIV function 168

	PRIMARY
	keyword 813

	Print
	on PostScript printer
	under UNIX 788

	tables and output
	under UNIX 786

	PRINT
	OUTPUT
	under UNIX 599, 788

	TABLES
	under UNIX 599, 788

	PRINT COMMAND 599
	and installation under UNIX 775

	Printer 814
	changing default under UNIX 775
	monochrome
	and COLOR specifications 521

	selection
	PRINT COMMAND (UNIX) 599

	Printers
	multiple. See also PRINT COMMAND
	under UNIX 775

	Print label. See Label; See also Labels
	Processing plan for multiple SQL tables 468–474. See also TPL-SQL
	Processing unit. See Hierarchical unit
	Profile
	and installation under Windows 740, 742
	editing
	under UNIX 796

	font specifications 553
	setting memory 515
	under UNIX 796
	choosing editor 545
	DISPLAY NAME for PostScript tables 540, 786

	under Windows 749
	use of format statements 491–492
	under UNIX 796

	profile.tpl. See Profile
	Prompts (UNIX)
	preventing 490–492, 788

	Proportional fonts
	size of blank space 556

	PSP
	PostScript print utility 820

	Publication quality. See PostScript
	Publishability 190–191

	Q
	Qualified names
	in TPL-SQL requests 467–468

	QUANTILE 225, 229–245
	algorithm 235–245
	use in POST COMPUTE 231
	restriction on quantity number 231

	use in TABLE statement 231
	weighted 230
	with hierarchical file 290

	QUANTILE Statement 225
	Quartiles 231
	Quit
	how to
	under UNIX 770, 777

	Quotes 43, 320
	in delimited data files 129
	in labels 320, 324

	R
	RAISE FOOTNOTE SYMBOL 600
	RAM. See Memory
	Random selection of records. See SELECT statement
	Range of values
	in DEFINE statement 151
	in FOR clauses 484–485

	RANK DISPLAY statement 258–260. See also RANK statement
	Ranking
	reordering data rows 246–261
	replacing values with rank numbers 601

	RANK ON VALUES 601
	RANK statement 246–261
	ALL 248, 252
	with residuals 257

	COPY 252–253
	displaying rank numbers 258–260
	troubleshooting 260

	KEEP top or bottom rows 253–255
	treatment of ties 255, 259

	nested variables 251
	NULL 248, 252
	OTHER 248, 252
	for residuals 256, 257

	ranked-on column 247
	referencing rows in Format statements 261
	residuals 256, 257–258

	Rank variable
	in Quantile statement 227, 230

	Ratios 178
	based on control variable values 178

	Record
	delimited 129
	length 97, 815
	level 270–274
	level number 97–98
	mask 96
	name as observation variable 96
	selection. See DEFINE; See also SELECT
	types 97
	variable 68

	record name
	in table statement 68

	Red. See COLOR
	Redefine
	in delimited data files 131
	in SQL databases 458
	using substr to create subfields 460

	REDEFINE
	and repeating groups 292, 298
	codebook entry 123
	when last entry for record 125

	Regrouping. See Grouping values
	Relational operators 149, 248
	in SELECT statement 137–138

	Relational (SQL) 447
	Relation (SQL) 447
	Reordering
	with DEFINE statement 154
	with RANK statement 246–261

	Repeating groups 291–319
	and REDEFINE 292, 298
	as control variable 298
	compared to control variables 293
	compared to hierarchies 291, 294, 301
	continued 296–297, 298
	format for codebook description 297

	creation of associated observation variable 298–299, 304–305
	describing in codebook 99, 122
	effect on COUNT 292, 305
	effect on tabulations 299–307
	format for codebook description 297
	for questionnaire responses 291, 294
	for time series 291, 292
	in computations 306
	in DEFINE statements 306–307
	interaction with hierarchies 270, 280, 292, 305
	labels for repetitions 291, 293, 298
	level for COUNT 292, 304, 305
	limits on use
	in delimited data files 131
	in hierarchical data files 306
	in SQL databases 447
	multiple groups 305

	nested 298
	use of dummy groups to associate repetitions 307–309

	REPLACE
	COLOR 603
	COLOR WITH FONT
	for monochrome printers 521

	FILLER CHARACTER 606
	HEADNOTE 608
	LABEL 609–614
	for a condition value 611
	for a variable 609

	MASK 615–620
	keeping data footnotes 572, 615

	MASK COLOR 411, 621
	MASK FONT 622
	MASK FOOTNOTE 623
	MASK WITH TEXT
	including VALUE 619–620
	interaction with REPLACE VALUE 620

	STUB CONTINUATION 625–626
	STUB HEAD 627
	TITLE 628
	TITLE CONTINUATION 629
	VALUE
	empty cells 631
	interaction with TEXT mask 620
	interaction with VALUE in TEXT mask 631
	with a number 630–631
	with NULL 630–631

	WAFER LABEL 632, 633

	REPLACE statement 47–51
	in %INCLUDE file 49–51

	Replacing
	names, labels and numbers
	with REPLACE statement 47

	Report
	format for editing 821
	screen display 821

	REPORT
	command in Windows scripts 760

	REPORT ERROR
	codebook clause 119
	in codebook 114

	REPORT INCOMPLETE HIERARCHIES 95–96, 276–278
	in TPL-SQL databases 463

	Request
	codebook
	running under Windows 744–745

	format 32, 481
	substituting sections with INCLUDE and REPLACE 45–51
	table 32, 52
	running under Windows 746

	Rerun. See Run
	RERUN
	command in Windows scripts 761

	Reserved words 812
	Residuals. See RANK statement
	Resource requirements 814
	RETAIN
	ALL RULES 633
	BANK DIVIDER 635
	BOTTTOM RULE 637
	CELLFILE 86, 638
	COLUMNS 639
	DOWN RULES 640
	EMPTY COLUMNS 642
	EMPTY LINES 643
	END RULE 644
	FOOTNOTE 645
	HEADER BOTTOM RULE 645
	HEADER CROSS RULE 646
	HEADING 647
	HEADNOTE 648
	LAST RULES 649
	LEADING ZEROS 651
	ROWS 652
	RULE AFTER ROW 653
	RULE AFTER STUB 656
	SPANNER RULES 657
	STUB 659
	TABLES 661
	TITLE 661
	TOP RULE 662
	WAFER 662
	WAFER LABEL 663

	r g b colors 400
	R g b colors 518
	Right
	alignment of labels 332. See also ALIGN
	alignment of tables. See ALIGN
	mask alignment 361

	RIGHT
	interaction with spanners and banks 335
	MARGIN 575–576
	STUB 727–728

	RIGHT BLANK FILL
	control variables 104
	in delimited data files 131

	RIGHT IN SPACE
	and footnote symbols 338
	for aligning PAGE MARKER 335
	labels 336–338
	when space is insufficient 337

	RIGHT ZERO FILL
	control variables 104

	RMTPL
	command in Windows scripts 762

	rmtpl (UNIX)
	for removing TPL subdirectories 793
	effect on TPL REPORT subdirectories 793

	Roots
	of negative numbers 167, 181

	ROTATE 664
	ROUND
	EVEN 665
	UP 665

	Round even 358, 665
	Rounding 357
	effect on totals 358
	rule 358, 665
	up 358, 665
	using mask 360
	values used in POST COMPUTE 186

	ROW
	BANK AFTER 507
	BANKS PER PAGE 666–671
	RULE AFTER 653, 653–655
	shading background 703
	SKIP AFTER 711
	SPAN 534, 672
	and bottom rule of table 635, 649

	SPANNER. See Spanner labels; See also WAFER LABEL as SPANNER
	UNDERLINE 681–680

	Rows
	referencing to bank after row 507–508
	referencing to specify page breaks 547–548
	Report printed rows in output 633

	ROWS
	RETAIN 652

	ROW SPACE 681–680
	default 681

	ROW SPAN 680
	RULE
	AFTER ROW 653–655. See also UNDERLINE ROW
	in joined tables 713

	AFTER STUB 656
	ALL 633
	BANK DIVIDER 635
	BOLD 513
	BOTTOM
	spanning entire row 635, 649

	color 674
	COLOR 411, 518–520
	for liines between columns 640

	default
	color 674
	style 674
	weight 674

	Double or Single 653
	DOUBLE or SINGLE 674
	DOWN 640
	END 640
	for lines after rows 653
	Gaps 562
	HEADER BOTTOM 645
	HEADER CROSS 646
	LAST 649
	MARGIN 678
	properties 680
	ROW SPAN 662
	SPANNER 657
	style 674
	for liines between columns 640

	TOP 662
	weight 674
	for liines between columns 640

	RULE AFTER ROW
	RETAIN 653
	UNDERLINE 681–680

	RULE MARGIN 678
	Rules 644, 657
	changing thickness 635, 649, 674
	for rules after rows 653

	color. See COLOR
	effect on leading zeros 651
	weight
	for rules after rows 653

	Run instructions
	for UNIX version 776–800
	for Windows version 743–753

	Running jobs. See also Run
	overview 40
	under UNIX
	in background 777, 781–782
	with CSV output 790–791
	with HTML output 790–791
	with PostScript output 788, 789

	under Windows. See Windows

	Run (UNIX)
	codebook 777–779
	from command line 778
	from prompts 777–778

	conditions 779
	rerun 793–795
	from command line 795
	from prompts 794

	tables 781–793
	from command line 783
	from prompts 781

	Run (Windows) 743–753. See also Windows
	codebook 744–746
	from menus 744

	Edit Table
	from menus 749

	rerun 748
	from menus 748

	table 746–747
	from menus 746

	TPL REPORT
	from BAT file 754
	from command line 754
	from scripts 754–768

	TPL TABLES
	from menus 743

	S
	Sample. See SELECT statement
	SCALE 683–685
	Screen display
	Controlling (UNIX) 785
	of reports 821
	suppressing (UNIX). See Background; See also Piping

	Scripts (Windows)
	commands and arguments 760–768
	forground and background 757
	ODBC database arguments 768
	eliminating prompts 768

	REM for remarks or comments 762
	Script log 757
	substitution arguments 758
	wild cards in commands 756–768
	WTPL arguments 759

	Section 508
	accessible HTML 418, 567

	SEE_END footnote 377
	SELECT
	TPL-SQL databases 475–478

	Selecting subsets of data. See DEFINE statement; See also SELECT statement
	SELECT statement 136–146
	applied to a single table 137, 143
	compared to DEFINE statement 155

	arithmetic expressions 140
	based on data values 136–144
	based on sets of values 138, 141–142
	FOR TABLE 137, 143, 155
	hierarchical files 287
	IF 137
	interaction of multiple statements 146
	number
	format 145

	number and percent options 144–145
	number of records 145
	percent 145–146
	format 145

	random subset of records 145–146
	relations 137–138
	sample 145–146
	skipping part of the data file 145
	types of conditions 138–140
	UNLESS 137
	use of AND and OR 142–143

	SELECT style
	conditional COMPUTE 171

	Semicolon delimited data files. See Delimited data files
	SET FOOTNOTE. See Footnote; See also FOOTNOTE; See also NOTE
	SET NOTE
	compared to use of KEEP FOOTNOTE 573
	statement. See NOTE

	Sets of values
	in Conditional COMPUTE 171
	in DEFINE on multiple variables 162
	in SELECT statement 138, 139, 141–142

	Setup
	for installation under UNIX 770
	prompts 771
	to move the system 770

	for installation under Windows 739

	SHADE 691–708
	CELL 696
	compared to SHADE DATA 696

	COLUMN 698
	DATA 699
	compared to SHADE ROW 700
	effect on TEXT masks 699

	FOOTNOTES 700
	HEADING 700
	HEADNOTE 701
	LABEL 702
	options 696–708
	overview 691–696
	ROW 703
	compared to SHADE DATA 704
	effect on stub label 703

	STUB 704
	STUB HEAD 705
	TABLE 706
	table elements 412, 691
	TITLE 706
	TOP 707
	WAFER LABEL 708

	Shading. See also SHADE
	COLOR 412, 691–708
	conflicts 694–696
	order of application 694–696

	effect on Encapsulated PostScript 694
	GREY 405–406, 412, 691–708
	intersecting specifications
	order of application 694–696

	order 694
	overlapping 694–696

	SHIFT DECIMAL clause
	and masks 358
	effect on computations 169, 172
	in codebook 114
	interaction with MASK 117

	Sibling (or Sib)
	in association of SQL tables 462

	Sideways 664
	Single
	HTML OUTPUT 570

	Single file HTML 419, 764
	SKIP
	AFTER BANKS 709–711
	AFTER ROW 711
	compared to slash in labels 711

	AFTER TABLE 546, 713–716
	AFTER WAFER 546, 717–718
	with spanning wafer labels 736–738

	Slash
	as unconditional label break 329–330, 331
	compared to SKIP AFTER ROW 711
	symbol for line spacing 329

	Smallest value. See MIN; See also RANK statement
	SMALL footnote 377
	SMALL_NEG footnote 377, 687
	Small value
	footnote 378, 379

	SOLID 680
	Sorting rows. See RANK statement
	Sort order
	codebook conditions 105–107

	Sort sequence
	and CODEPAGE 517, 810
	and sort.tpl 517, 810
	dependence on character set 516–517, 810
	for languages other than English 516–517, 810

	sort.tpl 810
	Sort.tpl 517
	Space
	vertical
	adding after data rows 711
	between table elements 732–733
	effect of font sizes 354

	SPACE
	HEADING 565–566
	in labels 348–349
	TABLE 732–733

	SPACE TO
	for aligning PAGE MARKER 334
	in labels 348–349
	interaction with INDENT 349

	Spacing of lines 549–550
	effect of font sizes 354

	SPAN 672
	and bottom rule of table 635
	DATA 680
	for rules after rows 653

	SPANNER HEADING 719–724
	Spanner labels 340–344
	alignment 340, 342
	deleting rules 657–658
	effect on $ and % 340
	effect on leading zeros 651
	for wafers , 340
	in heading 719–724
	RIGHT
	interaction with banks 335, 342

	shading background 702. See also WAFER LABEL as SPANNER

	SPANNER RULES
	RETAIN 657

	Special characters 43, 822
	in labels 323–324

	SQL Database 446–479
	data types 452–455

	SQL databases 815. See also TPL-SQL
	SQL FETCH COUNT statement 478–479
	SQL SELECT statement 475–478
	Square root
	built-in function 166
	SQRT 167

	Standard deviation 185
	STDEV for sample 225
	STDEVP for whole population 225, 243

	Standard Deviation
	F-Test 440

	Standard error 225, 244
	Standard pipes (UNIX) 797. See also Piping
	STANDARD WEIGHT 680
	START
	STUB 729

	START position
	Codebook example 92–94, 120
	in codebook FILLER 121
	redefining space 125

	Statements
	rules for preparing 42–51

	Statistical Tests
	Chi Squared 441
	F-Test of Standard Deviations 440

	Statistics 225–245. See also Mean; See also MEDIAN statement; See also Post Compute; See also QUANTILE; See also Standard deviation; See also Standard error; See also Variance
	Tests 431–445

	Statistics Tests
	Anova F-Test 438
	Confidence as Percent 432
	Post Compute 433
	stats.log 433
	Student's T-Test 436
	Template 432
	Template Example 433
	Tukey HSD 443
	Undo 434
	Z-Test 437

	Status 192–194
	STDERR 225, 244
	STDEV 225, 242
	STDEVP 225, 243
	STOP
	STUB 730

	Stop (UNIX)
	how to 770, 777

	Strings
	in CHAR statement 269
	in mask 359

	Stub
	collapsing with null labels 396
	color in label
	effect on FILLER CHARACTER 406

	default continuation 395
	default indent 395
	default width 395
	indentation
	interaction with ALIGN STUB LABELS 498

	on the right 811
	shading background 704

	STUB
	CONTINUATION
	indent for multi-line labels 725
	label for multi-page tables 625–626

	DELETE 731
	HEAD
	defined 627
	replacing 627

	INCREMENT 726
	LEFT 727
	RIGHT 727–728
	combined with other stub options 728

	START 729
	STOP 730
	WIDTH AUTOMATIC
	adjusting to available space 503–505
	effect on banked tables 505

	Stub expression 53
	STUB HEAD
	shading background 705

	Student's T-Test 436
	SUB
	for subscripts 354–355

	Subdirectories
	TPLnnnnn
	under Windows 747

	Subdirectory
	TPL. See TPL subdirectories

	Subfields
	for SQL database fields 460–461

	Subscripts
	in labels 354–355

	Subset of data. See DEFINE statement; See also SELECT statement
	Substitution
	in requests
	names, labels and numbers 47–51

	of parts of request with %INCLUDE 45–51

	Substitution arguments
	in Windows scripts 758

	Substr
	creating subfields for SQL data 460–461
	substrings in CHAR statements 269

	Subtotals
	in DEFINE statement 147, 154, 159–160

	Subtraction operator 165
	SUP
	for superscripts 354–355

	SUPER
	for superscripts 354–355

	Superscripts
	in footnote text 389–390
	in labels 354–355

	Suppressing cell values. See Conditional footnoting; See also Mask; See also REPLACE MASK WITH TEXT
	Sybase 446–479
	data types 455

	SYM. See Footnote symbols
	inserting footnote symbols in text 389–392

	Symbol
	footnote. See also Footnote
	choosing 372
	display 373, 577–581

	PostScript font 553
	effect on alignment 577
	use in footnotes 555
	uses 555–556

	SYMBOL COLOR 408, 411, 518–520
	Syntax error
	under UNIX 799
	under Windows 751

	T
	Tab
	in exported CSV (delimited) files 424, 763

	Table
	cells 54, 398
	default layout 394–398
	default location 393
	fitting more on page 683–685
	formatting
	overview 78

	joining tables on one page. See SKIP AFTER TABLE
	location on page 709–711
	multiple tables on page. See SKIP AFTER TABLE
	request 32, 52
	example 35
	running under UNIX 781
	running under Windows 746

	scaling size down or up 683–685
	shading background 706
	SQL data 447
	title 394
	vertical compression 732–733

	TABLE
	DATA 427
	Export 427

	SKIP AFTER 713–716

	Tables
	running jobs. See Run

	TABLES
	RETAIN 661

	tables file
	in TPL subdirectory (UNIX) 785
	in TPL subdirectory (Windows) 748

	TABLE SPACE 732–733
	tables.ps file
	under UNIX 788, 789
	under Windows 748

	TABLE statement 52–78
	combining nesting and concatenation 58
	concatenation
	with THEN operator 57, 58

	control variable 64–65
	TOTAL 71–76

	COUNT observation variable 68
	general format 53
	heading expression 53
	LABEL variable 71
	nesting
	meaning of "nested with" 56
	with BY operator 56, 58

	observation variable 64–65, 65
	COUNT 68
	record name 68
	weight 71

	parentheses used in 58–59
	record name in 68
	stub expression 53
	title 394
	format options. See Labels

	TOTAL control variable 71–76
	wafer expression 53
	weighted frequency counts 71, 169. See also Weight variables
	weighted tabulations 71
	weighted variables 170

	Tabs
	in labels
	converted to blanks 323
	with SPACE TO 348–349

	treatment in labels 43

	TABULATE INCOMPLETE HIERARCHIES 95–96, 276–278
	in TPL-SQL databases 463

	TED
	for printing PostScript tables 814
	TPL editor 545

	TED (Windows)
	commands in Script 762
	export directory 765
	export file names 766
	for display, print, and export 763
	wild cards 756

	TPL editor 743
	viewing tables and output files 747

	Template
	Example 433

	Templates 432
	Tests
	Statistics 431–445

	Text
	in cells. See Mask; See also Mask; See also REPLACE MASK

	TEXT
	footnote. See Footnote TEXT
	masks. See also Mask; See also REPLACE MASK WITH TEXT
	as labels 320

	Text delimited files. See Delimited data files
	THEN concatenate operator 57
	combined with BY operator 58

	Thousands separator
	effect of COUNTRY statement 529, 811
	suppressing 529

	Time
	effect of COUNTRY statement 532, 811

	TIME
	in PAGE MARKER 589

	Time series
	as repeating group 291, 292–294

	Times font 552
	Time stamping
	of codebook abstract
	under UNIX 779
	under Windows 745

	TITLE
	REPLACE 628

	Titles. See also Labels
	as labels 320
	color. See COLOR
	continuation option 339
	shading background 706

	TOP
	MARGIN 575–576
	of table
	shading background 707

	Top values. See MAX; See also RANK statement
	TO_SHOW
	converting reports to screen format 821

	TOTAL control variable 71–76
	in hierarchies 283
	interaction with DEFINE 75–76
	removing label 76, 396
	replacing English label 811
	replacing with LABEL variable 71

	Totals. See also TOTAL control variable
	in DEFINE statement 147, 159–160, 162, 163

	tpl conditions (UNIX) 450, 779, 801–808
	CSV and other delimited files 804–806
	error detection 806
	fixed format sequential files 802–804
	SQL databases 806–808
	treatment of comments 808

	TPLDIR
	command in Windows script 762, 767

	TPL_INI
	environment variable 741

	tpl.ini file for Windows version 740
	TPLnnnnn. See TPL subdirectories
	TPLPATH7.0
	environment variable 741

	TPL-SQL 79, 90, 446–479
	association statements
	in codebooks 461–464
	in requests 468

	chains 469–470, 469–478
	codebook 447–466
	abstract 465–466
	association statements 461–464
	associations with multiple fields 464
	databases with multiple SQL tables 461–464
	defines clause 449, 458–460
	duplicate database names 459
	evaluated to 451
	getting conditions from label-code SQL tables 449
	hierarchies 461–464
	%INCLUDE 465
	parent-child relationship 462
	sibling relationship 462
	using information from the database 449, 451

	conversions from database to TPL types 452–455
	data type conversions
	ODBC 453
	Oracle 454
	Sybase 455

	effect on requests 467–478
	qualified names 467–468

	hierarchical paths 470–471, 471–474
	incomplete hierarchies 463
	optimizing performance 475–478
	indexing for multi-table processing 475
	indexing for SQL Select 476
	over network 478
	SQL Fetch Count statement 478
	SQL Select statement 475–478

	processing plans for multiple SQL tables 468–474
	choosing a plan 472–473
	specifying the plan of your choice 473
	treatment of COUNT 474

	terminology 447
	TPL types for SQL databases only 455–457

	TPL subdirectories (UNIX) 785–786
	choosing your own number 783, 785
	maintenance 793
	use in rerun 794

	TPL subdirectories (Windows) 747
	choosing your own number 747–748, 748
	maintenance 748
	from menus 748

	notes 748
	where saved 748

	TPL subdirectory number
	printing on table output 589–590

	TPL/TPLR subdirectories (Windows)
	choosing your own number
	in scripts 760

	maintenance
	from scripts 762

	where saved 760

	T-test 436
	Tukey HSD 443

	U
	Undefined variable error
	under UNIX 800
	under Windows 752

	UNDERLINE 680. See also ROW SPACE
	Retain Rule after row 653
	ROW 681–680
	Row Properties 681
	Row Space 681
	RULE AFTER ROW 681–680

	Underlining
	color 519
	data
	with UNDERLINE ROW. See RULE AFTER ROW

	with FONT specifications , 352–354

	Underscore 42
	Undo 434
	Union operator 192–194
	UNIX version 814
	installing for 770–775
	running jobs 776–800

	Unless 136, 137
	U operator 192–194
	UP in RANK statement 247
	URL
	in HTML tables 423

	USE statement
	naming codebook 134
	naming codebook with path 135
	restriction on comments in 135
	under Windows 746

	Utility programs 817

	V
	VALUE
	in condition label clause 110
	in TEXT masks 364–365, 619–620
	replacing in cells 630–631

	Values 43
	condition 107
	sets of 138, 139, 141–142, 162, 163, 171

	VAR 225, 241
	Variable. See also TABLE statement
	CHAR 120. See also CHAR variable
	CONTROL 64–65, 99
	TOTAL 71–76

	error when undefined
	under UNIX 800
	under Windows 752

	GROUP 121–123
	in delimited data file codebook 130
	in SQL table 447
	duplicate names 459–460
	using database information for codebook 449

	LABEL 326
	OBSERVATION 64–65, 65, 113–120
	RECORD 68
	repeating group 291–319
	weight 71, 169–170

	Variance
	VAR for sample 225, 241
	VARP for whole population 225, 242

	VARP 225, 242
	vi editor (UNIX) 776
	Visually impaired
	accessible HTML tables 418, 567

	W
	Wafer
	default label 396–398
	label
	location 736–738
	spanning table 736–738

	label location 396

	WAFER
	label
	in row-banked tables 669
	shading background 708

	LABEL as HEADNOTE 736–738
	LABEL as SPANNER
	shading background 708
	spanning data 736–738
	spanning row 736–738

	LABEL REPLACE 632, 633
	SKIP LINES AFTER 717–718

	Wafer expression 53
	Warning message
	in Windows script log 758
	narrow column (UNIX) 800
	narrow column (Windows) 752

	Web publishing
	HTML tables 417
	PDF 417

	WEIGHT 680
	BOLD 513, 680
	RULE 513
	STANDARD 680

	Weighting
	in COMPUTE statement 169–170
	in MEDIAN statement 228–229
	in QUANTILE statement 230
	in TABLE statements 71

	WEIGHTING statement 262–268
	Weight of lines. See RULE
	Weight variables
	applied in COMPUTE statements 169–170
	creating with Conditional COMPUTE 173
	used in tables 71

	Where
	in associations for SQL tables 462

	WHITE
	definition in color.tpl file 695
	shading 695–696. See also COLOR; See also Shading

	Width
	column 523
	AUTOMATIC 503–505

	stub
	AUTOMATIC 503–505

	WIDTH
	MAXIMUM FOOTNOTE SYMBOL 577–581

	Wild cards
	with PSP utility program 820

	Wild cards (Windows)
	in COPY Script commands 756, 762
	in DELETE Script commands 756, 762
	in TED Script commands 756, 763

	Windows version 814
	installing for 739–742
	running jobs 743–753

	Working directories. See TPL subdirectories
	WTPL (Windows)
	script arguments 759

	Y
	Year
	displaying 4 digits 528, 591

	Z
	Zapf Chancery font 553
	Zapf Dingbats font 553
	use in footnotes 555

	Zero
	in RANK DISPLAY column 260
	instead of blanks in DATA TABLE 427

	Zero division 167, 181, 191
	ZERO footnote 378, 379
	Zeros
	in condition values
	fill specifications 104
	numeric defaults 103

	leading to left of decimal point 359

	Z-Test 437

