

 1

TPLReport
TM

 Version 8.0

QQQ Software, Inc.
302 N. Irving Street

Arlington, VA 22201 USA

tel 703-528-1288
fax 703-528-1289

http://www.qqqsoftware.com
support@qqqsoftware.com

 2

The software described in this document is furnished under a license agreement and may be used or copied only in accordance
with the terms of the agreement. It is against the law to copy the software except as specifically allowed in the license agreement.
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photo-
copying and recording, for any purpose, without the express written permission of QQQ Software, Inc.

TPL Report User Manual Version 8.0

© Copyright 2014 QQQ Software, Inc. All rights reserved.

U.S. GOVERNMENT RESTRICTED RIGHTS. The program and documentation are provided with RESTRICTED RIGHTS.
Any use, duplication or disclosure by the U.S. Government or authorized Government contractors is subject to restrictions set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, FAR
52.227-19 and other applicable agreements. The contractor/manufacturer is QQQ Software, Inc., 302 N. Irving St., Arlington, VA
22201.

TPL TABLES is a registered trademark of QQQ Software, Inc. TPL REPORT is a trademark of QQQ Software, Inc. All other
product or company names are used for identification purposes only and may be trademarks of their respective owners.

This manual may be used with licensed copies of TPL Report and demonstration versions of TPL Report.

QQQ Software, Inc.
302 N. Irving Street
Arlington, VA 22201 USA
Tel: 703-528-1288
Fax: 703-528-1289
email: support@qqqsoftware.com
web: http://www.qqqsoftware.com

August, 2014

 3

Preface

TPL REPORT is a report writer that shares many of the features of TPL TABLES.
It can be used with the same data and codebooks (data descriptions). Language
conventions are the same and the mode of operation is similar.

Information about data and codebooks that is particularly relevant to TPL REPORT
is contained in a single chapter called "Data and Codebooks". Complete details
on these subjects can be found in the TPL TABLES manual in the chapters called
"Data" and "Codebooks".

TPL REPORT Version 8.0 is available for PCs running Windows XP, Vista, Win-
dows7, Windows8 and for a variety of UNIX and Linux platforms.

Unless specifically noted, the information in this manual applies to both Windows
and UNIX versions of TPL REPORT.

If you are viewing this document with Adobe's Acrobat Reader, you can click on
entries in the Table of Contents or Index to be transferred to the pages in the text.

All of the report examples in this user manual were produced using TPL RE-
PORT's PostScript output features. The reports were then inserted into the text
using a desktop publishing system.

We hope that you will enjoy using TPL REPORT and will write or call if you have
questions, comments or suggestions. Your comments are important to us and will
guide our selection of features to include in future versions of TPL REPORT.

Contents (Summary)
Introduction...20

Overview..28

Entering.Statements...32

Data.and.Codebooks..40

Use..44

Report...46

Sort...55

Totals..62

Select..71

Compute...82

Recode...92

Char..103

Hierarchies...105

Repeating.Groups...123

Labels...129

Masks...148

PostScript..155

Color.and.Grey..162

Exports...171

TPL-SQL...173

Format..203

Installation.(Windows)..308

Run.Instructions.(Windows)..312

Scripts.(Windows)...322

Installation.(UNIX)...335

Run.Instructions.(UNIX/Linux)...340

TPL.Conditions.(Unix.Only)...357

International...364

Keywords...367

Limits..369

Utilities...372

Character.Sets...378

Index...393

Contents. 6

Contents

Introduction. 20

What is TPL REPORT? ..20
How Does TPL REPORT Work? ...21

The Data File ...21
The Codebook ..21
The Report Request ...22
The Format Request ...22

An Example ..22

Overview. 28

An Overview of TPL REPORT Features ..28
Data Files ...28
Describing the Data ...28
Defining the Structure and Content of a Report ..29
Sorting the Report ..29
Totals ..29
Selecting Subsets of the Data ..29
Computing New Values ...29
Recoding Data ...29
Labels ...30
Masks ...30
Report Formatting ..30

Installing and Running TPL REPORT ..30

Entering.Statements. 32

Rules and Notations for Codebooks and Requests ...32
Statement Rules ..32

Identifiers ...32
Values ...32
Keywords ...33
Print Labels ..33
Backslash ...33
Entering Characters that Are Not on the Keyboard ...33
Mathematical Operators ...34
Comment Entries ...34

Contents. 7

Notation Used in Presenting Statement Formats ..35
The "INCLUDE" Feature ...35
Substitutions for Names, Labels and Numbers ..37

Putting REPLACE Statements in %INCLUDE Files ...38

Data.and.Codebooks.. 40

CHAR Data Type ...40
Record Name Variables ..41
Treatment of Data Errors ..41

Use. 44

Accessing the Codebook ...44

Report. 46

The Report Statement ...46
Introduction ..46
Description of the REPORT Statement ..47

Using Record Names and Built-in Variables ...47
OTHER, ALL and EXCEPT in the Variable List ..47

Report Output Format ...48
Basic Format ..49
The NUMBER Variable ...49
Column Widths ..49
Display Format for Data Values ...50

Wide Values ...50
Alignment ..51
Special Indicators in Data Cells ...51

Titles and Labels ...51
Wide Labels ...51

Sample REPORT Request and Report Output ...52

Sort. 55

Sorting Reports ...55
TOP n Option for SORT ...57

To Get the Bottom-Ranked Records Instead of the Top ..60
Record Names, COUNT and TOTAL ..60
Note on TOP n and Negative Values ..61

Contents. 8

Totals. 62

The SUBTOTAL and GRAND TOTAL Statements ...62
Subtotals ...62

The SUBTOTAL Statement ...62
The DISPLAY Clause ..63
How Subtotals Are Displayed ..63

Grand Totals ...65
Subtotals and Grand Totals in the Same Report ...67
Use of Record Names and COUNT in Subtotals and Grand Totals ...69
Referencing Subtotals and Grand Totals in FORMAT Statements ..70

Select. 71

Selecting Subsets of the Data ..71
Selection Based on Data Values ...71

Types of Conditions ...73
Relationships ...73
Sets of Values ..75

Compound Conditions ...77
Using Record Names and COUNT in Conditions ...77

Selection Using the NUMBER and PERCENT Options ...79
SELECT Percent ..79
SELECT Number ...80

Interaction Between Multiple SELECT Statements ...81

Compute. 82

Computing New Variables ..82
Introduction ..83
Compute Entries ...83

Absolute Value ..84
Square Root ...84
Integer Division ...85

Masks for Output Formatting ..85
Weighting ...86

The Conditional Compute Statement ..87
Introduction ..87
The Statement ...87

Condition Term ..88
Compute Term ...88

NULL Values ..90

Contents. 9

Recode. 92

Replacing Original Values with Labels or New Values ..92
Introduction ..92
Description of the RECODE Statement ...94

New Variable Entries on the Left ...95
Old Variable Entries on the Right ...97

Unspecified Values ..98
Note on Value Order in Relations and Ranges ..98

More RECODE Examples and Applications ...99
Grouping Values into Larger Categories ..99
Suppressing Display of Selected Values ..100
Replacing Values with their Labels ..100
A Combination of Labels and Values ..100
Creating a New Data File with Recoded Values ..101
Results with Overlapping Ranges ..101
Recode on a Record Name Variable or COUNT ...102

Char. 103

Creating a new Character Variable ..103
Char Split: Divide a Character Variable ...104

Hierarchies. 105

Processing Hierarchical Files ..105
Introduction ..105

Codebook Entries ...108
How Hierarchies Interact with TPL REPORT Statements ...109

Record Names and the Built-in Variable COUNT ...110
REPORT Statement ...110

Reports Using a Single Level of the Hierarchy ...111
Reports Using Multiple Levels of the Hierarchy ..112
Comparison of Record Name Values and COUNT ...113

SELECT Statement ..113
COMPUTE Statement ...114
Conditional Compute Statement ..115
RECODE Statement ..115

Using Incomplete Hierarchies ..115
Default Treatment ..115

Complete Hierarchy ..116
Examples of Incomplete Hierarchies ..116

Forcing Incomplete Hierarchies to Be Included in Reports ..117
Interaction with SELECT Statement ...119

Message Suppression ...119

Contents. 10

Repeating.Groups. 123

Variables That Repeat Within Records ...123
Introduction ..123

Restrictions on the Use of Repeating Groups in Report ..123
Describing Repeating Groups in the Codebook ...124
How Repeating Groups Interact with TPL REPORT Statements ..125

Record Names, Group Names and the Built-in Variable COUNT125
REPORT Statement ...125

Reports that Do Not Use the Group Variables ..126
Reports that Use One or More Variables from a Repeating Group126

Using Repetition Values and Labels ..127

Labels. 129

Creating and Formatting Print Labels ...129
Automatic Print Labels ...130

Observation and Char Variables ...130
Control and RECODE Variables and Their Values ..130
Report Titles ...130
Subtotals and Grand Totals ..130

Creating Your Own Print Labels ..131
Characters Allowed in Label Strings ...132
Quotes and Backslashes in Labels ...132
Label Length ..133
The Null Label ...133
Labels with Multiple Segments ...133

Control of Label Breaks ...134
Slashes ...134
Conditional Hyphens ...135
Hierarchy of Label Break Points ...135

Label Alignment ...136
LEFT, RIGHT and CENTER ...136

Alignment in Page Markers ...138
RIGHT IN SPACE for Right-Alignment to a Selected Point in a Label139

Continuation Labels for Report Titles ..140
Indentation and Spacing in Labels ...140

Changing Label Alignment with INDENT ..140
Indent Restrictions ..142
Indent with PostScript Proportional Fonts ..142

Spacing within Labels Using SPACE and SPACE TO ..143
Using SPACE TO and INDENT Together ..143

PostScript Font Control in Labels ..144
Superscripts and Subscripts ..146

Contents. 11

Masks. 148

Formatting Data Values with Masks ...148
Adding Decimal Points and Commas ..149
Rounding Rule ...149
Creating Decimal Places ..150

Leading Zeros ..150
$, % and Other Character Strings in Masks ...150
Replacing Rounded Digits with Zeros ...151
Alignment of Values ..151
Treatment of Large Values ...152

PostScript Font Control in Masks ..152
Sample Report Using Masks ..154

PostScript. 155

Publication Quality Reports Using PostScript ..155
PostScript FORMAT Statements ..156
Getting Started with PostScript ..157

Switching between Line Printer and PostScript Modes ..158
Report Output Files ..159
Printer Selection -- UNIX ..159
Using PostScript Reports with other Software ..159
Font Selection ..159
PostScript Examples ..160
Dashes in PostScript ..161

Color.and.Grey. 162

Using Color in Reports ...162
General Information on Color ..162

Effect on Monochrome Printers ...162
r g b colors ...162
Color Chart ..163
Color Definitions in color.tpl ...165
Printing Color Separations for Reports ..167

The Special Color GREY ...167
Color Specifications for Individual Labels and Masks ..168

Labels ...168
Masks ...168
RECODE Values ..168

Setting COLOR Defaults for Characters and Rules ...168
Replacing Mask Color ..169

Contents. 12

Exports. 171

Converting PostScript Reports to Other Formats..171
Introduction ..171

PDF Format ...171
CSV (delimited) Export ...171

CSV Files ...172
How to Request CSV Export ...172

Windows ..172
UNIX ...172

TPL-SQL. 173

Introduction to the Database Interface ..173
Terminology - Yes, you want to read this..173
TPL-SQL Codebook ...174

A Simple TPL-SQL Codebook Example ...174
Defines Clause ...176

A Better Solution - Using Information from the Database ..176
Unix ...177
Windows ..177

Conversions from Database to TPL Data Types ...178
ODBC Data Type Conversions ..179
Oracle Data Type Conversions...180
Sybase Data Type Conversions ..180

New Data Types..181
Label-Code Tables ..182
Alternate Names - The DEFINES Clause ..183
Creating Subfields with Substr ...185
Multiple SQL Tables and Association Statements ...186

An Example ...186
More on Association Statements ...189

Use of %INCLUDE in Codebooks ..189
Codebook Abstract ...190

Table and Report Requests for SQL Databases ..191
Qualified Names ...192
Association Statements in Table or Report Requests ...192
The Processing Plan ...193

What is a Chain? ..193
How Can A SQL Table Be Chained to Itself? ...194
What is a "Single Hierarchical Path"? ...194
Why Does TPL Need a Single Hierarchical Path? ..195
Plan Selection ..196
How to Specify a Plan ...197
Plans and the COUNT Variable ...198

Contents. 13

Optimizing Performance ..199
Indexing for Multi-Table Processing ...199
SQL Select ...199

Importance of Indexing and an Efficient SQL Select Statement199
Description of SQL Select ..200
Difference in Results between Regular Select and SQL Select 201

SQL Fetch ..201
Summary ...202

Format. 203

The Format Language ...203
Introduction ..203

Note for Users of TPL TABLES ..203
Where to Put FORMAT Statements ...204
Composition of FORMAT Statements ...204

Action Levels ...205
Action Conflicts ...206
Action Size Specifications ...206
What can be in the FOR Clause? ...206

The Format Actions ..208
Print and Export Control (UNIX only) ...210

The NUMBER Variable in FORMAT Statements ..211
Use of FORMAT Statements in Profile ..211

Format Language Reference ...213
Introduction ..213

ALIGN CELLS ...214
ALIGN COLUMN ..215
ALIGN HEAD ..216
ALIGN REPORT ..217
ALIGN TITLE ..218
BANK AFTER COLUMN ...219
BANKS PER PAGE ..220
CODEPAGE (PROFILE only) ...222

Alphabet for Names ..223
The Character Set for Printing PostScript ...223
The Sort Sequence ...223

If You Need to Select a CODEPAGE ...223
COLOR Defaults ..224

Note on Cell Color ..225
Note on Underlining ..225

Alternate Format for the COLOR Statements ..225
COLOR = NO ...227

Alternate Approach ..228
COLUMN WIDTH ...229
COLUMN WIDTH AUTOMATIC ...230

Contents. 14

COUNTRY (PROFILE only)...232
Separators in Masks and Decimal Constants ..233
Effect on Currency Formats ..234
Special Treatment for Currency Symbols in Output ...235
Date and Time Formats ...235

CSV DIVIDER ...236
CSV OUTPUT (UNIX only) ...236
DATA REPORT ..237

ZERO FILL ..237
DELETE ...239
DELETE COLUMNS ...240
DELETE HEADING ..241
DELETE LEADING ZEROS ...242
DELETE REPORT ...243
DELETE TITLE ...244
DISPLAY NAME (UNIX/Linux Profile only) ...244
DOWN RULE WEIGHT ..245
EDITOR (UNIX Profile only) ..247

Editor Name ..247
Editor File ..247

EPS OUTPUT (UNIX only) ..248
EXTRA LEADING ..248
FONT ..250

Report Elements ..250
Font Names ...251
Font Sizes ..252

Adding Underline to Fonts ..252
Using the Symbol and Zapf Dingbats Fonts ..253
Spaces in Proportional Fonts ...254

MARGINS (LEFT, RIGHT, TOP, BOTTOM)..256
NUMBER (LEFT, RIGHT, BOTH) ..258
PAGE LENGTH..259
PAGE LENGTH AUTOMATIC ...261
PAGE MARKER ..262

Page Numbering ..263
ODD and EVEN ..263

Page Count ...264
Marker Location ..264
Multiple Page Markers ...265
Alignments and Spacing within Page Markers ..265
Other Options ...265
4-Digit Year ..266

PAGE WIDTH ..267
PAGE WIDTH AUTOMATIC ..268
PAPER ..269
POSTSCRIPT ...270

Interaction of Size Specifications with PostScript ...271
Page and Margin Sizes ..272

Contents. 15

PRINT (UNIX only) ..273
PRINT COMMAND (UNIX profile only) ..274
REPLACE COLOR ..274
REPLACE DIVIDE CHARACTER ...275
REPLACE LABEL ...276
REPLACE MASK ..279

Replacing Mask by Location ...279
Replacing Mask by Variable ..280
Treatment of Conflicting Masks ..281

REPLACE MASK COLOR ..282
REPLACE MASK FONT ...283
REPLACE TITLE ...284
REPLACE TITLE CONTINUATION ..285
RETAIN ..286
RETAIN ALL RULES ..287
RETAIN BLANKS ...289
RETAIN CROSS RULES ...290
RETAIN DOWN RULES ...293
RETAIN SIDE RULES ...295
ROTATE ..297
RULE EVERY ..298
RULE WEIGHT..300
SKIP AFTER BANKS ..301
SKIP LINE EVERY ..303
USE CONDITION LABEL, NAME, VALUE ...305
USE VARIABLE NAME ..307

Installation.(Windows). 308

How To Install TPL REPORT Under Windows ..308
Note to TPL TABLES Users ..308

Shared profile.tpl ..308
Installing from the CD ..309
If You Have an Earlier Version of TPL REPORT ...309

.tpl Files ...309
Replacing a Previous Version ..309
Using More than One Version of TPL REPORT ...309
tpl.ini ..309
Network Installation ..310
Compatibility ...310

"Source" Files ..310
Codebooks and TPLR Subdirectories ...310

Default Settings in Profile.tpl ...310
Networks ..311

Licensing Note ...311

Contents. 16

Run.Instructions.(Windows). 312

Instructions For Running TPL REPORT Under Windows ...312
Introduction ..312
TED and Other Editors ...312
Description of Jobs and Files ...313

Getting Started ...313
Selecting the Job Directory ..313
Creating and Processing Codebooks ...313

Codebook Abstract ..314
Codebook Object ...314

Database Codebook Source ...315
Producing Reports ...315
The TPLR Subdirectory ...316

The Report Files ..317
The OUTPUT File ...317
Subdirectory Maintenance ..317

Customizing with PROFILE.TPL ..317
Shared profile.tpl ...318

Encapsulated PostScript (EPS) ..318
ENCAPS ...319

Exporting CSV (delimited) files ..319
Common Error Messages ...319
Networks ..321

Licensing Note ...321

Scripts.(Windows). 322

Running Batch Jobs with Tpl Scripts..322
Introduction ..322
Job Script Example ...324
Wild Cards (* and ?) in TED, COPY, and DELETE Commands ...324
Running a Script in Foreground or Background ..325

Script Log ..325
Substitutions in Scripts ...326

Example Using Substitution Arguments ...327
Commands and Arguments ..327

WTPL Arguments for Starting Scripts ...327
Script Commands and Arguments ...328
Setting the TED Export Directory in Scripts ...331
Export Core Name in Scripts ...332
TPLDIR Script Command ...333
Arguments for ODBC ..333

Contents. 17

Installation.(UNIX). 335

How To Install TPL REPORT Under UNIX ...335
How to Stop ...335
Before You Start ...335
Note to TPL TABLES Users ..335

Shared profile.tpl ...336
Installation Steps ..336
Detailed Description of Setup Prompts ..337

Where Do You Want the System Installed? ...337
Printer ..337
Page Size ..337

For Line Printers (non-PostScript) ..338
For PostScript Printers ..338

Editor ...338
If You Change Your Mind ..339

If You Have Multiple Printers Connected to Your Computer ...339

Run.Instructions.(UNIX/Linux). 340

Instructions For Running TPL REPORT Under UNIX ...340
General Information ...340

Editor ...340
Where to Run Jobs: Paths and Files..340
How to Stop ...341
Note on Running in Background ...341

Codebook Processing ...341
How to Run codebook ...341
Codebook Command Line Arguments ..342
Error Handling ...342
Codebook Abstract ...342

Producing A Codebook Source with the conditions Procedure ...343
How to Run a conditions Request ...343
Command Line arguments for conditions ..344
Error Handling ...344

Producing Reports with the report Procedure ...344
How to Run a Report Request ...344
Report Command Line Arguments ..346
Report Request Processing ..346
Controlling the Amount of Screen Display in Foreground ..347
The TPLR Subdirectory ...348

The Report Files ..348
Printing reports and output ...349
PostScript Reports ...349

Contents. 18

EPS and CSV Exports ...350
Encapsulated PostScript (eps) ..350
Delimited or Comma Separated Variable (CSV) Files ..351
Path for INCLUDE files ..351

Removing Subdirectories with the rmtpl Command ..352
How to Run rmtpl ...352

Creating Your Own Environment with the profile.tpl File ...352
Note to TPL TABLES Users ..353

Piping Data to TPL REPORT ...353
Standard Piping ..354
Named Pipes ..354
Silent Use of Pipes ...355

Common Error Messages ...356

TPL.Conditions.(Unix.Only).. 357

What is tpl conditions? ...357
Control Variable Conditions ...357
Fixed Format Sequential File Example ..358
Delimited (CSV) Sequential File Example ..360
SQL Database Example ...362
Comments ...363

International. 364

Formats, Symbols and Languages ..364
Alphabets and Sort Order: The CODEPAGE Statement ...364
The COUNTRY Statement ...366
Replacing Default English Text ..366

Keywords. 367

TPL REPORT Keywords ..367

Limits. 369

Summary Of Features And System Constraints ...369
Platforms and Operating Systems ..369
Minimum Hardware Configuration ...369
Optional Hardware ...369
Features/Constraints ..370

Contents. 19

Utilities. 372

Stand-Alone Utility Programs ..372
COMMENT ...372
FOR_WORD ..373
HEXLIST ...374
PSP — PostScript Print Program ...375
TO_SHOW (Windows only) ...376

Character.Sets. 378

Characters and Codepages ..378
EURO Symbol ...378
CODEPAGE = WIN88591 ...379
CODEPAGE = WIN88592 ...380
CODEPAGE = WIN88599 ...381
CODEPAGE = ISO88591 ..382
CODEPAGE = ISO88592 ..383
CODEPAGE = ISO88599 ..384
Mapping of Decimal Values to PostScript Codes for Symbol Font385
Mapping of Decimal Values to PostScript Codes for DINGBAT Font386
Special Character Names for WIN88591 ...387
Special Character Names for WIN88592 ...388
Special Character Names for WIN88599 ...389
Special Character Names for ISO88591 ..390
Special Character Names for ISO88592 ..391
Special Character Names for ISO88599 ..392

Index. 393

Introduction. .20

C h a p t e r 1

Introduction

What is tPL REPORt?
TPL REPORT is a report writer that lets you examine your data in detail. You can
request a record by record listing of any or all of the variables. The data will be
displayed in rows that can match the order of the data file or be sorted according to
the values of one or more variables. The values for each variable are displayed in
columns in the order of your choice, and you can request subtotals and totals.

TPL REPORT can report data from files of many different formats, including hier-
archical files. It can process an unlimited amount of data and produce reports that
range in size from a few lines to hundreds or thousands of pages. Subsets of the
data can be selected and new variables can be computed from existing data. Values
can be recoded in a variety of ways.

TPL REPORT will automatically format your reports if you wish. In addition, you
can choose from the many optional format commands. For example, reports can
be altered by deleting columns, changing labels and titles, adding horizontal and
vertical lines, and changing the format of the values. One format command strips
the report of everything but the data, thus producing an ASCII data file output that
can be used as input to other software packages.

TPL REPORT can format your reports using PostScript® fonts. The PostScript
reports can be printed on any laser printer or typesetting machine that processes
PostScript. This feature gives you a choice of type style and size, including pro-
portional fonts. The reports can be printed directly or incorporated in documents
that have been created with desk-top publishing software.

If you use TPL TABLES, you will find it very easy to learn and use TPL REPORT.
You can use the same data and codebooks for both, and the style and types of
statements are very similar. The fundamental difference between the two is that
TPL TABLES tabulates data, while TPL REPORT can give you a record by record

Introduction. .21

listing of the individual data items. This means, for example, that you can tabu-
late data, then look at the individual items that contribute to selected table cells.

How.Does.TPL.REPORT.Work?

The ingredients needed to create reports are: a data file, a codebook that describes
the data file, and a report request that describes the reports. An optional ingredient
is a format request that makes changes to the automatic report formats.

The.Data.File

TPL REPORT can work with data files from a variety of sources. For example,
the data can be exported from a data base or spreadsheet, downloaded from a
mainframe, or prepared using an editor or data entry system. TPL REPORT does
not prepare the data, import it into a format of its own, or change the data in any
way. It simply reads it and extracts the information needed to produce the reports
you want.

The.Codebook

The first step in creating reports from a particular data file is to prepare a code-
book that describes your data. If you have already written a codebook for TPL
TABLES, you can skip this step. The codebook you already have will work with
no changes.

The codebook contains information such as the names of data fields, where they
are located within a record and how many character positions (bytes) each occu-
pies within a record. Since TPL REPORT does not require that your data be in a
particular format, it needs this information in order to find the data values that you
wish to use in your reports.

The codebook is a text file that can be prepared with an editor. In the Windows
version of TPL REPORT, you also have the option of preparing the codebook
interactively. For the UNIX version, the tpl conditions program can assist you in
preparing the codebook.

After you have prepared the codebook, TPL REPORT will process it and convert
it to a form that it can use to work with the data. When this process is complete,
you can use the codebook over and over to create any number of reports from the
data file.

Introduction. .22

The.Report.Request

The second step in creating reports is to prepare a report request. The report
request is a file that you prepare using your editor. It contains TPL statements that
describe the reports you want. You can reference any of the variables in your co-
debook by name. In addition, you can select subsets of the data file, compute new
variables and recode existing variables.

The most important statement in a report request is the one that describes the
structure and content of a report. You can request one or many reports in the same
report request.

Once you have prepared the codebook and the report request, TPL REPORT can
read your data to produce the reports you have requested. It will automatically
format the rows and columns of the reports in the order directed by the report
statements, using names and labels from the codebook and report request. If your
report is too wide to fit across the page, TPL REPORT will break it into pages that
can be placed side by side for easy review.

The.Format.Request

An optional third step is the preparation of a format request. Like the report
request, the format request is a file that you prepare with your editor. It contains
FORMAT statements that you use to make changes to the automatic report format.

The automatic formats provided by TPL REPORT are usually acceptable for a
quick look at the data. However, you may wish to change such things as column
widths, labels or alignments. These report characteristics can easily be changed
with FORMAT statements.

An.Example

Following is an example that illustrates how a data file, a codebook and a report
request work together in TPL REPORT.

Data

First is a small sample of ten records from a data file that contains information
about households. Each record in the data file represents one household.

Introduction. .23

Income

901011211340600002410306300198472
901011211550300002410308310194924
901031211370600001410292000192359
902031213330200002620415000187899
902021211310300001410300480203284
901011213380200002610520000189669
902021211510300002410429240198444
902021211360400002410333720191876
901031211550400002210290000197126
901031211220200002410283000191876

Region
Residence

Sex
HH_type
Education

Codebook

Next is the codebook that describes the data items that we plan to use with TPL
REPORT. Each data item is described in the order of its occurrence on the data
record. FILLER entries account for the parts of the record that we do not plan to
use.

BEGIN HH CODEBOOK

HOUSEHOLDS 'Households' MASK 99,999 RECORD

FILLER 2

RESIDENCE 'Type of Residence' CONTROL 1
 (
 'Inside metropolitan areas' = 1
 'Outside metropolitan areas' = 2
)
FILLER 1
REGION CONTROL 1
 (
 'Northeast' = 1
 'West' = 2
 'South' = 3
)
FILLER 2

Introduction. .24

SEX 'Sex of Householder' CONTROL 1
 (
 'Male' = 1
 'Female' = 2
)
HH_TYPE 'Type of Household' CONTROL 1
 (
 'Married couple' = 1
 'Other family' = 2
 'Nonfamily household' = 3
)
FILLER 9

EDUCATION 'Education of Householder' CONTROL 1
 (
 '8 years or less' = 1
 'Some High School' = 2
 'High School Graduate' = 3
 'Some College' = 4
 'College Graduate' = 5
 'Post Graduate' = 6
)
FILLER 1

INCOME 'Income' MASK 999,999 OBS 6

FILLER 7

END HH CODEBOOK

Report.Request

The following report request begins with a USE statement that references the name
of the codebook to be used with the data. The SELECT statement specifies that
only records with INCOME values less than 30,000 be used in the report. There is
one REPORT statement. It lists the variables to be displayed in the report. In this
statement, the data values for REGION and INCOME are to be displayed exactly
as they appear in the data file. The other variable, HH_EDUC is a recode of EDU-
CATION that replaces all values with their labels in the report. The report is to be
sorted by EDUCATION within REGION.

USE HH CODEBOOK;

SELECT IF INCOME < 30000;

RECODE HH_EDUC ’Education’ ON EDUCATION;
LABEL IF ALL;

Introduction. .25

REPORT ONE ’Report Q1. Household data for households with income '
'below $30,000, sorted by education of householder within each region.’:
REGION THEN HH_EDUC THEN INCOME;

SORT ONE ON REGION EDUCATION;

The.Report.Output

TPL REPORT reads the report request, the data file and the codebook. It uses the
codebook to find the required items in the data file and then selects the appropriate
records. It automatically formats a report that lists the values requested in the RE-
PORT statement, sorting them as specified. The labels used in the report are taken
from the codebook and report request.

Following are the first fifteen rows of the report.

Note that row numbers are automatically inserted at the beginning of the report
We could delete these from the report if we wished.

Introduction. .26

Report Q1. Household data for
households with income below
$30,000, sorted by education of
householder within each region.

Row Region Education Income

1 1 Some High
School

6,700

2 1 Some High
School

29,000

3 1 High
School

Graduate

28,300

4 1 High
School

Graduate

8,100

5 1 High
School

Graduate

9,976

6 1 High
School

Graduate

29,200

7 1 High
School

Graduate

22,000

8 1 Some
College

7,100

9 1 Post
Graduate

12,551

10 2 Some High
School

18,200

11 2 High
School

Graduate

18,200

12 2 High
School

Graduate

2,676

13 2 High
School

Graduate

11,378

14 2 High
School

Graduate

15,877

15 2 High
School

Graduate

7,354

Introduction. .27

Format.Request

In the above report, the alignments and column widths are set according to the
automatic defaults. If we wish, we can add a format request to make our own
choices for the report format. In the following format request, we add some hori-
zontal lines, choose different alignments for different columns, and increase the
columns width so that the Education values do not need to wrap.

Note that the column containing the row numbers is Column 0.

RETAIN CROSS RULES;
ALIGN COLUMNS LEFT;
FOR COLUMN 3: ALIGN COLUMN CENTER;
FOR COLUMN 2: COLUMN WDTH = 20;

Report Q1. Household data for households with
income below $30,000, sorted by education of
householder within each region.

Row Region Education Income

1 1 Some High School 6,700
2 1 Some High School 29,000
3 1 High School Graduate 28,300
4 1 High School Graduate 8,100
5 1 High School Graduate 9,976
6 1 High School Graduate 29,200
7 1 High School Graduate 22,000
8 1 Some College 7,100
9 1 Post Graduate 12,551
10 2 Some High School 18,200
11 2 High School Graduate 18,200
12 2 High School Graduate 2,676
13 2 High School Graduate 11,378
14 2 High School Graduate 15,877
15 2 High School Graduate 7,354

Overview. .28

C h a p t e r 2

Overview

an OvERviEW Of tPL REPORt fEatuREs

This chapter provides a brief introduction to the basic TPL REPORT features. The
features are described in the approximate order of the chapters and appendixes of
the User Manual.

Data.Files

TPL REPORT reads data from sequential data files. File structures can be either
"flat", containing only one type of record, or hierarchical. Hierarchical files con-
tain a variable number of related records of increasing detail. Data can be stored
as ASCII characters or as binary or floating point numbers. Only one data file
format, described by a single codebook, can be processed at one time by TPL RE-
PORT. Multiple data files with the same file format can be processed in one job.
TPL REPORT can also read CSV and other types of delimited data files. With the
TPL-SQL option, TPL REPORT can read data from a variety of databases.

Describing.the.Data

The input data file is described to TPL REPORT by means of a codebook. The
codebook describes the file structure, naming each record that makes up a process-
ing unit. Each data item in the record is called a variable. A variable has a name
and a type that indicates the types of values that can occur for that variable.

The codebook is created as a separate step before reports can be produced. Once
the codebook is created, it can be referenced any number of times.

Overview. .29

Defining.the.Structure.and.Content.of.a.Report

The REPORT statement lets you choose the variables to be displayed as columns
in the report and the order in which the columns should appear. For very quick
results, you can request a report of ALL variables or a report of ALL EXCEPT cer-
tain variables.

Sorting.the.Report

SORT statements can be used to sort reports. Reports can be sorted on one or
more variables in either ascending or descending order.

Totals

The GRAND TOTAL statement lets you request a total row at the end of a report.
The SUBTOTAL statement lets you request subtotal rows at any level of a sorted
report. In either type of statement, you can choose the columns that will have
totals. The same report can contain both subtotals and grand totals.

Selecting.Subsets.of.the.Data

A SELECT statement can be used to report on only a subset of the data file. Data
can be selected based on data values, or certain sections or percentages of the data
can be selected. The SELECT statement can contain combinations of logical and
arithmetic tests. Multiple tests on several variables can be strung together with
AND's and OR's.

Computing.New.Values

COMPUTE statements can be used to create new variables by combining variables
from the data file with arithmetic operations. Alternate computations can also be
requested, depending on whether specified conditions are met. Arithmetic opera-
tions allowed in computations include addition, subtraction, multiplication, division,
and exponentiation, plus the absolute value and square root functions.

Recoding.Data

TPL REPORT provides a very powerful RECODE statement for replacing val-
ues with new values or combinations of labels and values. For example, income
amounts can be classified by ranges and code values assigned to the categories. Or
value labels can be displayed in reports in place of values to increase readability.

Overview. .30

Labels

Descriptive print labels can be assigned as report titles, variable labels and value
labels. Labels can include spaces, upper and lower case letters, and special charac-
ters. Break points can be chosen for multiline labels, and alignment can be speci-
fied. In PostScript mode, you can vary the type styles within labels.

Masks

Masks can be used to control the format of values printed in report cells. With a
mask, you can format data to show decimal places, include special characters such
as dollar signs and percent symbols, and specify the alignment of data within a
column. In PostScript mode, you can choose the type style for report cells.

Report.Formatting

Reports can be formatted automatically, but, in addition, many details of report
format can be adjusted with FORMAT statements. Column widths can be altered,
reports can be split into sections on the same page, separate reports can be com-
bined onto the same page, and extensive relabeling can be done. Reports can be
prepared for publication with PostScript, allowing type size, style, and boldness to
be specified. You can also request that a report be turned into a data file, or you
can export the report in CSV (delimited) format.

instaLLing and Running tPL REPORt
Complete instructions for installing and running TPL REPORT are contained in
appendixes to this User Manual. The following is a quick summary of the steps to
produce reports.

1. Write the codebook statements necessary to describe the data file. Run the co-
debook processor to create a codebook "object". If you want to make changes
to your codebook after it has been processed, you can make the changes and
rerun the codebook processor. Otherwise, you only need to do it once. Any
number of TPL REPORT jobs can be run using the same codebook object.

2. Write TPL statements to describe the reports you want. Run the procedure to
produce the reports. This procedure uses your codebook object and your TPL
REPORT statements to read the required data and produce the reports you have
described. You can request that the system print the reports immediately, or
you can print them later. The reports will always be saved on your disk until
you decide to remove them.

Overview. .31

3. If the automatic report format is not acceptable for a report, you can reformat
it using FORMAT statements in a format request. Write the FORMAT state-
ments to make the desired changes and rerun the report job.

Entering.Statements. 32

C h a p t e r 3

Entering.Statements

RuLEs and nOtatiOns fOR COdEbOOks and
REquEsts

Statement.Rules

Codebook, TPL and FORMAT statements are free format; that is, there are no
requirements to begin entries at fixed column positions.

When you enter words using lower case letters, TPL REPORT treats them the
same as upper case letters unless you enclose them in single or double quote marks
(' or ").

For ease of reading, it is best to structure statements so that entries of the same
type are neatly aligned.

Identifiers

Identifiers are names that you create to refer to items such as reports and variables.
They can be up to 30 characters long and can contain letters, numbers, and the
special characters # and underscore (_). An identifier cannot begin with a number
and cannot contain embedded blanks. An identifier is terminated by any character
from the TPL REPORT character set other than a number, a letter, # or _. Letters
can be upper or lower case. When TPL REPORT reads a lower case letter in an
identifier, it converts it to upper case.

Values

Numeric values used as constants can contain embedded decimal points. Optional
zeros can be added to the left of the values. For example, 053 is the same as 53.
Alphabetic values must be enclosed in quote marks. To enter alphabetic values that
contain quotes or the backslash character (\), see the instructions below under Print
Labels.

Entering.Statements. 33

Keywords

TPL REPORT uses many words which identify certain functions and must not
be used as names. These keywords are shown in an appendix. Keywords can be
entered in upper or lower case.

Print.Labels

Data names can be given extensive labels which appear automatically on printed
output. These labels are bounded with quote marks and are not limited in length.
All characters can be used in labels, although the characters ' " and \ require
special treatment. Tabs and carriage returns (typed with the <Enter> key) should
not be used in labels. Tabs are replaced with blanks, and carriage returns are re-
moved when labels are printed.

If you are using single quotes to enclose a label string and need to include a single
quote within the string, use two single quotes where you want the single quote to
print. An example is 'Inside MSA''s', which would print as Inside MSA's if
used in a report. Similar instructions apply to the use of double quotes.

Backslash

To include the backslash (\) character in a string, enter a double backslash (\\) at
the point where you want the backslash to print. This special treatment is neces-
sary because the backslash is used to enter characters that are not on the keyboard.

There are many other label options, all of which are described in a separate chapter
called Creating and Formatting Print Labels.

Entering.Characters.that.Are.Not.on.the.Keyboard

You may have some characters available on your printer that cannot be entered di-
rectly from your keyboard. This is especially true if you want to use special Post-
Script characters as footnote symbols or if you need to enter non-English language
characters with an editor that doesn't support these characters. TPL TABLES
provides two ways to enter characters not on your keyboard. One way is to use
character names and the other is to use character codes.

You can enter the character as a code by typing \nnn (that is backslash followed
by 3 decimal digits) to represent the character.

Three digits are always required. If the character can be represented by fewer than
3 digits, add leading zeros. For example, for a character represented by the code
65, enter \065.

Entering.Statements. 34

The value nnn must be the DECIMAL code for the character. The character code
tables in some software and printer manuals show the octal or hexidecimal codes
for the characters. If you are referring to such a table, you must convert the code
to its decimal equivalent. There are tables in the Character Sets appendix that
show the decimal codes for characters printed in PostScript.

The other way to enter characters not on your keyboard is to use the character
name preceded by & and followed by ;. É is the character name for the
letter E with an acute accent. Character names are case-sensitive. é is e
with an acute accent. See the Appendix Interational for more on entering charac-
ters and the Character Sets appendix for a list of supported names.

Mathematical.Operators

Statements which involve computations use the mathematical symbols of +(ad-
dition), -(subtraction), *(multiplication), /(division), **(exponentiation) and
=(equals). Mathematical symbols need not be separated from other elements by
spaces.

Comment.Entries

You may add your own comments anywhere in a codebook, report request or for-
mat request. Comments allow you to include documentation with your statements.

A comment must begin with /* and end with */. For example,

/* This is a comment. */

All characters can be used in comments. The only exception is the pair of charac-
ters */, since this pair of characters ends a comment.

Entering.Statements. 35

Notation.Used.in.Presenting.Statement.Formats

In this manual, the syntax for TPL REPORT statements is described using a sym-
bolic notation.

• Entries surrounded by [] are optional.
• Vertically stacked entries indicate that one entry must

be chosen.
• Keywords are presented in UPPER CASE.
• Entries presented in lower case are to be replaced

with the proper elements.
• The special delimiters = () ; > < ^ are presented as

they should appear in the statement specification.

The."INCLUDE".Feature

If you have a set of statements or other information that you would like to store
in a separate file and then use in multiple codebooks, report requests or format
requests, you can use the following notation to get this file included in your code-
book or request:

%INCLUDE filename

TPL REPORT will include the contents of the named file during processing of the
codebook or request. You can also use %INCLUDE in a profile.

Some common uses of %INCLUDE are:

1. inclusion of a long list of condition values and labels
that apply to more than one control variable, either
within the same codebook or in multiple codebooks;

2. inclusion of a long RECODE statement in several
report requests;

3. inclusion of a set of FORMAT statements in format
requests that apply to a particular group of reports.

The include notation should be at the beginning of a line and on a line by itself.
NOTE that the include notation must not be followed by a semicolon.

A codebook, request or profile can have multiple "includes".

Entering.Statements. 36

"Nesting" is allowed. This means that an included file can include other files. Ten
levels of nesting are allowed.

If you have an error in an included file and choose to review your output to find
the error message, the review will display the included file as if it is part of the
main codebook, request or profile file. Comments will show where the included
file begins and ends. If you then wish to edit, you must keep track of which file
has the error, because the main file will be transferred to your editor. Do not edit
this file, but, instead, bring the appropriate included file into your editor and correct
the errors in that file before returning to codebook or request processing.

Example Assume that we have three variables in the same codebook that all use the same
long list of country values and labels. The list can be stored in a file called
COUNTRY.LST as follows:

(
 'Australia' = 01
 / 'Northern Europe' /
 'United Kingdom and Ireland' = 02
 ' Austria' = 03
 ' Belgium' = 04
 ' France' = 05
 .
 .
 .
 'New Zealand' = 38
 'Other Oceania' = 39
 / 'N/S' = 40
)

Then in the codebook, we can reference the list for each country variable:

BPF 'Birthplace of father' CON 2
%INCLUDE COUNTRY.LST

BPM 'Birthplace of mother' CON 2
%INCLUDE COUNTRY.LST

CIT 'Country of citizenship' CON 2
%INCLUDE COUNTRY.LST

Entering.Statements. 37

Substitutions.for.Names,.Labels.and.Numbers

You can make substitutions for identifiers (names), strings and numbers in a co-
debook, report request, format request or profile. To do this, you assign a name
to the item you wish to replace and precede the name with the character % (no
blanks between). You fill in the specific name, string or number with a REPLACE
statement.

Note You cannot use REPLACE to substitute for a codebook name.

For example, you might have a set of reports that you produce from time to time
and the only thing that you need to change in your report request is the date ap-
pearing in the report titles. Rather than looking through your report request to find
and change all of the dates to the current date, you would like to make the change
in date just once.

To do this type of substitution, you can give the date a name and use this name in
all of the report titles with the character % in front of the date name. Assuming
the date is called MO_YR, you can write a report title such as:

'Latest information as of ' %MO_YR '.'

Somewhere preceding the first use of MO_YR, you must provide the information
to replace MO_YR. For example:

REPLACE MO_YR WITH 'January, 1996';

For this replacement, the report title will be:

Latest.information.as.of.January,.1996.

You will probably want to put your REPLACE statements at the beginning of the
request, codebook or profile in which they are used so that they will be easy to
find. The only rule with respect to placement is that the REPLACE statement for
%name must always precede the use of %name. For example, you cannot use
%name in a report request and replace it in a format request.

REPLACE statements can be entered at the very beginning or between other state-
ments in requests and in the profile. In a codebook, they can be at the beginning
or between entries such as variables or fillers.

To replace a string, you must use quotes in the REPLACE statement. To replace a
name or number, just provide the replacement name or number without quotes.

Entering.Statements. 38

Examples of number replacement

REPLACE MASK_TYPE WITH 99,999.99;

COMPUTE INCOME MASK $%MASK_TYPE =
 WEEKLY_INCOME * 52;

or

REPLACE THIS_MONTH WITH 3;
REPLACE LAST_MONTH WITH 2;

RECODE CURRENT_MONTHS ON MONTH_CODE;
'This month' IF %THIS_MONTH;
'Last month' IF %LAST_MONTH;

Example of name and label replacement

REPLACE SALES_ITEM WITH AUTOS;
REPLACE SALES_LABEL WITH 'Automobiles';

REPORT R1 'Monthly sales figures for ' %SALES_LABEL :
MONTH DEALERSHIPS %SALES_ITEM;

Putting.REPLACE.Statements.in.%INCLUDE.Files.

If you wish, you can put your REPLACE statements in one or more %INCLUDE
files. This means, for example, that you can change entries for a report request
without changing the request itself. The %INCLUDE must be entered in the re-
quest at a point that precedes the first use of any of the substitutions in the %IN-
CLUDE file.

Example We can redo the preceding example as follows. In a %INCLUDE file called
ITEM, we can enter the REPLACE statements:

REPLACE SALES_ITEM WITH AUTOS;
REPLACE SALES_LABEL WITH 'Automobiles';

In the report request, we can have a %INCLUDE entry:

%INCLUDE ITEM

REPORT R1 'Monthly sales figures for ' %SALES_LABEL :
MONTH DEALERSHIPS %SALES_ITEM;

Entering.Statements. 39

With this approach, we can generate reports for different sales items by changing
only the file called ITEM to substitute the desired item into the report heading and
substitute its description into the report title.

Data.and.Codebooks. 40

C h a p t e r 4

Data.and.Codebooks.

Before requesting reports, you must describe your data file in a codebook so that
TPL REPORT will know the names and locations for the variables that you want to
use in your reports.

Any data file and codebook that can be used with TPL TABLES can also be used
with TPL REPORT. See the following chapters in the TPL TABLES User Manual:

 Chapter 5 Data

 Chapter 6 Codebook

CHAR.Data.Type

The character data type of CHAR, entered in the codebook, can be especially use-
ful for reports. A variable described with a type of CHAR is similar to a CON-
TROL variable, but the possible data values do not need to be listed in the code-
book. An example is:

INDUSTRY CHAR 8

where the variable called INDUSTRY can have any value that is 8 characters long.

Other examples are:

CITY CHAR 20

PERSON_NAME CHAR 30

CHAR variables can be used in any TPL REPORT statements where control vari-
ables can be used. The one exception is the RECODE statement. Only observa-
tion and control variables can be recoded.

Data.and.Codebooks. 41

Tip If you are using TPL REPORT to create a subfile of your original data using the
FORMAT statement called DATA REPORT and you wish to transfer sections of
contiguous variables containing character data, you can use the CHAR data type
to advantage. Describe the sections as CHAR variables in the codebook and use
these CHAR variables in your REPORT statement. The sections of data will be
transferred to the new data file output exactly as they appear in the original file. If
the entire record consists of character data, you can transfer the entire record by
describing it as a single CHAR variable.

NOTE: If your records are very long, you may encounter a limit on the size of
the CHAR variable. If this is a problem for you, please contact QQQ Software.

The FORMAT statements RETAIN BLANKS; and DELETE BLANKS; can be
used to control whether CHAR variables have their leading and trailing blanks
stripped when the values are put into reports. The usual default is DELETE, but
for DATA REPORTS; the default is RETAIN. Otherwise, you could get misalign-
ment of values because of blanks.

Record.Name.Variables

Note that record names assigned in the codebook do not have the same meaning
when used in a REPORT statement as they do when used in a TABLE statement.
If a record name is used in a report, the record number is printed for each record
in the report, whereas in TPL TABLES the record name variable has a value of 1
for each record.

Treatment.of.Data.Errors

If there is an error in one or more values of a data record, you will still get a
report row for that record. A (d) indicator will be placed in the report cell for any
value that has an error. Note that any value is considered valid for a variable of
type CHAR, so for this type of variable, any characters that are printable will be
displayed in the report.

In the following report, we can see that Employee 1 has a data error in the value
for Sex; Employee 2 has a data error in the value for Pay Rate; and Employee 3
has a data error in the value for AGE.

REPORT E1 ’Report using data with errors.’:
 EMPLOYEE SEX POSITION RATE AGE;

Data.and.Codebooks. 42

Report using data with errors.

Row Employee Sex Type of Job Pay Rate AGE

1 1 (d) Clerk/Typist 5.53 23
2 2 m Director of

Operations
(d) 45

3 3 f Staff Secretary 7.35 (d)
4 4 f Executive

Secretary
9.21 33

5 5 m Accounting Clerk 5.00 56

Tip If we want to see what the actual error values are, we can redefine the variables
that have errors and assign a type of CHAR to the redefining variables. This way
any value that is printable will show up in our report. For example:

EMPLOYEE ’Employee’ RECORD

SEX ’Sex’ CONTROL 1
(
 ’Female’ = ’f’
 ’Male’ = ’m’
)
SEX_CHAR REDEFINES SEX CHAR 2

POSITION ’Type of Job’ CHAR 22

RATE ’Pay Rate’ mask 99.99 OBS 7
RATE_CHAR REDEFINES RATE CHAR 7

AGE CONTROL 2 (16:75)
AGE_CHAR REDEFINES AGE CHAR 2

If we use the CHAR versions of the variables in following report, we can see that
Employee 1 has an invalid value of 'c' for Sex; Employee 2 has an invalid value of
'a1.49d1' for Pay Rate; and Employee 3 has an invalid value of 'qq' for AGE.

Data.and.Codebooks. 43

REPORT E2 ’Report displaying error values as CHAR values’:
EMPLOYEE SEX_CHAR POSITION RATE_CHAR AGE_CHAR;

Report displaying error values as CHAR values

Row Employee SEX CHAR Type of Job RATE CHAR AGE CHAR

1 1 c Clerk/Typist 5.5301 23
2 2 m Director of

Operations
a1.49d1 45

3 3 f Staff Secretary 7.3501 qq
4 4 f Executive

Secretary
9.2101 33

5 5 m Accounting Clerk 5.0001 56

Use. 44

C h a p t e r 5

Use

aCCEssing thE COdEbOOk

The USE statement must be the first TPL statement in a report request. It takes the
form:

Format USE codebookname [CODEBOOK];

where 'codebookname' is the name assigned to the codebook description of the data
file to be accessed by the report request. The keyword CODEBOOK is optional
following the codebook name.

The USE statement makes available to all following request statements all names
defined in the codebook.

Example For a codebook named SURVEY, the USE statement would be

USE SURVEY CODEBOOK;

or more simply

USE SURVEY;

Before the codebook is used, it must be processed to create a file named
codebookname.K. In this example, the processed codebook is SURVEY.K . TPL
REPORT assumes that it is in the directory where you are running your report job.

If the processed codebook is not in the directory where you are running your job,
you can enter the path information needed to find the processed codebook. For a
codebook named SURVEY, the following USE statements provide some examples
of acceptable codebook references:

Use. 45

In Windows

USE D:\MY_CBS\SURVEY.K ;

In UNIX

USE ../my_cbs/SURVEY.K ;

In either of the above examples, the .K suffix can be omitted.

Note Comments cannot be inserted in the USE statement between the word USE and the
codebook name.

Report. 46

C h a p t e r 6

Report

thE REPORt statEmEnt

Introduction

Before requesting reports, you must describe your data file in a codebook so that
TPL REPORT will know the names and locations for the data values that you want
to use in reports. Details on the types of data files that can be used and how to
describe them in a codebook are contained in separate chapters. Note that if you
have already prepared a codebook for TPL TABLES, you can use this codebook
with TPL REPORT.

REPORT statements are prepared using an editor and saved in a file called a TPL
report request. The smallest report request contains just a USE statement, telling
TPL REPORT which codebook to use, and a REPORT statement.

The REPORT statement assigns a name to a report and specifies the variables
whose values will be listed for each record included in the report. The order of the
variables in the list determines the order of the columns in the report output. A
SORT statement can be used to control the order of the rows. If no SORT state-
ment is used with the REPORT statement, the rows will be reported in the same
order as the records in the data file. The SORT statement is described in detail in
a separate chapter.

Multiple REPORT statements can be included in the same job. A separate output
file is created for each REPORT statement. A report file name begins with the
report-name assigned in the REPORT statement and ends with the suffix .rep .
For example, if the report-name is IND_REPT, the report is saved in a file called
ind_rept.rep.

Report. 47

Description.of.the.REPORT.Statement
Format REPORT report-name : var1 [var2 var3] ;

The report-name is restricted to 8 characters in length. The variables in the list
can be separated by one or more blanks, a comma or the word THEN.

Examples REPORT REP1 : RECORD_ID ENTERPRISE PRODUCT_CODE SALES ;

REPORT REP2 : ENTERPRISE, PRODUCT_CODE, SALES ;

REPORT SALESREP : RECORD_ID THEN ENTERPRISE THEN SALES;

All variables in the variable list must be in the codebook or otherwise already de-
fined, for example in a COMPUTE statement.

Using.Record.Names.and.Built-in.Variables

If you use a record name from the codebook in a REPORT statement, the value
shown in the report output will be the record number for the named records. This
is different from the treatment of record name in TPL TABLES where the value is
1 for each record.

The built-in observation variable COUNT contains the current record number. For
a flat file, COUNT has the same value as the record name variable. For a hierar-
chical file, COUNT and record name variables have different meanings. See the
"Hierarchies" chapter for details.

The built-in control variable TOTAL that exists in TPL TABLES can also be used
in TPL REPORT. However, since it has a value of 1 for each record, it is not very
interesting if used in a report.

OTHER,.ALL.and.EXCEPT.in.the.Variable.List

OTHER and ALL
The word OTHER can be used in the variable list and means all variables in the
codebook not previously included in the variable list. Since OTHER only refers to
codebook variables, you must explicitly include computed variables in your vari-
able list if you want them in the report.

The word ALL can be used in the variable list and means all variables in the code-
book whether previously referenced in the list or not. As with OTHER, ALL only
refers to codebook variables, so you must explicitly include computed variables in
your variable list if you want them in the report.

Report. 48

The output column order for variables included in the ALL or OTHER categories
is in alphabetical order by variable name. If you want a different order for the
columns, you must list the variables explicitly in the REPORT statement.

EXCEPT
The phrase EXCEPT var1 var2 ... can be included at the end of the variable list
to delete the variables var1 var2 ... from the report if they are already included in
the variable list. If any variable following EXCEPT has not already been included
in the report, EXCEPT will have no effect for that variable. TPL REPORT will
not issue a warning message to tell you this.

As with other variables in the REPORT statement, variables that follow EXCEPT
must already be described in the codebook or created by a previous statement such
as COMPUTE.

The following REPORT statement displays values for all variables in the codebook
except RECORD_ID and REGION.

Example REPORT SALESREP : ALL EXCEPT RECORD_ID REGION;

The word EXCLUDE can be used instead of EXCEPT to mean the same thing.

Example REPORT ONE: ALL EXCLUDE AGE SEX;

Report.Output.Format.

This section describes the automatic report formatting. Many FORMAT state-
ments are available for changing the format defaults. See the FORMAT chapter for
details.

Tip If you have a large data file, your reports may be very large also. To easily check
the format of your reports, use a SELECT statement to choose only a few records
of data. The option that lets you select a specific number of records provides
a good way to do this. Working with only a small number of records, you can
quickly review your results and adjust such things as column width, using the
FORMAT statement called COLUMN WIDTH, until you get the format that is best
for you. Then you can remove the SELECT statement from your report request
and prepare your reports with the complete data file. See the SELECT chapter for
details.

Report. 49

Basic.Format

The report output contains a column of data for each variable included in the
REPORT statement. Each column is headed by its variable name or label at the
beginning of each page of the report. If a report is too wide to fit on one page, it
is automatically broken into as many pages as required to hold all of the columns.
Each page of the report is centered.

The.NUMBER.Variable

NUMBER is a special built-in variable in TPL REPORT. It contains the row
number for each row of data in a report. By default, a NUMBER column is
included as the first column for each page of report output, headed by the label
"Row". If you have a wide report that is broken into sections (called banks) on
multiple pages, you can use the row numbers to match the data rows from page to
page.

The NUMBER column can be referenced as a variable name in FORMAT state-
ments. The format options for NUMBER include moving the column, deleting it
and changing the label. For example:

FOR VARIABLE NUMBER: DELETE COLUMN;

Column.Widths

The default width for each column is based on a combination of factors and
designed to be a compromise between legibility and the amount of data that can
be shown within the page width. The rules are summarized below. In all cases,
the width includes one extra character to allow for a blank space between columns.
The minimum column width that will be assigned automatically is is 4.

The optimal column width for any variable depends on its contents and the re-
quirements of your particular report. Changing the column width is straight-
forward and simple with the FORMAT statement called COLUMN WIDTH. We
recommend that you use this statement if the default width is not appropriate for
your report.

The Defaults
For CONTROL and CHAR variables described in the codebook, if the width of
the variable name is less than the field size, the column width is the same as the
field size plus 1 up to a maximum width of 15. If the variable name is longer than
the field size, the width is expanded to the length of the variable name plus 1.

Report. 50

For variables created by RECODE statements, the column width is the length of
the variable name plus 1.

For OBSERVATION variables, including those computed in the report request, the
column width is 10, unless the variable name is longer. In that case, the column
width is the width of the variable name plus 1.

For the NUMBER variable, the column width is 10. Note that if you use the
FORMAT statement RETAIN SIDE RULES, the first position of the NUMBER
column is used for the left side rule.

Display.Format.for.Data.Values

For CHAR variables, the data values are displayed exactly as found in the data
file, except that leading and trailing blanks are removed for printed reports. If you
use the FORMAT statement DATA REPORTS; to create a data file output, the
blanks will be retained by default. If you wish to change the default treatment for
leading and trailing blanks, see the FORMAT statement called RETAIN (or DE-
LETE) BLANKS.

For CONTROL variables, the data values are displayed exactly as found in the
data file, except that leading and trailing blanks are always removed by default. If
you wish to retain the blanks for a CONTROL variables, you can RECODE it, then
use the new recoded version in your report. For example:

RECODE LNAME_WITH_BLANKS ON LNAME;
VALUE IF ALL;

For variables created by RECODE statements, the values are displayed exactly as
specified.

For OBSERVATION variables, any non-character values, such as binary or floating
point, are converted to character before printing. Print masks are used to format
the data for any variables that have masks specified in the codebook or in a COM-
PUTE statement. The default print mask is integer (i.e. no decimal places) with
commas as the thousands separator. See the chapter called "Masks" for details on
other data formats.

Wide Values
Any value that is too large to print in the space alloted for its column is broken
into as many lines as required to show the value within the width of the column.

Report. 51

Alignment
By default, values are centered. You can change the alignment of OBSERVA-
TION values by specifying a print mask that includes an alignment such as LEFT
or RIGHT. You can change the alignment for all types of values, including CON-
TROL and CHAR, with the FORMAT statement called ALIGN COLUMNS.

Special Indicators in Data Cells
A report cell is a location defined by the intersection of a row and a column. Nor-
mally, a data value is displayed in each report cell.

Sometimes an exact data value cannot be displayed in a cell. When this happens,
TPL REPORT inserts a special indicator in place of the value. The indicators can
be any of the following:

(c) Computation error

(d) Data error

(f) Value does not fit

(n) Value is null

Titles.and..Labels

See the chapter called "Labels" for details on the many options available for titles
and other labels.

Each report page begins with the report title. If you have not included a title in
the REPORT statement, the report name will be used as the title.

Column labels are taken from the variables. If a variable does not have a label,
the variable name is used.

Wide Labels
Any title or other label that is too wide for the available space is broken into mul-
tiple lines.

Report. 52

Sample.REPORT.Request.and.Report.Output

 For this example, we will use the following data file and codebook.

Data.File
f Clerk/Typist 5.53
m Director of Operations 21.49
f Staff Secretary 7.35
f Executive Secretary 9.21
m Accounting Clerk 5.00
f Payroll Clerk 5.19
f Accounting Supervisor 8.65

Codebook
BEGIN JOBS CODEBOOK

EMPLOYEE ’Employee’ RECORD

SEX ’Sex’ CONTROL 1
(
 ’Female’ = ’f’
 ’Male’ = ’m’
)

FILLER 5

POSITION ’Type of Job’ CHAR 22

FILLER 5

RATE ’Pay Rate’ mask $99.99 OBS 5

END JOBS CODEBOOK

Report.Request
USE JOBS CODEBOOK;

REPORT R1: SEX POSITION;

REPORT R2: ALL;

REPORT R3: ALL EXCEPT SEX;
SORT R3 ON RATE(D);

Report. 53

Report.Output

The sample REPORT request produces three reports, one for each statement. Each
report is stored in a separate file with a name built from the report name. The
report file names are r1.rep, r2.rep and r3.rep.

The first two reports are in the order of the data file since there are no associated
SORT statements.

r1.rep
The REPORT statement is:

REPORT R1: SEX POSITION;

The report begins with the NUMBER column that contains the report row numbers
and the label "Row". The next two columns are SEX and POSITION (with the
label "Type of Job"), in the order requested by the REPORT statement. Note that
where the job types are too wide for the default column size, they are automatically
wrapped in the column.

R1

Row Sex Type of Job

1 f Clerk/Typist
2 m Director of

Operations
3 f Staff Secretary
4 f Executive

Secretary
5 m Accounting Clerk
6 f Payroll Clerk
7 f Accounting

Supervisor

r2.rep
The REPORT statement is:

REPORT R2: ALL;

The report contains the NUMBER column. Since the REPORT statement requests
ALL variables, the NUMBER column is followed by a column for each variable
described in the codebook. These columns are in alphabetical order of the variable
names, EMPLOYEE, POSITION, RATE and SEX.

Report. 54

Note that since EMPLOYEE is the record name, its value is the record number.
Since all records are displayed, and the order is the same as the data file order, the
values in the EMPLOYEE column match the values in the NUMBER column.

R2

Row Employee Type of Job Pay Rate Sex

1 1 Clerk/Typist 5.53 f
2 2 Director of

Operations
21.49 m

3 3 Staff Secretary 7.35 f
4 4 Executive

Secretary
9.21 f

5 5 Accounting Clerk 5.00 m
6 6 Payroll Clerk 5.19 f
7 7 Accounting

Supervisor
8.65 f

r3.rep
The last report is sorted in descending order by salary rate as specified by the cor-
responding SORT statement. Since the report is sorted, the report order is differ-
enct from the order of the data file and the values in the NUMBER and EMPLOY-
EE columns do not match.

REPORT R3: ALL EXCEPT SEX;
SORT R3 ON RATE(D);

R3

Row Employee Type of Job Pay Rate

1 2 Director of
Operations

21.49

2 4 Executive
Secretary

9.21

3 7 Accounting
Supervisor

8.65

4 3 Staff Secretary 7.35
5 1 Clerk/Typist 5.53
6 6 Payroll Clerk 5.19
7 5 Accounting Clerk 5.00

Sort. 55

C h a p t e r 7

Sort

sORting REPORts

The SORT statement lets you choose a specific order for your report output that is
based on the values of particular variables. If you do not have a SORT statement
for a report, the rows of the report are listed in the order of the data file.

The SORT statement references a particular REPORT statement. It lists one or
more variables and the sort order desired for each.

Format SORT [FOR] [REPORT] report-name ON var1(a) var2(d) ;

where the “a” or “d” in parentheses are optional choices of sort order. If they are
not included, the sort order is ascending. Use an “a” to indicate ascending order
(the default order) or a “d” to indicate descending order for a particular variable.

In general, the definitions of “ascending” and “descending” will be what you
expect, but you should note that for variables of type CONTROL, the order will
match the display order given in the codebook. The default display order is “DIS-
PLAY AS LISTED”. This means that the values are sorted in the order of their
listing in the codebook. Thus, if ‘z’ is listed before ‘a’, an ascending order in the
SORT statement will result in ‘z’ rows appearing before ‘a’ rows. If you want TPL
REPORT to put the values for this type of variable into sort sequence rather than
listed sequence, you must add the clause “DISPLAY AS SORTED” in the code-
book description of that variable.

The variables in the SORT statement need not be the same as the variables named
in the corresponding REPORT statement.

Variables created with RECODE statements cannot be used in a SORT statement.

Sort. 56

Example REPORT REP1 : REGION RECORD_ID ENTERPRISE
 PRODUCT_CODE SALES ;

SORT REPORT REP1 ON REGION(d) PRODUCT_CODE;

In this example, the sort order for the report follows the order of the variables in
the SORT statement. The first variable determines the primary sort order, the sec-
ond variable determines the secondary order, and so on. In the above example, the
report is sorted by REGION in descending order and, within REGION, sorted by
PRODUCT_CODE in ascending (the default) order.

If a SORT statement is used, only the variables named in the SORT statement will
affect the order of the report rows. Values for other variables will not cause a pre-
dictable order. For example, if you name SEX as the sort variable where SEX has
values 1 and 2, all rows with SEX value 1 will be sorted together and all rows with
SEX value 2 will be sorted together, but within either SEX the row order cannot be
predicted.

Example In the following shipping report, the rows are sorted by dollar amount of shipment
from the highest to the lowest (descending order) within type of shipping service
(Tanker, Tramp, ...).

REPORT S1 'Shipping report sorted by type of service and dollar value':
TYPE_SERVICE THEN DOLLARS THEN STONS THEN NEW COUNTRY;

SORT REPORT S1 ON TYPE_SERVICE DOLLARS(D);

Sort. 57

Shipping report sorted by type of service and dollar value

Row Type of Service Dollars Short Tons Country

1 Tanker 8,948,210 48,369 201 MEXICO
2 Tanker 7,584,000 33,841 225 PANAMA
3 Tanker 841,260 2,208 201 MEXICO
4 Tanker 820,913 22,048 241 JAMAICA
5 Tanker 809,327 1,332 201 MEXICO
6 Tanker 651,349 18,866 122 CANADA
7 Tanker 504,584 1,328 241 JAMAICA
8 Tanker 282,986 4,173 219 NICARAGUA
9 Tanker 192,867 3,717 247 DOMINICAN

REPUBLIC
10 Tramp 1,976,939 12,107 122 CANADA
11 Tramp 1,869,970 15,383 241 JAMAICA
12 Tramp 577,745 3,300 247 DOMINICAN

REPUBLIC
13 Tramp 517,371 2,756 215 HONDURAS
14 Tramp 444,049 3,703 205 GUATEMALA
15 Tramp 348,339 818 201 MEXICO
16 Tramp 197,046 1,358 225 PANAMA
17 Tramp 165,718 4,510 245 HAITI
18 Tramp 97,768 2,629 201 MEXICO
19 Tramp 3,962 2 211 EL SALVADOR

TOP.n.Option.for.SORT

You can include one TOP n specification in the variable list of a SORT statement
to filter the report so that it includes only records that belong to the top categories.

Format SORT [FOR] [REPORT] report-name ON [var1] TOP-n-clause [var2] ;

The format for the TOP-n-clause is:

TOP n rep-var RANKED ON obs-var

where rep-var can be any variable, obs-var can be any observation variable, and
n is an integer. Normally, you will want to use only variables that are included in
the corresponding REPORT statement, since the results will be difficult to interpret
otherwise. The clause can be interpreted as, “Within each value of rep-var, aggre-
gate the obs-var values and report all records in the top n categories of rep-var.”

Example REPORT REP1 'Top Sales Regions' : REGION SALES ;

SORT REP1 ON TOP.3.REGION.RANKED.ON.SALES ;

Sort. 58

In this example, TPL REPORT will find the regions with the top 3 total sales and
report all records in those regions.

Following are the REGION and SALES values for 11 records:

Northeast 50000
Northeast 50000
Northwest 150000
Northwest 50000
Northcentral 250000
Southeast. 100000
Southeast. 100000
Southeast. 100000
Southwest. 200000
Southwest. 200000
Southcentral. 350000

After aggregating the SALES amounts for all of the records in each REGION, we
find that the top 3 regions are the ones in the South.

Northeast 100000
Northwest 200000
Northcentral 250000
Southeast. . 300000
Southwest. . 400000
Southcentral. . 350000

All of the records in these three regions will be included in the report and listed in
order of REGION as follows:

Top Sales Regions

Row REGION SALES

1 Southcentral 350,000
2 Southeast 100,000
3 Southeast 100,000
4 Southeast 100,000
5 Southwest 200,000
6 Southwest 200,000

We can also request sales subtotals for the top 3 regions, as shown in the next ex-
ample. For complete details on totals and subtotals, see the chapter called "Totals".

Sort. 59

REPORT REP2 ’Top Sales Regions with Sales Totals’: REGION SALES;
SORT REP2 ON TOP 3 REGION RANKED ON SALES;

SUBTOTAL SALES_TOTAL ’Total Sales for Region’ ON
 REGION REPORT REP2;
DISPLAY SALES;

Top Sales Regions with Sales
Totals

Row REGION SALES

1 Southcentral 350,000
Total Sales
for Region

350,000

2 Southeast 100,000
3 Southeast 100,000
4 Southeast 100,000

Total Sales
for Region

300,000

5 Southwest 200,000
6 Southwest 200,000

Total Sales
for Region

400,000

Note If there is a tie between categories (regions in this example), the number of
regions chosen will still be limited to 3. In the following, we have a tie between
Northeast and Southeast. Only one of these two regions will be included in the top
3.

Northeast. . 300000
Northwest 200000
Northcentral 250000
Southeast. . 300000
Southwest. . 400000
Southcentral. . 350000

If there are were fewer than 3 regions represented in the data, for example only 2,
then only the records from the 2 regions could be reported.

There can be only one TOP-n-clause in a SORT statement, but it can be inserted
anywhere in the variable list. The placement determines the number of categories
for which records will be reported according to ranking. For example, we can take
the REPORT and SORT statements above and insert PRODUCT_CODE as follows:

Sort. 60

REPORT REP1 'Top Sales Regions' : PRODUCT_CODE REGION SALES ;

SORT REP1 ON PRODUCT_CODE
 TOP 3 REGION RANKED ON SALES;

We will get the TOP 3 regions ranked by sales within each PRODUCT_CODE.

To.Get.the.Bottom-Ranked.Records.Instead.of.the.Top

If you want to get the records that rank at the bottom rather than the top, you
should compute a new observation variable for the ranking using negative values.
Then the new variable can be used in the TOP n clause to get the lowest-ranked
records. The original variable should be used in the REPORT statement so that the
original, positive values will be displayed.

Example COMPUTE NEG_SALES = -.SALES;

REPORT REP1_N 'Lowest-ranked Sales Regions': REGION SALES;
SORT REP1_N ON TOP 3 REGION RANKED ON NEG_SALES;

Record.Names,.COUNT.and.TOTAL

When a record name from the codebook is used in a report, the record number is
displayed for each record in the report. There may be cases in which it is useful
to reference a record name as the rep-var. Assume that we wish to see 4 re-
cords with top values for SALES, regardless of any other characteristic. Assume
also that the record name in the codebook is SALES_RECORD. Then we could
specify:

REPORT REP3 'Top 4 Sales Records': SALES_RECORD REGION SALES;

SORT REP3 ON TOP 4 SALES_RECORD RANKED ON SALES;

The report will then include only 4 records listed in record order:

Top 4 Sales Records

Row SALES RECORD REGION SALES

1 5 Northcentral 250,000
2 9 Southwest 200,000
3 10 Southwest 200,000
4 11 Southcentral 350,000

Sort. 61

Note that if there are more than 4 records with the top sales value, only 4 of them
will be shown in the report, because each record number is unique.

In a file with only one type of record (non-hierarchical), the built-in variable
COUNT can be used in the TOP n clause with the similar results, since the value
of COUNT is the same as the record number when there is only one type of re-
cord.

If the built-in variable TOTAL is used in the TOP n clause, the results will be
meaningless.

Note.on.TOP.n.and.Negative.Values

When you request, for example, TOP 3 X RANKED ON Y, the algebraic sum of Y
values is used to determine its ranking. Thus, if values for Y are negative, a sum
of 0 could be the top ranked value.

If you want the sum of the absolute values to determine the ranking, then you
should compute the sum of absolute values:

COMPUTE NEW_Y = ABS(Y);

Use the NEW_Y variable in place of the Y variable in your TOP n clause.

Totals. 62

C h a p t e r 8

Totals

thE subtOtaL and gRand tOtaL
statEmEnts

Subtotals

Subtotals can be displayed for sorted reports. To request subtotals, use a SUBTO-
TAL statement with a DISPLAY clause. The SUBTOTAL statement tells where a
subtotal should be inserted; the DISPLAY clause tells what should be subtotalled,
i.e. for which variables you want the subtotals to be displayed.

The.SUBTOTAL.Statement
Format SUBTOTAL subtotal-name [subtotal-label] ON sort-var

 [FOR] REPORT report-name;

Each SUBTOTAL statement applies to the single sorted report referenced by
report-name. The sort-var named in the statement can be any variable named in
the SORT statement for the report. A subtotal row will be inserted whenever there
is a change in value for that variable from one row to the next.

The sort-var can be an OBSERVATION, CONTROL or CHAR variable. Only one
variable can be named in a single SUBTOTAL statement. If you want to have sub-
totals inserted at more than one location is a report, use an additional SUBTOTAL
statement for each location.

The subtotal-name is required. The subtotal-label is optional. The default label
is ‘Subtotal’.

Totals. 63

The.DISPLAY.Clause
Format DISPLAY ALL ;
 obs-var-1 [MASK mask] [.... obs-var-n [MASK mask]] ;

Each SUBTOTAL statement needs a DISPLAY clause. With DISPLAY, you name
the variables whose subtotals you want to display in the subtotal rows.

1. DISPLAY ALL; gives subtotals for all observation variables named in the
REPORT statement. If ALL variables are in the report, then subtotals are dis-
played for all of the observation variables.

2. DISPLAY can choose specific observation variables from those named in the
REPORT statement. If the REPORT statement specifies ALL variables, then
any of the observation variables can be chosen.

How.Subtotals.Are.Displayed

Subtotals are displayed as separate lines without row numbers. The subtotal labels
are displayed in the NUMBER column if it is present. If the NUMBER column
has been deleted, there will be no labels for the subtotal lines. Each subtotal line
immediately follows a detail report row. If the subtotal label is broken into mul-
tiple lines, the subtotal values will be on the same line as the first line of the label.
The next detail row follows immediately after the subtotal line, or the last line of
the subtotal label, if present.

For each observation variable chosen by the DISPLAY statement, there will be
a subtotal entry in that variable’s column on the subtotal lines. If the report is
banked, each bank will include subtotal lines, and labels if present, but the subto-
tals will only appear in the bank(s) where the DISPLAY variables occur.

Example REPORT T1 ’Shipping report by month and country with subtotals '
 'for each month’:

MONTH THEN COUNTRY THEN DOLLARS THEN TONS;
SORT T1 ON MONTH COUNTRY;
SUBTOTAL MONTH_TOT ON MONTH FOR REPORT T1;
 DISPLAY DOLLARS MASK ’$’9,999,999 TONS mask 99,999;

The report is sorted by MONTH and COUNTRY. Monthly subtotals are calculated
for DOLLARS and TONS. These subtotals are displayed following the last row
for each MONTH. Since no label is included in the SUBTOTAL statement, the
subtotal lines have the default label 'Subtotal'.

Totals. 64

Shipping report by month and country with subtotals for
each month

Row MONTH COUNTRY Dollars Short Tons

1 01 201 MEXICO 63,282 5,577
2 01 201 MEXICO 573,804 14,584
3 01 201 MEXICO 833,647 1,657
4 01 247 DOMINICAN

REPUBLIC
500,206 2,965

5 01 247 DOMINICAN
REPUBLIC

560,028 3,199

6 01 283 FRENCH WEST
INDIES

323,471 5,943

529,33834,458,2$latotbuS
7 02 122 CANADA 651,349 18,866
8 02 201 MEXICO 31,516 2,638
9 02 211 EL SALVADOR 1,280,167 7,200
10 02 215 HONDURAS 110,000 1,550
11 02 225 PANAMA 245,882 1,523
12 02 241 JAMAICA 12,990,192 53,680
13 02 241 JAMAICA 1,437,435 6,653

845,1807,832ITIAH 5422041
706739,12ITIAH 5422051
562,49681,700,71$latotbuS

16 03 122 CANADA 1,541,819 9,590
17 03 201 MEXICO 841,260 2,208
18 03 201 MEXICO 776,657 1,284
19 03 201 MEXICO 407,641 4,077
20 03 201 MEXICO 8,948,210 48,369
21 03 211 EL SALVADOR 567,294 3,466
22 03 225 PANAMA 23,487 1,958
23 03 241 JAMAICA 7,554,538 37,813

567,801609,066,02$latotbuS
24 04 122 CANADA 1,793,309 30,219
25 04 201 MEXICO 809,327 1,332
26 04 201 MEXICO 1,498,450 4,543
27 04 205 GUATEMALA 55,230 331
28 04 241 JAMAICA 675,317 2,451

678,83336,138,4$latotbuS
29 05 201 MEXICO 389,504 5,607
30 05 205 GUATEMALA 1,403 3
31 05 211 EL SALVADOR 9,968 19
32 05 225 PANAMA 7,584,000 33,841

074,93578,489,7$latotbuS

Totals. 65

Grand.Totals

The GRAND TOTAL statement is a simple version of the SUBTOTAL statement.
You do not need to specify the location for the grand total or sort the report, be-
cause grand totals are calculated for the entire report and placed at the end.

Format GRAND TOTAL gt-name [gt-label] [FOR] REPORT report-name ;

DISPLAY ALL ;
 obs-var-1 [MASK mask] [.... obs-var-n [MASK mask]] ;

Note that GRAND TOTAL can be two words or one, as in GRANDTOTAL.

The gt-name is required. The gt-label is optional. The default label is ‘Total’.

Each GRAND TOTAL statement applies to a single report.

Each GRAND TOTAL statement must include a DISPLAY clause. With DIS-
PLAY, you name the variables whose totals you want to display at the end of the
report.

1. DISPLAY can choose specific observation variables from those named in the
REPORT statement. If the REPORT statement specifies ALL variables, then
any of the observation variables can be chosen.

2. DISPLAY ALL; gives totals for all observation variables named in the RE-
PORT statement. If ALL variables are in the report, then totals are displayed
for all of the observation variables.

Example REPORT T2 ’Shipping report with grand totals’:
MONTH THEN COUNTRY THEN DOLLARS THEN TONS;
SORT T2 ON MONTH COUNTRY;
GRAND TOTAL GT FOR REPORT T2;
DISPLAY ALL;

For REPORT T2, totals are calculated for all observation variables and displayed at
the end of the report with the label 'Total'.

Totals. 66

Shipping report with grand totals

Row MONTH COUNTRY Dollars Short Tons

1 01 122 CANADA 945,716 5,846
2 01 201 MEXICO 348,339 818
3 01 201 MEXICO 63,282 5,577
4 01 201 MEXICO 573,804 14,584
5 01 205 GUATEMALA 1,268,846 7,767
6 01 215 HONDURAS 210,000 2,868
7 01 219 NICARAGUA 282,986 4,173
8 01 225 PANAMA 33,427 2,607
9 01 247 DOMINICAN

REPUBLIC
560,028 3,199

10 02 201 MEXICO 686,947 1,803
11 02 219 NICARAGUA 25,259 660
12 02 241 JAMAICA 1,437,435 6,653
13 03 122 CANADA 1,458,515 9,514
14 03 201 MEXICO 8,948,210 48,369
15 03 201 MEXICO 407,641 4,077
16 03 225 PANAMA 1,686,577 7,899
17 03 241 JAMAICA 164,851 4,446
18 03 247 DOMINICAN

REPUBLIC
577,745 3,300

19 04 201 MEXICO 1,441,891 3,252
20 04 201 MEXICO 1,498,450 4,543
21 04 201 MEXICO 809,327 1,332
22 04 247 DOMINICAN

REPUBLIC
192,867 3,717

23 04 247 DOMINICAN
REPUBLIC

230,719 1,652

24 05 201 MEXICO 97,768 2,572
25 05 205 GUATEMALA 5,905 6

Total 23,956,535 151,234

Totals. 67

Subtotals.and.Grand.Totals.in.the.Same.Report

The same report can contain both subtotals and grand totals. In the following
example, subtotals and a total are calculated for all observation variables in the
report.

REPORT T3 ’Shipping report with subtotals and grand total’:
MONTH THEN COUNTRY THEN DOLLARS THEN TONS;

SORT T3 ON MONTH COUNTRY;

SUBTOTAL MONTH_TOT ’Month subtotals’ ON MONTH FOR REPORT T3;
 DISPLAY ALL;
SUBTOTAL COUNTRY_TOT ’Country subtotals’ ON COUNTRY
 FOR REPORT T3;
 DISPLAY ALL;
GRAND TOTAL GT FOR REPORT T2;
 DISPLAY ALL;

Totals. 68

Shipping report with subtotals and grand total

Row MONTH COUNTRY Dollars Short Tons

1 01 201 MEXICO 855,715 1
2 01 201 MEXICO 348,339 818
3 01 201 MEXICO 1,564,748 5,111
4 01 201 MEXICO 573,804 14,584

Country subtotals 3,342,606 20,514
5 01 219 NICARAGUA 282,986 4,173

Country subtotals 282,986 4,173
6 01 241 JAMAICA 5,360,348 37,482

Country subtotals 5,360,348 37,482
7 01 247 DOMINICAN

REPUBLIC
560,028 3,199

Country subtotals 560,028 3,199
Month subtotals 9,545,968 65,368

8 02 122 CANADA 753,536 7,223
Country subtotals 753,536 7,223

9 02 223 COSTA RICA 256,739 1,608
Country subtotals 256,739 1,608

10 02 245 HAITI 85,025 484
Country subtotals 85,025 484
Month subtotals 1,095,300 9,315

11 03 122 CANADA 1,458,515 9,514
Country subtotals 1,458,515 9,514

12 03 201 MEXICO 407,641 4,077
Country subtotals 407,641 4,077

13 03 205 GUATEMALA 1,623,436 8,373
14 03 205 GUATEMALA 769,402 5,069

Country subtotals 2,392,838 13,442
15 03 225 PANAMA 1,686,577 7,899

Country subtotals 1,686,577 7,899
16 03 241 JAMAICA 7,554,538 37,813

Country subtotals 7,554,538 37,813
17 03 247 DOMINICAN

REPUBLIC
577,745 3,300

Country subtotals 577,745 3,300
Month subtotals 14,077,854 76,045

18 04 247 DOMINICAN
REPUBLIC

230,719 1,652

Country subtotals 230,719 1,652
Month subtotals 230,719 1,652

19 05 122 CANADA 749,796 19,243
Country subtotals 749,796 19,243

20 05 201 MEXICO 97,768 2,572
Country subtotals 97,768 2,572

21 05 225 PANAMA 7,584,000 33,841
Country subtotals 7,584,000 33,841
Month subtotals 8,431,564 55,656

Total 33,381,405 208,036

Totals. 69

Use.of.Record.Names.and.COUNT.in.Subtotals.and.Grand.
Totals

If your use either a record name from the codebook or the built-in variable
COUNT as display variables for totals, you will get the count of records contribut-
ing to the totals.

In the following report request, both the record name and COUNT are used as
display variables for a subtotal based on the variable Sex.

USE jobs CODEBOOK;

REPORT tr ’Record name and count in subtotals.’:
 sex employee COUNT rate;

SORT tr ON sex;

SUBTOTAL st ON sex FOR REPORT r;
DISPLAY employee COUNT rate;

Record name and count in subtotals.

Row Sex Employee Count Pay Rate

1 f 6 6 5.19
2 f 1 1 5.53
3 f 3 3 7.35
4 f 7 7 8.65
5 f 4 4 9.21

Subtotal 5 5 35.93
6 m 2 2 21.49
7 m 5 5 5.00

Subtotal 2 2 26.49

The record name is Employee. As you can see in the report, the subtotal values
for Employee and COUNT are the same. The subtotal for Sex = 'f' has 5 records
contributing, while the subtotal for Sex = 'm' has 2 records contributing.

Totals. 70

Referencing.Subtotals.and.Grand.Totals.in.FORMAT.State-
ments

SUBTOTAL and GRAND TOTAL names can be referenced in FORMAT state-
ments, for example. to replace labels. Use:

FOR VARIABLE subt-name: action; or

FOR VARIABLE gt-name: action;

Example FOR VARIABLE sex_subt: REPLACE LABEL WITH ‘Sex Subtotal’;

Select. 71

C h a p t e r 9

Select

sELECting subsEts Of thE data

The SELECT statement specifies conditions that must be met by each record of the
data file to qualify for inclusion in the reports.

The SELECT statement applies to all reports within the request and normally ap-
pears immediately after the USE statement. If more than one SELECT statement
is used in the request, the conditions in all SELECT statements must be met for a
record to be included in the reports.

Note that if your data file is hierarchical, the unit to be selected will be a hierarchi-
cal unit rather than a single record. The chapter on processing hierarchical files
contains additional information on this subject.

Data can be selected based on data values, or certain sections or percentages of the
data can be selected.

Selection.Based.on.Data.Values

Format This type of selection takes one of the following two forms:

SELECT IF condition1 [AND condition2.....];
 UNLESS OR

 or,

SELECT IF NOT (condition1 [AND condition2...]);
 UNLESS OR

Select. 72

Examples. SELECT IF ACCOUNT NOT = 24765;

SELECT IF ACCOUNT IS NOT EQUAL TO 24765;

SELECT UNLESS (REGION = 'A1' AND INCOME <= 12000);

SELECT IF (INCOME >= 12000 AND INCOME < 20000) OR
 (STATE = MONTANA AND
 (OCCUPATION = 1 OR OCCUPATION = 5));

SELECT IF OCC_CODE IN (2000, 2001, 2002, 2003, 3000)
 AND INCOME >= 30000;

SELECT IF OCCUPATION = ACCOUNTANT AND
 NOT (REGION = 'D3' OR REGION = 'E5');

SELECT UNLESS (STATE='CA' AND
 (JOB_BANK=10 OR JOB_BANK=20))
 OR (STATE='IL' AND (JOB_BANK=13 OR
 JOB_BANK=15));

When the IF option is used, all records meeting the conditions will be selected.
When the UNLESS or IF NOT option is used, all records which do not satisfy the
conditions will be selected. If no SELECT statement appears in the request, all
records will be included in the reports, regardless of their characteristics.

A condition expresses a relationship or a set of values. It can include codebook
variables, computed variables, literal values, and arithmetic expressions.

Relations can be expressed by either symbols or words. The words IS and TO are
optional. Following is a list of the relation symbols and their English equivalents:

. Symbol English.expression

 < [IS] LESS THAN
 > [IS] GREATER THAN
 = [IS] EQUAL [TO]
 EQUALS
 ^< [IS] NOT LESS THAN
 ^> [IS] NOT GREATER THAN
 ^= [IS] NOT EQUAL [TO]
 <= [IS] LESS THAN OR EQUAL [TO]
 >= [IS] GREATER THAN OR EQUAL [TO]

Select. 73

Types.of.Conditions

A condition can test for a relationship, or it can test a variable to see if it has any
of the values specified in a set of values. We first describe how relationships can
be tested, then follow with a section on sets of values.

Relationships
A condition that tests a relationship can take several forms. In each form which
follows, re stands for a relation.

• Comparing a variable to a value

Format variable re literal-value

In this type of condition, the variable is compared to a literal-value.

Examples. SELECT IF AMOUNT < 100.75;
SELECT IF REGION = 'A1';

In the first example, the statement would cause selection of all records with an
AMOUNT less than 100.75. In the second example, selection would be of all
records containing the value 'A1' for the control variable REGION.

The variable in the condition can be any codebook or computed variable, and
literal-value can be a number or a character string.

If the variable is an observation variable, the value can be a number, with or with-
out a sign. The number can contain a decimal point but no commas.

If a control variable is compared to a literal value that is not all numeric, the value
must be surrounded by quote marks.

If the variable is a char variable, the value must be surrounded by quote marks and
must include any leading blanks or zeros. The only relations that should be used
with char variables are equal '=' and not equal '^='. If other relations are used, the
results are unpredictable. For example, if LAST_NAME is a char variable,

Example SELECT IF LAST_NAME = 'Smith' ;

will successfully select all records with a value of 'Smith' for LAST_NAME if the
value 'Smith' is left-aligned, i.e. not preceded by blanks in the data records.

When the same variable is compared with two or more distinct values, the subject
must be repeated each time. For example:

Select. 74

Example SELECT IF AGE=14 OR AGE=18 OR AGE=29;

For a simplified way of expressing this type of condition, see the section on Sets of
values.

If the "DISPLAY AS SORTED" clause is not used with a codebook control vari-
able, all references to a range of values expressed in a SELECT must be based on
the order of the conditions listed, rather than the sorted sequence of the condition
values. For example, consider the following control variable entry:

REGION CON 1
 (
 SW = 'D'
 NW = 'C'
 SE = 'B'
 NE = 'A'
)

Since the "DISPLAY AS SORTED" clause is not used, the region value of 'A' is
considered to be greater than 'D' since 'A' is listed after 'D'. In a SELECT state-
ment, a reference to REGION > 'C' would select region codes of 'B' and 'A'. A
SELECT statement such as "SELECT IF REGION > 'A'" would result in an error
message since 'A' is considered to be the highest (last listed) value of region.

Observation variables can be tested for null values, but if a null-valued variable is
tested for a value other than null, the test will fail. For example, the test: x > 0
will fail if the value of x is NULL.

• Arithmetic expressions

Conditions can include arithmetic expressions. Any arithmetic expression allowed
in the COMPUTE statement can be used in the SELECT statement. See the chap-
ter called "Compute" for complete details on arithmetic expressions.

Arithmetic operations can contain only observation variables and numbers. The
result of a computation can be compared to an observation variable, a number, or
another arithmetic expression.

Example. SELECT IF ANNUAL_INCOME / 12 > 2000;

Select. 75

• Comparing one variable to another

Format name1 re name2

where the names refer to codebook or computed variables. Name1 and name2
must be the same type of variable: observation, control or char. For example, a
control variable cannot be compared to an observation variable.

If control or char variables are being compared, their values must have the same
justification and padding for the comparisons to work correctly.

Example. SELECT IF STATE_OF_RESIDENCE = STATE_OF_EMPLOYMENT;

• Comparing a control variable to a condition name

Format control-name re control-condition-name

A control variable name may be used to identify one of its conditions by referenc-
ing it by condition name rather than condition value.

Example. (codebook)
STATE CON 2
 (
 ALABAMA = 1

.
 MARYLAND = 26

)

(request)
SELECT IF STATE = MARYLAND;

Sets of Values
Another type of condition lets you select records that have any of the values speci-
fied in a set of values. This feature is particularly useful if you need to select for
a long list of values.

The format for entering a set of values in a SELECT statement is:

Format SELECT IF var IN (val1, val2, val3,);

where val1, val2, val3, etc. are distinct values. Values must be separated by com-
mas. Non-numeric values must be surrounded by quote marks. For observation
variables, negative values such as -25 cannot be used in sets.

Select. 76

Comparisons such as less than or greater than cannot be used, but you can enter
ranges of values separated by :, - or the word TO. For example, ranges such as
3:5, 3-5 or 3 TO 5 are allowed.

Example. SELECT IF INDUSTRY IN (1000, 2000, 3000:3999);

If the variable INDUSTRY has the value 1000, 2000, or any of the values 3000
through 3999, the record will be selected. This example gives the same result as
the statement:

SELECT IF INDUSTRY = 1000 OR INDUSTRY = 2000
 OR INDUSTRY >= 3000 AND INDUSTRY <= 3999;

The word IN cannot be preceded by the word NOT. If you want to select records
that do NOT have any of the values in the set, you can specify:

SELECT IF NOT (var IN (val1, val2, val3,));

Selecting records on the basis of a set of values will give more efficient processing
than the individual comparisons if there are more than a few (e.g. 3 or 4) values in
the set.

The clause var IN (set of values) can be used alone in the SELECT statement
as shown in the preceding example, or it can be combined with other conditions.
An example that combines the set of values with other conditions is:

SELECT IF REGION = 3 AND (INDUSTRY IN (410, 420, 425)
 OR INDUSTRY >= 450);

Records will be selected if they have REGION code 3 and INDUSTRY code
greater than or equal to 450 or equal to 410, 420 or 425.

• Sets of CHAR values

If you are listing values for a CHAR variable and the values are all numeric, you
do not need to enclose them in quotes. Non-numeric values must be enclosed in
quotes. If they are shorter than the field width, you must enclose them in quotes
and include any leading blanks or zeros. Otherwise, you will not get a match and
nothing will be selected for these values. Trailing blanks need not be included in
the quotes, but a good general rule is to make the value within the quotes have the
same length and padding as the value in the data. The length should be the length
given for the variable in the codebook. For example, if you have

INDUSTRY CHAR 5

Select. 77

in the codebook, where some INDUSTRY values are less then 5 characters and
filled on the left with blanks, an example of a correct SELECT statement for a set
of INDUSTRY values is:

SELECT IF INDUSTRY IN (’ 410’, ’ 4420’, ’66425’);

Compound.Conditions

You can use compound conditions consisting of clauses separated by AND and OR.
There is no limit to the number of compound conditions per statement. Conditions
may be grouped by the use of parentheses to determine the order of evaluation.
When parentheses are used, evaluation begins with the conditions contained in the
inner-most sets of parentheses.

If the order of evaluation is not specified by parentheses, the expression is evalu-
ated in the following order:

• arithmetic expressions

• relational operators

• AND and its surrounding conditions, starting at

the left of the expression and proceeding to the right

• OR and its surrounding conditions, also

proceeding from left to right

An expression such as:

SELECT IF A = B AND D > E OR F <= WEIGHT * INCOME;

would be evaluated as:

SELECT IF ((A = B) AND (D > E)) OR
 (F <= (WEIGHT * INCOME));

Using.Record.Names.and.COUNT.in.Conditions

Both record name variables and the built-in variable COUNT are observations vari-
ables that can be used in SELECT conditions wherever other observation variables
are allowed. This means that you can select specific records or groups of records
based on the record numbers.

In a file with only one record type, the record name variable and the built-in vari-
able COUNT both take on the record number, so you can select records on either
one with the same results. Note that in a hierarchical file, there can be more than

Select. 78

one type of record, so the record number is different from COUNT. See the chap-
ter on "Hierarchies" for details.

Assume that in a file with only one type of record, the record name in the co-
debook is PERSON. We can select the 345th person record with the following
SELECT statement:

SELECT IF PERSON = 345;

We can select the first 10 records with the statement:

SELECT IF PERSON <= 10;

In the following report request, we select a set of record numbers: 11, 89, 113,
and 162.

SELECT if count in (11, 89, 113, 162);

RECODE hh_educ 'Education' on education;
label if all;

REPORT IN_SET 'Household records 11, 89, 113 and 162.':
count then state_code then hh_educ then income;

Household records 11, 89, 113 and 162.

Row Count State code Education Income

1 11 05 High
School

Graduate

37,535

2 89 27 Some
College

30,750

3 113 15 High
School

Graduate

32,125

4 162 45 High
School

Graduate

20,316

Select. 79

Selection.Using.the.NUMBER.and.PERCENT.Options

The SELECT percent and SELECT number options of the SELECT statement let
you select a subset of your data without regard to the data values. Instead, they
allow you to select a specific section of your data or a randomly selected percent-
age of your data. These options are especially useful when you have a very large
data file, because they enable you to experiment with your report requests without
processing all of the data.

Format. SELECT number % ;
 number PERCENT ;
 number ;
 number START number;
 number record-name ;
 number record-name START number;

Examples. SELECT 10 %;
 SELECT 20;
 SELECT 20 START 200;
 SELECT 20 MEMBERS;

SELECT.Percent

The SELECT percent statement gives you a representative sample of your data. If
you select 1% of your data then as each record is read, a function is applied which
gives it a 1% probability of being selected. Note that the exact records selected
and even the exact number of records selected is not fixed. In some cases, more
than 1% of the records will be selected. In other cases, less than 1% will be se-
lected. If you run the same job multiple times, you will get different numbers in
your reports each time.

Tip Since the built-in variable COUNT has the record number as the value, you can
use it in your report to see which records were selected. In the following example,
we select approximately 2% of the records from a file containing 1052 records. In
the run shown below, we get a report containing 19 records. We have included the
variable COUNT in the report, so we can see that we have selected records 11, 89,
113, 162, 164 and so on.

SELECT 2%;

RECODE hh_educ ’Education’ ON education;
LABEL IF ALL;

REPORT SEL_PCT ’Approximately 2% of household records’:
COUNT THEN state_code THEN hh_educ THEN income;

Select. 80

Approximately 2% of household records.

Row Count
State
code Education Income

1 11 05 High School Graduate 37,535
2 89 27 Some College 30,750
3 113 15 High School Graduate 32,125
4 162 45 High School Graduate 20,316
5 164 16 8 years or less 13,901
6 268 02 College Graduate 36,263
7 338 02 Some College 4,666
8 450 25 Some College 73,550
9 495 25 High School Graduate 22,547
10 532 25 8 years or less 9,102
11 641 42 College Graduate 78,850
12 665 09 8 years or less 23,367
13 675 09 8 years or less 4,437
14 701 02 8 years or less 4,944
15 720 02 8 years or less 7,255
16 831 09 Post Graduate 67,500
17 853 09 High School Graduate 56,342
18 974 02 College Graduate 26,328
19 983 02 Post Graduate 6,016

If your data file is hierarchical, selection is done at the highest level of the hierar-
chy. For example, if you have a hierarchical file of families and family members,
then either a family and all of its members are selected or the family and its mem-
bers are not selected at all.

SELECT.Number

The SELECT number option takes the first records from the file. If you select 10
records, it will be the first 10 records.

If your file is a hierarchical file, for example, with family and member records,
then the first 10 families and all of their members will be selected. If your SE-
LECT statement is SELECT 10 MEMBERS; then exactly 10 members plus their
family records will be selected. In this case, if the 10th member record in the file
occurs before the last member record for its family, the members of the family that
follow the 10th member record will not be selected.

The SELECT statement SELECT 10 START 5; will result in records 5 through 14
being selected.

Select. 81

Interaction.Between.Multiple.SELECT.Statements

The SELECT number and SELECT number START number statements are af-
fected by other SELECT statements in the request. If there is a SELECT statement
at a higher hierarchical level or if a SELECT statement at the same level occurs
earlier in the request, then the SELECT number statement applies to records which
pass the earlier SELECT.

Examples Suppose that your data file contains information about persons, where there is one
record per person, and that your report request contains the statements:

SELECT IF SEX = ‘m’;
SELECT 10 START 5;

Further suppose that the first 20 records have a sex of female and the next 20 re-
cords have a sex of male. TPL REPORT will exclude the first 20 records because
they fail to pass the first SELECT. It will then skip records 21 to 25 because of
the START clause. It will include records 26 through 35 and exclude the remain-
der of the file.

If the SELECT statements are reversed, records 1 through 5 will be excluded by
the START clause. Records 6 through 15 will pass the SELECT 10 clause but will
fail the SELECT IF SEX = ‘m’ condition. Records 16 to the end of the file will be
excluded by the SELECT 10 clause. Thus no records will pass the two SELECT
statements.

Compute. 82

C h a p t e r 1 0

Compute

COmPuting nEW vaRiabLEs

Format COMPUTE new-variable ['print label'] [USING MASK mask] = computation;
 USING :
 MASK

where new-variable is an observation variable.

The optional print label following the variable name replaces the variable name
on the printed report. There are many options associated with print labels such as
upper and lower case letters, special characters and alignment. A separate chapter
describes print labels in more detail.

The optional mask is used to specify the print format for the computed data values
if the computed variable is used in a REPORT statement.

Examples COMPUTE MONTHLY_INCOME = ANNUAL_INCOME / 12;

COMPUTE NO_FAMS 'Number of Families'
 USING MASK 9999 = FAMILIES;

COMPUTE FACTOR = .571

COMPUTE WEIGHTED_INCOME USING MASK '$'999,999 =
 INCOME * WEIGHT;

COMPUTE RATIO MASK 9.999 = LOAN_AMT / PROPERTY VALUE;

Compute. 83

Introduction

The COMPUTE statement provides a way of creating a new observation variable
which has not been defined in the codebook. The new variable is calculated from
other observation variables (including a record name) and numeric literals using ad-
dition (+), subtraction (-), multiplication (*), division (/) and exponentiation (**).

The calculations are performed using the normal rules for evaluation order and pa-
rentheses. Unless parentheses are used to change the evaluation order, exponentia-
tion is performed before division and multiplication, which, in turn, are performed
before addition and subtraction. Strings of operations at the same level are per-
formed left to right. For example, 10 - 5 + 6 is evaluated as (10 - 5) + 6 = 11, not
as 10 - (5 + 6) = -1.

A special division operator called DIV is available for performing integer division,
and the SQRT and ABS functions can be used to get square roots and absolute
values.

A computed variable is always considered to be observation variable and can be
used in following TPL statements in any place that a codebook-defined observation
variable can be used.

COMPUTE statements are executed in ANSI standard double precision floating
point.

Compute.Entries

A computation can reference numeric literals and observation variables from either
the codebook or previous COMPUTE or Conditional Compute statements. The
numeric literals can contain an actual decimal point. Parentheses can be used in
the computation to any level. Computed values are rounded, if necessary, just
before being displayed. An optional mask to the left of the equal sign indicates the
number of decimal places and special symbols to be displayed.

The statement:

COMPUTE AMT 'Expenditure Amount' = ((INTEREST + 3) /
 (GROSS - INTEREST)) * .5;

is a valid COMPUTE statement if INTEREST and GROSS are observation vari-
ables from either the codebook or a previous COMPUTE or Conditional Compute
statement. A computed variable can be set equal to a constant value or to another
observation variable.

Compute. 84

For example:

COMPUTE A = 5;
COMPUTE B = + 3;
COMPUTE C = -95;
COMPUTE FAMILY_INCOME = INCOME;

The "new-variable" being computed cannot have the same name as any other vari-
able created or used within the report request. If it has the same name as a vari-
able in the codebook named by the USE statement, references to that name will be
assumed to refer to the computed variable rather than the codebook variable.

For example:

COMPUTE WAGES = INCOME / 50;

If a variable called WAGES has already been created in an earlier statement, an
error will be reported.

If division by zero is attempted, a warning message will be issued and a (c) will
be reported.

If any variable used in a computation has a NULL value, then the computed vari-
able will be assigned a NULL value. For example, if you specify DATA ERROR
= NULL when describing the variable INCOME in the codebook, and you then use
INCOME in a COMPUTE statement, the computed result will be NULL for any
record that has a data error for the variable INCOME. In a report, a NULL value
is displayed as (n).

Absolute Value
You can obtain the absolute value of any expression within a computation by
enclosing the expression in parentheses and preceding the left parenthesis with the
keyword ABS, as in:

COMPUTE AMT 'Weighted Income' = ABS (WEIGHT * INCOME);

Square Root
Square root can be obtained by following the keyword SQRT with a computation
within parentheses. If square root is attempted on a negative value, a warning mes-
sage will be issued and a value of zero will be returned.

Compute. 85

Integer Division
If you want division to be performed in integer mode so that all decimal places
are truncated for each computed result, then use the DIV operator in place of the
divide symbol (/). For example, 3 DIV 4 is zero, whereas 3/4 is 0.75. A DIV by
1 will simply truncate the decimal places. For example, 2.688 DIV 1 gives a result
of 2.

Note The DIV function can only guarantee 11 to 12 digits of accuracy. The reason for
this is that TPL has code which prevents possible larger errors when data values
are converted to floating point in the computer. Suppose the data value is really
7.000000000000000 but because of data conversion errors the number is represent-
ed in the computer as 6.999999999999999. If we do a straight truncation for DIV
we will get an incorrect number, 6, even at the integer level. TPL corrects for this
by adding a small number to the value before truncation. Hence the value becomes
something like 7.000000000000754. Now if we truncate to integers or even to
7.0000000, we get correct numbers but if we truncate to 7.0000000000007 we get
an incorrect value. TPL opts to give up a few digits of accuracy to prevent errors
from showing up in higher digits.

Masks.for.Output.Formatting

The COMPUTE statement can also contain a concise expression of how the com-
puted variable is to be formatted when printed. This expression, known as a mask,
consists of a succession of 9's, one for each digit position of the expected maxi-
mum aggregated value.

Commas and a decimal point can be embedded within the 9's. For example, a
mask of 9,999.99 would cause a data value of 2467.34 to be displayed as 2,467.34.
Without the mask it would be displayed as 2,467.

Alphabetic or other special characters can be placed at the beginning or end of a
mask if they are enclosed in quotes.

Example COMPUTE FAMILY_INCOME USING MASK '$'999,999.99 =
 (HEAD_INC + OTHER_INC) / 100;

The total of HEAD_INC and OTHER_INC, which are recorded in cents, are to be
added together for each family and displayed in dollars and cents. A dollar sign,
comma, and decimal point are also to be printed. Since the incomes are to be ex-
pressed in dollars and cents, the totals must be divided by 100 to move the decimal
point two positions to the left. Note that if HEAD_INC and OTHER_INC were

Compute. 86

desribed in the codebook with the clause SHIFT DECIMAL LEFT 2, we would
not need to divide by 100 in order to display the incomes in dollars and cents.

Data can be rounded and displayed with trailing zeros by inserting zeros in the
mask. For example, with a mask of 999,000 the value 876859 will be displayed as
877,000.

For additional details on the use of masks, see the chapter on Masks.

Weighting

A common need in statistical processing is to weight various observed values in a
data record which represent a sampling. Typically, each processing unit contains
a weighting factor to be applied to the entries, so that the final values represent a
larger universe.

Weights are observation variables that can be displayed in reports the same as any
other observation variables. You can also use weights in COMPUTE statements to
create weighted values in reports. Computations of this type would be especially
useful if you were using TPL REPORT to create a data file in which the weight
variable was already applied to the observations variables. The FORMAT state-
ment called DATA REPORTS can be used to create a data file from a report.

A weighted variable can be created by multiplying the variable to be weighted by
the weight factor. For example,

COMPUTE WEIGHTED_INCOME = INCOME * WEIGHT_FACTOR;

COMPUTE WEIGHTED_EXPENSE = EXPENSE * WEIGHT_FACTOR;

where, INCOME, EXPENSE, and WEIGHT_FACTOR are codebook observation
variables. WEIGHTED_INCOME and WEIGHTED_EXPENSE are computed for
each record. They can then be used in a REPORT statement such as:

REPORT T1: AUTO_TYPE REGION WEIGHTED_INCOME
 WEIGHTED_EXPENSE;

The computed weighted values will be reported for each record.

Compute. 87

thE COnditiOnaL COmPutE statEmEnt

Introduction

An extension of the COMPUTE statement can be used to create an observation
variable for which the computation varies depending on the values of one or more
other variables. The new variable will be assigned the computation associated with
the first condition satisfied. This type of COMPUTE statement is called Condi-
tional Compute.

The.Statement
Format COMPUTE new-obs-var ['print label'] [USING MASK mask] =
 USING
 MASK

computation-1 IF condition-1A [AND condition-1B...];
NULL : OR

[computation-2 IF condition-2A [AND condition-2B...];]
NULL : OR
 . . .
 . . .
[computation-n IF OTHER;]
NULL :

The keyword 'IF' and the colon can be used interchangeably.

Examples COMPUTE WEIGHTED_INCOME =
 WEIGHT * INCOME IF INCOME > 20000;
 INCOME IF OTHER;

COMPUTE TEST_ZERO_DENOMINATOR =
 EARNINGS / HOURS IF HOURS > 0;
 NULL IF OTHER;

COMPUTE AMT3 USING MASK 999 =
 A IF L > 25.55;
 L IF OTHER;

Compute. 88

COMPUTE CHILDREN USING MASK 99 =
 PERSONS_IN_FAMILY - 2 IF
 MARITAL_STATUS = 1 AND SEX = MALE;
 PERSONS_IN_FAMILY - 1 IF
 MARITAL_STATUS IN (1, 2, 3, 5);
 0 IF OTHER; /* Never Married and */
 /* Not available */

Condition.Term

The variables used to the right of the 'IF' in the Conditional Compute can be either
control variables (but not a recoded variable), char variables or observation vari-
ables.

The conditions are expressed identically to the IF form of the SELECT statement.
Conditions can test for relationships or sets of values. All conditions which are
valid for the SELECT statement are valid for the Conditional Compute. Each con-
dition can reference entirely different variables.

Compute.Term

The entries to the left of the 'IF' can be:

1. numeric literals and observation variables from the co-
debook or computed variables. A record name cannot
be used.

or,

2. the keyword NULL as explained later in this chapter.

As a first example, suppose that the control variable PAY_TYPE contains either an
'H' or a 'W' to indicate whether the observation variable EARNINGS is stored as
an hourly wage rate in cents or a weekly salary in dollars. To create a new obser-
vation variable WEEKLY_SALARY to be displayed in dollars and cents, we could
write:

COMPUTE WEEKLY_SALARY USING MASK '$' 999.99 =
 (EARNINGS * USUAL_WEEKLY_HRS)/100 IF PAY_TYPE = 'H';
 EARNINGS/100 IF PAY_TYPE = 'W';

Note that if EARNINGS had been described in the codebook with the clause
SHIFT DECIMAL LEFT 2, we would not need to divide by 100 in order to dis-
play the results in dollars and cents.

Compute. 89

The ordering of the entries is important in the Conditional Compute. The condi-
tions are evaluated in the order in which they are specified. The new variable will
be assigned the computation associated with the first condition satisfied.

Consider an expansion of the last example:

COMPUTE WEEKLY_SALARY USING MASK '$' 999.99 =
 (EARNINGS * USUAL_WEEKLY_HRS)/100 IF PAY_TYPE = 'H';
 EARNINGS/100 IF PAY_TYPE = 'W';
 EARNINGS IF PAY_TYPE = 'H';

If PAY_TYPE equals 'H', WEEKLY_SALARY will be set equal to the first compu-
tation and no more testing will be done. Although 'H' occurs more than once, any
computation other than the one associated with the first occurrence of 'H' will be
ignored.

If none of the conditions are satisfied, then the new variable will be assigned
the value of zero. Thus in the above example, if PAY_TYPE='H', then the new
variable WEEKLY_SALARY will contain the value of the computation ex-
pressed by (EARNINGS * USUAL_WEEKLY_HRS)/100. If PAY_TYPE='W',
then WEEKLY_SALARY will contain the value EARNINGS/100. If neither con-
dition is satisfied, WEEKLY_SALARY will be assigned the value zero.

If PAY_TYPE cannot take values other than 'H' AND 'W', the statement could have
been written using 'OTHER' as in,

COMPUTE WEEKLY_SALARY USING MASK '$' 999.99 =
 (EARNINGS * USUAL_WEEKLY_HRS)/100 IF PAY_TYPE = 'H';
 EARNINGS/100 IF OTHER;

In the Conditional Compute statement at least one computation or numeric literal
must appear in the first entry in the column under the new variable. If subsequent
entries do not contain a computation on the left, they will be associated with the
previous computation. For example, if we need a new variable WEIGHT which
varies depending on the value of the variable STATE, we could use the following
statement. Codebook condition names associated with STATE are used.

(codebook)
STATE CON 2
 (
 ALABAMA = 1
 . . .
 . . .
 WYOMING = 50
)

Compute. 90

(request)
COMPUTE WEIGHT =
 1 IF STATE = Arizona;
 IF STATE = Utah;
 IF STATE = Nevada or STATE = New_Mexico;
 3 IF STATE = California;
 IF STATE = New_York;
 2 IF OTHER;

WEIGHT will have a value of 1 if STATE = Arizona, Utah, Nevada or New Mex-
ico, and a value of 3 if STATE = California or New York. All other state values

will cause weight to have a value of 2.

The same computation can be repeated in different entries. For example, to create
WEIGHT we might wish to list the states in alphabetic order on the right as fol-
lows:

COMPUTE WEIGHT =
 2 IF STATE = Alabama;
 2 IF STATE = Alaska;
 1 IF STATE = Arizona;
 2 IF STATE = Arkansas;
 3 IF STATE = California;
 2 IF STATE = Colorado;
 2 IF OTHER;

An observation variable can be tested and also used in the computation. For ex-
ample:

COMPUTE AVG_PRICE =
 (PRICE1 + PRICE2 + PRICE3) / 3
 IF PRICE1 > 0 AND PRICE2 > 0 AND PRICE3 > 0;
 0 IF OTHER;

A conditionally computed variable can be used anywhere that an observation vari-
able can appear, including in another Conditional Compute statement.

If the computation associated with the first condition satisfied contains a null value,
the new variable value for that record will be null-valued.

NULL.Values

A null value can be assigned to a conditionally computed variable by using the
keyword NULL on the left side of a condition. NULL values are displayed in
reports as (n).

Compute. 91

Suppose that we want a report showing employees and their hourly salaries but, for
employees with a salary above $20 per hour, we want to suppress the salary value
in the report. We can do this with the following conditional compute:

COMPUTE SALARIES MASK 99.99 =
HOURLY_WAGE IF HOURLY_WAGE <= 20;
NULL IF OTHER;

In SELECT and Conditional Compute statements, no test involving a null-valued
variable will succeed unless it specifically references NULL. For example, if vari-
able "A" has a null value, then "A = 5" will not be satisfied. Similarly, "A NOT =
5" will not be satisfied. If all of the variables referenced in a Conditional Compute
are null-valued, all of the tests will fail and the newly computed variable will take
on the value associated with the "OTHER" category if one is provided; it will take
on the default value of zero if no "OTHER" category is specified.

The keyword NULL can be explicitly used in the SELECT statement and on the
right side of a Conditional Compute or a RECODE statement. For example, sup-
pose that there are two income variables called MONTH_EARNINGS and WEEK_
EARNINGS. Suppose also that one of the two incomes can be null-valued. We
want to compute a new variable EARNINGS which is expressed in monthly earn-
ings. We could use a statement like the following:

COMPUTE EARNINGS =
 MONTH_EARNINGS IF MONTH_EARNINGS NOT = NULL
 AND WEEK_EARNINGS = NULL;
 (52 / 12) * WEEK_EARNINGS IF WEEK_EARNINGS NOT = NULL
 AND MONTH_EARNINGS = NULL;
 NULL IF OTHER;

In a RECODE statement, null values are not included in any RECODE category,
including OTHER, unless they are specifically mentioned. If null values are pres-
ent for the old variable and not mentioned in the RECODE, the recoded value will
display as blank for any null value.

Recode. 92

C h a p t e r 1 1

Recode

REPLaCing ORiginaL vaLuEs With LabELs
OR nEW vaLuEs

Introduction

With the RECODE statement, you can create a new variable based on the values
of an existing observation or control variable and assign labels or combinations of
labels and values in place of the values that would be printed by default for the
original variable. You can also report the same information for a group of values.

Variables created with RECODE can be used only in REPORT statements.

Format RECODE new-variable-name [‘variable label’] ON old-variable-name;
 . . :

 [new-category-1] IF [re] value-entry-1;
 :
 [new-category-2] IF [re] value-entry-2;
 :
 . .
 . .
 . .
 [new-category-n] IF [re] value-entry-n;
 :

Recode. 93

A new-category entry can be any of the following:

 • label
 • name
 • blank entry
 • LABEL (if old variable is CONTROL)
 • NAME (if old variable is CONTROL)
 • VALUE
 • VALUE(n) (if old variable is OBS)
 • VALUE(-n) (if old variable is OBS)

A value-entry can be any of the following:

 • value
 • condition name (if old variable is CONTROL)
 • value1 : value2
 • OTHER
 • ALL
 • NULL

If a value-entry does not have a name or label assigned to it, it is grouped into the
first category above it that does have a name or label.

The optional re stands for any relation symbol or the equivalent English as shown
below. A relation symbol can precede any value. If no relation is provided,
"equal" is assumed.

. Symbol English.expression

 < [IS] LESS THAN
 > [IS] GREATER THAN
 = [IS] EQUAL [TO]
 EQUALS
 ^< [IS] NOT LESS THAN
 ^> [IS] NOT GREATER THAN
 ^= [IS] NOT EQUAL [TO]
 <= [IS] LESS THAN OR EQUAL [TO]
 >= [IS] GREATER THAN OR EQUAL [TO]

Recode. 94

Example Assume that we have data on employees and that an employee’s hourly salary is
contained in a variable called RATE. If we were to use RATE in a REPORT state-
ment, the hourly salary rate would be reported for each record.

If we wish to report salary rates in categories, we can use a RECODE to create sal-
ary categories based on the original hourly rates:

RECODE RATE_CATEGORIES ‘Hourly rates’ on RATE;
‘Under $6.00’ IF < 6.00;
‘$6.00 to 9.99’ IF 6.00 : 9.999;
‘$10.00 and over’ IF OTHER;

If we then use both RATE and RATE_CATEGORIES in a REPORT statement, we
can see how the RECODE works.

REPORT RC1 ‘Rates and Rate Categories’ :
 RATE THEN RATE_CATEGORIES;

Rates and Rate Categories

Row Pay Rate Hourly rates

1 5.53 Under $6.00
2 21.49 $10.00 and over
3 7.35 $6.00 to 9.99
4 9.21 $6.00 to 9.99
5 5.00 Under $6.00
6 5.19 Under $6.00
7 8.65 $6.00 to 9.99

Description.of.the.RECODE.Statement

The RECODE statement is in the form of a two column table. When we refer
to rows in the description below, we really mean just a left/right pair of entries.
Except for the order of entries the statement is free format and you can group your
entries in whatever way is convenient.

The first row starts with the keyword RECODE followed by the name of the new
variable to be created and, optionally, a label for the new variable. This is fol-
lowed by either ‘ON’ or ‘:’, then an old variable name. In following rows, entries
for the two columns are separated by either ‘IF’ or ‘:’. Each line must end with a
semicolon.

When the new variable is subsequently used in a report, its name will be displayed
at the top of its report column unless you provide a variable label. In that case,

Recode. 95

the variable label will be displayed instead of the name. There are many options
associated with print labels such as upper and lower case letters, special characters
and footnotes. A separate chapter describes print labels in more detail.

The new variable created by the RECODE can be used in any REPORT statement
but not in other types of statements. The old variable can be either control or ob-
servation and can be either a codebook variable or a computed variable. It cannot
be a CHAR variable.

After the RECODE row, one or more additional rows of recode information fol-
low. Each row contains a left/right pair of entries in which the entry on the left is
assigned to the recode condition on the right. If there are multiple rows with the
same condition on the right, only the first row will be used for that condition.

New.Variable.Entries.on.the.Left

The left side specifies what should be displayed for each RECODE category. For
any values of the old variable that are not included in the RECODE statement, the
original values will be used as the recode values.

An entry on the left side can be:

1. A label. Any valid TPL REPORT label is allowed. Note that you can also use
this type of entry to enter recode values that are numeric, but you must enclose
them in quotes. An example is '1'.

2. A name. Any valid TPL REPORT name is allowed. The name is used as a
simple label. Any alphabetic characters in the name are converted to upper
case before they are displayed in the report.

3. A blank entry. If any left-side entry is not filled in (blank entry), it will take
its assignment from the nearest row above that has an explicit entry in the left.
This has the effect of grouping the values of the old variable into the same
recode category.

4. The word LABEL, if the old variable is a CONTROL variable. The original
condition label from the codebook is assigned to the recode category. LABEL
can only be used alone. In other words, it cannot be combined with other label
elements.

Recode. 96

5. The word NAME, if the old variable is a CONTROL variable. NAME can
be used alone or with other label elements. The original condition name from
the codebook is assigned to the recode category. If there is no condition name
for the value, nothing will be displayed where NAME is used. In this case, if
NAME is used alone, without other label elements, nothing will be displayed
in the report for that recode category.

6. The word VALUE. It can be used alone or with other label elements to as-
sign the original old variable value to the recode category;

 If the old variable is an OBSERVATION variable, you have the option of in-
cluding a number in parentheses, VALUE(n), to display decimal places.

 In the following example, the original values for pay rate are shown alongside
the recoded values. The RECODE replaces each original value with a combi-
nation of label elements and the value displayed to 2 decimal places.

RECODE REC_RATE ’Recoded Rate’ ON RATE;
RIGHT FONT TIU ’Rate ’ FONT HB VALUE(2) IF ALL;

REPORT RC2 ’Pay Rates and Recoded Rates’: RATE REC_RATE;

Rates and Recoded Rates

Row Pay Rate
Recoded

Rate

1 5.53 Rate 5.53
2 21.49 Rate 21.49
3 7.35 Rate 7.35
4 9.21 Rate 9.21
5 5.00 Rate 5.00
6 5.19 Rate 5.19
7 8.65 Rate 8.65

 If you include a negative number, VALUE(-n), the value will be rounded,
for example to hundreds or thousands, with the appropriate number of zeros
displayed at the end of the value. For example, use of VALUE(-2) will round
each value to the nearest hundred and display it with two zeros at the end.

NAME and VALUE cannot be used for the same recode category. For a single
category, there can be only one use of either one.

Recode. 97

Old.Variable.Entries.on.the.Right.

The right side contains the values of the old variable that will be recoded in the
new variable. A semicolon is required at the end of each entry.

Valid entries are:

1. An old variable value, for example 1000 or 'F'.

 If the old variable is a control variable, condition values that are not all nu-
meric must be surrounded by quote marks according to the rules for listing
values in the codebook.

2. A condition name from the codebook if the old variable is a CONTROL vari-
able. An example is MALE.

3. A relation followed by a value or name, where relation is any of those listed
earlier in this chapter. An example is < 25.

4. A range of old variable values specified as value1 : value2 where value1 is
less than or equal to value2. For example, if 2:5 is specified, all values not
less than 2.000... and no greater than 5.000... will be accepted. A range of val-
ues can be non-numeric, in which case each lower and each upper value must
be surrounded by quote marks; an example is 'A':'D'. The keyword TO can
be used in place of : to separate lower and upper range values. An example is
2 TO 5.

 The NOT operator can precede a range of values, e.g. NOT 2:5, means any
value that is either less than 2.000... or greater than 5.000....

 The relations > and < can also be used in ranges in certain circumstances. The
valid formats are listed below. The value m must always be less than the value
n. If the old variable is an observation, the values can contain decimal points.

[NOT] m : n;
 > m : n;
 m : < n ;
 > m : < n ;

Recode. 98

5. The word OTHER, meaning all values for the old variable which are not
specified by any other entry. If OTHER is used, it must be the last entry in the
RECODE statement.

 You can use OTHER as the only entry in the statement in the same context as
that described below for ALL.

6. The word ALL if you wish to apply the same treatment to all values. If ALL
is used, there can be only one entry in the RECODE statement. For example,
to display the condition labels of a control variable such as REGION rather
than displaying the values, we could create a new variable with only the labels:

 RECODE REGION_WITH_LABELS ON REGION;
 LABEL IF ALL;

7. The word NULL to reference null values for observation variables. Assume,
for example, that we have a variable called INCOME described in the code-
book with the clause DATA ERROR = NULL . By default, null values will
be reported as the letter n in parentheses (n). If we wished to report the null
values with a label instead, we could do it with the following statement:

 RECODE NEW_INCOME ON INCOME;
 ‘Missing value’ IF NULL;

 Null values are not included in any RECODE category, including ALL and
OTHER, unless they are specifically mentioned. If null values are present for
the old variable and not mentioned in the RECODE, the recoded value will
display as blank for any null value.

Unspecified Values
If there are any values of the old variable that are not specified, these values will
be displayed in the report as if the RECODE statement ended with the entry:

 VALUE IF OTHER;

Note on Value Order in Relations and Ranges
If the old variable is a control variable and has been described in the codebook
using the default order DISPLAY AS LISTED, then all relations with values or
ranges of values must be based on the order of the conditions listed, rather than the
sort sequence of the condition values. For example, consider the following control
variable entry:

Recode. 99

REGION CON 1
 (
 SW = 'D'
 NW = 'C'
 SE = 'B'
 NE = 'A'
)

Unless the DISPLAY AS SORTED clause is used, the region value of 'A' is con-
sidered to be greater than 'D' since 'A' is listed after 'D'. A RECODE statement
used to combine "SE" and "NE" into one classification would have to express the
condition as 'B':'A' or as > 'C'. Likewise, a recode condition such as > 'A' would
have no matching values in the data, because 'A' is the last and therefore the high-
est value for region.

More.RECODE.Examples.and.Applications

Grouping.Values.into.Larger.Categories

Assume that we have a variable called STATE with values from 1 to 50. Instead
of displaying the individual state values in our report, we want to print the name of
the region to which each state belongs.

If the state values are grouped by region, we can recode them using simple ranges.
For example:

RECODE REGION ‘Region’ ON STATE;
‘Northeast’ IF 1 TO 9;
‘Midwest’ IF 10 TO 22;
‘South’ IF 23 TO 40;
‘West’ IF 41 TO 50;

Alternatively, if the states are coded in alphabetical order of state name, the state
values will not be neatly grouped by region. In this case, we can recode them us-
ing the individual values, mixing these entries with ranges whenever possible. For
example:

RECODE REGION ‘Region’ ON STATE;
‘Northeast’ IF 25;
 IF 11;
 IF 42;
 IF 30 : 35;
‘Midwest’ IF 12 : 14;
 IF 5;
 IF 8;
etc......

Recode. 100

Suppressing.Display.of.Selected.Values

Assume that we are preparing a report in which we wish to display annual IN-
COME values, but we do not want to show incomes greater than $200,000. We
can replace these values with the word ‘Confidential’ while showing the actual
incomes for all other values.

RECODE SELECTED_INCOMES ‘Income’ ON INCOME;
‘Confidential’ IF > 200000;

Note that for any INCOME values not mentioned in the RECODE statement, the
actual values will be displayed. This is the same as the result we would get by
adding the following line to the RECODE:

VALUE IF OTHER;

Replacing.Values.with.their.Labels

Assume that we have a CONTROL variable called INDUSTRY in the codebook
and that there are hundreds of industry codes. The code values are are numeric,
but we have included industry labels in the codebook for each value. By default, if
we use INDUSTRY in a report, the industry code values will be displayed. Val-
ues such as 1220 or 1401 are not very informative, so we might prefer to use the
industry code labels in the report. With the following RECODE, we can do this
easily, without re-entering the industry code labels:

RECODE IND_CODE ‘Industry’ ON INDUSTRY;
LABEL IF OTHER;

Since no individual industry codes are referenced, OTHER will apply to all indus-
try codes and LABEL will cause the codebook labels to be used in the report.

A.Combination.of.Labels.and.Values

Assume that we have the following variable described in the codebook:

COLLEGE ‘COLLEGE & UNIVERSITY TRAINING’ CONTROL 1
(
 0:9
‘NOT REPORTED’ = ‘ ‘
‘NOT REPORTED’ = ‘Y’
‘AGENCY DELETED’ = ‘*’
)

We want to display the codes for values 0 to 9, but for the other values, we want to
display ‘NA’. We can do this with the following RECODE:

Recode. 101

RECODE COLL_UNIV ‘Training’ ON COLLEGE;
‘NA’ IF ‘ ‘;
 IF ‘Y’;
 IF ‘*’;
VALUE IF OTHER;

Creating.a.New.Data.File.with.Recoded.Values

Assume that we want to extract a subset of the variables in a data file and create a
new, smaller data file using the FORMAT statement DATA REPORT; as described
in the FORMAT chapter. We may also want to group values of one or more old
variables to create new categories for the new data file.

For example, if we have state codes in the original data file but we only want to
work with a region code, we can create the region codes with RECODE and in-
clude only the new variable in the data file output. In the RECODE, we can assign
numeric region codes by entering them in quotes.

RECODE REGION ON STATE;
‘1’ IF 1 : 9;
 IF 12 : 14;
‘2’ IF 10 : 11;
 IF 15 : 22;
‘3’ IF 23 TO 40;
‘4’ IF OTHER;

Results.with.Overlapping.Ranges

Assume that we have data on hourly SALARY rates. Instead of reporting the
actual rates, we would like to categorize them as ‘Under $5’, ‘$5 to $10’, etc. We
can do this with the following RECODE:

 RECODE SALARY_GROUPS ‘Salaries’ ON SALARY;
 ‘Under $7’ IF < 7.00;
 ‘$7 to $12’ IF <= 12.00;
 ‘Above $12’ IF OTHER;

Note that when a SALARY value fits into more than one RECODE category, it
will be assigned to the first one that fits. In this example, the value 5.55 would fit
into both the first and second categories since it is both less than 7 and less than
12, but it will be assigned only to the ‘Under $7’ category.

If we reversed the order of the first two rows, we would get a different result.
Since all values that are less than 7 are also less than 12, all values less than 12
would go into the first category and none would go into the ‘Under 7’ category.

Recode. 102

Recode.on.a.Record.Name.Variable.or.COUNT

In a file with only one record type, the record name variable and the built-in vari-
able COUNT both take on the record number, so a recode of any of these variables
assigns new values depending on the record number. Note that in a hierarchical
file, there can be more than one type of record, so the record number is different
from COUNT. See the chapter on "Hierarchies" for details.

In the following example reporting data from a file with only one type of record,
we assign the label value 'below #3' to records 1 and 2. The rest of the records
get the label value '3 and over'. As the table illustrates, the results are the same for
both the record name EMPLOYEE and the COUNT variable.

USE JOBS CODEBOOK;

RECODE ON_COUNT ON COUNT;
’below #3’ IF < 3;
’3 and over’ IF OTHER;

RECODE ON_RECORD ON EMPLOYEE;
’below #3’ IF < 3;
’3 and over’ IF OTHER;

REPORT REC1 ’Report with recode of record name (EMPLOYEE)'
 'and COUNT.’:
 EMPLOYEE ON_RECORD COUNT ON_COUNT RATE;

Report with recode of record name (EMPLOYEE) and COUNT.

Row Employee ON RECORD Count ON COUNT Pay Rate

1 1 below #3 1 below #3 5.53
2 2 below #3 2 below #3 21.49
3 3 3 and over 3 3 and over 7.35
4 4 3 and over 4 3 and over 9.21
5 5 3 and over 5 3 and over 5.00
6 6 3 and over 6 3 and over 5.19
7 7 3 and over 7 3 and over 8.65

Char. 103

C h a p t e r 1 2

Char

CREating a nEW ChaRaCtER vaRiabLE

The CHAR statement creates a new character variable by combining all or part of
other character variables and text. Its primary use is in creating variables for use
in TPL reports. It also may be used in TPL TABLES to create variables for use in
SELECT statements.

Format CHAR new-variable ['print-label'] = construction ;

where new-variable is a character variable and construction is made up of one
or more of 'character-string', substr(character-variable, start) and substr(character-
variable, start, length) concatenated together using '+' or '||'.

Example In our first example we wish to select all items which begin with 'A';

CHAR SELECT_VAR = SUBSTR(ITEM,1,1);
SELECT IF SELECT_VAR = 'A';

In our next example we wish to create a TPL report which includes the full names
of people in a data file. The data is stored with first name, FNAME, in one field
and last name, LNAME, in another. If we just use FNAME and LNAME in the
report, then the fields will be in separate columns with varying numbers of blanks
between them. Instead we use:

CHAR FULL_NAME 'Name' = FNAME + ' ' + LNAME;

Note that we have included a blank between FNAME and LNAME since otherwise
the fields would be run together.

Char. 104

ChaR sPLit: dividE a ChaRaCtER vaRiabLE

The SUBSTR function can be used to split a fixed-format data field into parts. If
the data is not fixed-format, then CHAR SPLIT must be used.

Format CHAR SPLIT old-variable: variable1 "divider1" variable2 "divider2" ...
CHAR SPLIT old-variable: "divider1" variable1 "divider2" variable2 ...

where old-variable is the variable which is to be divided into two or more new
variables. The dividers, which are a list of characters, are entered in quotes. They
separate the subfields in the data.

Example Suppose your CSV data file has a DATE field. The field on different records are:
 1/23/45 and
 12/22/46

You wish to split the DATE field into three new observation variables, MONTH,
DAY, and YEAR. You can do this with:

CHAR SPLIT DATE: CMONTH "/" CDAY "/" CYEAR;
COMPUTE MONTH = OBS(CMONTH);
COMPUTE DAY = OBS(CDAY);
COMPUTE YEAR = OBS(CYEAR) + 1900;

Note Dividers need not be the same from subfield to subfield. All characters in the
divider list between two subfields are discarded. regardless of order.

Example Suppose you have a data field VALUES which is: [+ 34 +A 23] and you wish
to extract just the two numbers. You can use
 CHAR SPLIT VALUES: " +" VALUE1 "A+ " VALUE2;
VALUE1 will get the value 34 while VALUE2 will get 23.

Hierarchies. 105

C h a p t e r 1 3

Hierarchies

PROCEssing hiERaRChiCaL fiLEs

Introduction

A hierarchical file consists of multiple record types, each related to the other but
describing a different level of detail. The records are sequenced so that for records
at any level of detail, a variable number of more detailed records may follow.

You can request reports from hierarchical files as will be described in this chapter.
A repeating group is another type of data structure that has many of the attributes
of a hierarchical file. Repeating groups are described in a separate chapter.

The following diagram illustrates the concept of hierarchically related records.
Lower level records are shown indented to suggest subordination within the hierar-
chy. Records containing the greatest detail are dependent on the next higher level
of the hierarchy and so on back up to the Master level. The master record has a
level number of zero indicated by LEVEL 0. The record type immediately subor-
dinate to the Master record is LEVEL 1. Level numbers increase in increments of
1 to the level number of the lowest order of subordination in the hierarchy. The
structure of the three-level FAMILY hierarchical file is shown next, followed by
the codebook description. Note that some unique value (e.g., A,B,C) within each
record must uniquely identify each level of the hierarchy.

Hierarchies. 106

A Family (Level 0)

B Member (Level 1)

C Purchase (Level 2)

C Purchase (Level 2)

B Member (Level 1)

.

.

.

.

.

.
A Family (Level 0)

Each level of the hierarchy is identified in the codebook by a record marker and a
level number. For example, each family record may be identified by a marker of 1
in record position 1 and each member record may be identified by a marker of 2 in
record position 1.

Let us assume that each family record in a data file has one or more family mem-
bers, and each member record has at least one purchase record associated with it.
When processing this file, TPL REPORT will read the first family record, the first
member record, and the first purchase record. These three levels will form a hier-
archical unit for reporting. Next, the second purchase record (if any) will replace
the first to form another hierarchical unit.

After all purchase records have been combined individually with the first family
and member record, the second member record is read, if any. The first family
record is paired with the second member record and each purchase record of that
member in turn. After all member records for the first family and their purchase
records have been processed, the next family record is read and the cycle is re-
peated.

Each record or collection of records is assigned a level number whose value
depends on its hierarchical relationship to other records. The record type which
identifies a major new processing unit in the file, and which is not subordinate to
other records, is known as a master record or level 0 type record. In our example,
the family record is a level zero record and is identified as such in the codebook.
The first record subordinate to the family record is the member record which is
identified as a level 1 type record in the codebook.

Hierarchies. 107

Since the purchase record occurs one or more times for each occurrence of the
member record, it has a level number of 2. Each member record must be followed
by at least one purchase record. Two successive member records without at least
one purchase record in between means that the hierarchy is incomplete.

Each level of the hierarchy can consist of more than one record type, but there
must be only one of each type in succession at that level. In the following illustra-
tion member information spans over two records and family information spans over
three records.

.

.

.

Family # 1 Level 0

Family # 1 (cont.)

Family # 1 (cont.)

Level 1

Level 2

Member # 1

Member # 1 (cont.)

Expenditure # 1

Expenditure # 1 (cont.)

Level 1Member # 2

Member # 2 (cont.)

.

.

.

The first record type of each hierarchical level must be uniquely identified to TPL
REPORT by specifying a unique record value, of any length, in the codebook. In
this way missing levels can be detected when the data file is read. If a level is
skipped (e.g., LEVEL 0 to LEVEL 2), an error message will indicate that there are
records that are not in the expected sequence. When the next record of the highest
level (e.g. LEVEL 0) is found, processing will resume.

Hierarchies. 108

Below is a flowchart showing the tests made for a three-level hierarchical file.

General Processing for a Three-Level Hierarchical File

Read

Level 0?

Yes

Yes

Yes

No

No

No

Start New
Hierarchy

Read

Level 1?

Move or Replace
in Hierarchy

Read

Level 2?
Move or

Replace in
Hierarchy

Process
Hierarchical

Unit

Start

Error

Codebook.Entries

The first record of each level of a hierarchical file must contain a record identifier
by which the record can be uniquely identified. This record identifier follows the
key word MARKER in the codebook RECORD clause and is a data name which
must be described somewhere within the record description. The data name must
be the name of a control variable, and the value following the equal sign must
be within quote marks. The record MARKER must be accompanied by a record
LEVEL number. (For additional details, see the Record Name Clause section of
the chapter called Codebook.

Hierarchies. 109

BEGIN HIERARCHY CODEBOOK

FAMILIES RECORD MARKER FMID ='A' LEVEL 0
 FMID CON 1 (= 'A')
 REG CON 1
 (
 'Northeast' = 1
 'Midwest' = 2
)
 JOB CON 1 (1:9)
 AGE CON 2
 CONDITION LABEL IS VALUE
 (16:99)
 PERSONS OBS 2
 INCOME OBS 5

MEMBER RECORD MARKER MBID='B' LEVEL 1
 MBID CON 1 (='B')
 AGE_M OBS 2
 SEX CON 1
 (
 'Male' = 1
 'Female' = 2
)
 OCCUPATION OBS 3
 FILLER 5

PURCHASES RECORD MARKER PRID ='C' LEVEL 2
 PRID CON 1 (='C')
 ITEM CON 1
 (
 'Bread' = 1
 'Fish' = 2
 'Milk' = 3
 'Eggs' = 4
)
 COST OBS 3
 DAY CON 1
 (
 'Day 1' = 1
 'Day 2' = 2
 'Day 3' = 3
)
 PKG_T CON 1 (1:2)
 FILLER 5

END HIERARCHY CODEBOOK

How.Hierarchies.Interact.with.TPL.REPORT.Statements

The following sections explain how each TPL statement reacts with a hierarchical
file. First, you should think of all records which make up a hierarchical unit (level
0 through a single occurrence of the lowest level) as being read into one contigu-
ous area. The result may be thought of as one long record representing a process-
ing unit. After this unit is processed, another record will be read. If this record
belongs to the lowest level of the hierarchy it will replace the preceding record
having the same level number, and the resulting new hierarchical unit will be pro-
cessed again.

Hierarchies. 110

If a record is read which belongs to a higher level of the hierarchy (lower level
number), that level will be replaced, and successive reads will replace all lower
level records until another hierarchical unit is formed. Incomplete hierarchical
units will be recognized and an appropriate diagnostic message issued. Normally,
only complete hierarchical units will be processed. (See the section on Using In-
complete Hierarchies if you need to use data from incomplete units.)

Record.Names.and.the.Built-in.Variable.COUNT

With a hierarchical file, each record name variable from the codebook will count
records at its hierarchical level.

The built-in observation variable COUNT keeps track of the over-all record count
for the data file, without regard to hierarchical levels. In reports, it is treated like a
variable at the lowest level of the hierarchy.

REPORT.Statement

For our examples, we will use consumer responses regarding hotel service. For
each consumer, there is a record called PERSON with information about the person
and the hotel room. Following each PERSON record are a series of RESPONSE
records containing the person's responses to questions about hotel service. Each
question and answer is in a separate RESPONSE record. Following are the data
records and codebook for this file.

Data

116m 85 Person
2Bed p4 Response
2Food b1 Response
2Service p4 Response
128f120 Person
2Bed g7 Response
2Food b3 Response
2Service g7 Response
145m 90 Person
2Bed b2 Response
2Food f5 Response
2Service f5 Response

Hierarchies. 111

Codebook

begin hotel codebook

person ’Person’ record level 0 marker m = ’1’
m con 1 (= ’1’)

age ’Age’ con 2 (16:45)
sex ’Sex’ con 1 (=’m’ =’f’)
room_fee ’Room Fee’ MASK ’$’999 obs 3

response ’Response’ record level 1 marker n = ’2’
n con 1 (= ’2’)

question ’Question’ CHAR 7

answer ’Answer’ con 1
(’Good’ = ’g’
 ’Poor’ = ’p’
 ’Fair’ = ’f’
 ’Bad’ = ’b’
)
rating ’Rating’ obs 1

end hotel codebook

Report outputs depend on the levels used in the REPORT statements.

Reports Using a Single Level of the Hierarchy
If all variables in the REPORT statement are from the same level, there will be one
row for each record at that level.

In the following example from our two-level hierarchy, all of the variables in the
REPORT statement are from the PERSON level. There are 3 PERSON records, so
there are 3 rows in the report, one for each person.

 Example REPORT H1 ’Responses to Hotel Questionnaire on Service’:
M THEN PERSON THEN AGE THEN SEX THEN ROOM_FEE;

Responses to Hotel Questionnaire on
Service

Row M Person Age Sex Room Fee

1 1 1 16 m $85
2 1 2 28 f $120
3 1 3 45 m $90

Hierarchies. 112

Note The built-in observation variable COUNT is treated like a variable at the lowest
level of the hierarchy. Thus, if you include it in a report that otherwise mentions
only variables at a higher level, you will get a report that follows the rules de-
scribed below for reports using multiple levels of the hierarchy. There will be one
report row for each lowest level record so that COUNT can be displayed.

Reports Using Multiple Levels of the Hierarchy
If variables from a lower level are used, there will be one row for each record at
the lower level. In this case, any higher level variables will be joined to the infor-
mation of each lower level record.

In the following example from our two-level hierarchy, the REPORT statement
references variables from both the PERSON level and the RESPONSE level. RE-
SPONSE is the lowest level, so the report has 9 rows, one for each response. Note
that the person information is repeated for each response that comes from that
person.

 Example REPORT H2 ’Responses to Hotel Questionnaire on Service’:
M THEN PERSON THEN AGE THEN SEX THEN ROOM_FEE THEN
N THEN RESPONSE THEN QUESTION THEN ANSWER THEN RATING;

Responses to Hotel Questionnaire on Service

Row M Person Age Sex
Room
Fee N Response Question Answer Rating

1 1 1 16 m $85 2 1 Bed p 4
2 1 1 16 m $85 2 2 Food b 1
3 1 1 16 m $85 2 3 Service p 4
4 1 2 28 f $120 2 4 Bed g 7
5 1 2 28 f $120 2 5 Food b 3
6 1 2 28 f $120 2 6 Service g 7
7 1 3 45 m $90 2 7 Bed b 2
8 1 3 45 m $90 2 8 Food f 5
9 1 3 45 m $90 2 9 Service f 5

Vertical lines have been added to this report to show which variables are from
which level of the hierarchy. You do not need to group them by level in your RE-
PORT statements. If you use ALL or OTHER in the REPORT statement, the vari-
ables that go into the report from the ALL or OTHER categories will be displayed
in alphabetical order by name without regard to hierarchical level.

Hierarchies. 113

Comparison of Record Name Values and COUNT
If we add the built-in observation variable COUNT to our table, we can see that
its value is always reported as the current record number of the most recent record
read. The record name columns, labeled 'Person' and 'Response' contain the cur-
rent record count for their respective record types.

Example REPORT H2_C ’Responses to Hotel Questionnaire on Service’
 ' with a Column Added for the Variable COUNT':
COUNT THEN
M THEN PERSON THEN AGE THEN SEX THEN ROOM_FEE THEN
N THEN RESPONSE THEN QUESTION THEN ANSWER THEN RATING;

Responses to Hotel Questionnaire on Service with a Column Added for the
Variable COUNT

Row Count M Person Age Sex
Room
Fee N Response Question Answer Rating

1 2 1 1 16 m $85 2 1 Bed p 4
2 3 1 1 16 m $85 2 2 Food b 1
3 4 1 1 16 m $85 2 3 Service p 4
4 6 1 2 28 f $120 2 4 Bed g 7
5 7 1 2 28 f $120 2 5 Food b 3
6 8 1 2 28 f $120 2 6 Service g 7
7 10 1 3 45 m $90 2 7 Bed b 2
8 11 1 3 45 m $90 2 8 Food f 5
9 12 1 3 45 m $90 2 9 Service f 5

When Row 1 is complete, 2 records have been read, Person 1 and Response 1, so
the current value of Count is 2. When Row 2 is complete, 1 additional Response
record has been read, so Count is 3. By the time we get to Row 9, a total of 3
person records and 9 response records have been read, giving a Count a value of
12.

SELECT.Statement

The result of a SELECT statement is that either the entire hierarchical unit is
selected for processing by following TPL statements, or the next hierarchical unit
is formed and tested again. Individual records of a hierarchical unit are never
selected for processing alone, even though all variables tested may belong to an
individual record.

Assume that a hierarchical file has the following structure.

Hierarchies. 114

A Level 0

B Level 1

C Level 1

D Level 2

If a variable is tested in record D and does not meet the SELECT condition, a new
hierarchical unit is formed by replacing D with the next D, if one exists. This new
hierarchical unit is tested again.

If a variable is tested in record B or C (both at level 1) and does not meet the
SELECT condition, a new hierarchical unit is formed by reading past all following
D records until a new pair of B and C records plus a new D record is found. This
new hierarchical unit is tested again.

If a variable is tested in record A and does not meet the SELECT condition, a new
hierarchical unit is formed from the next A, B, C, and D records. This new hierar-
chical unit is tested again.

COMPUTE.Statement

A computed variable is assumed to belong to the lowest level record of the hierar-
chy which contains a referenced variable in the COMPUTE statement. For exam-
ple, if a COMPUTE statement references only variables in level 0 of a hierarchical
file, then the computed variable will be assumed to belong to level 0. If a COM-
PUTE statement references variables in levels 0 and 1 of a three level hierarchy,
then the computed variable will be assumed to belong to level 1. If variables in
levels 0 and 2 are referenced, the computed value will become part of level 2. If
the computation consists only of a literal value, the computed variable will be as-
sociated with level 0.

Assume a hierarchical file consists of a family characteristics record at level 0
followed by one or more member characteristics records at level 1. If the fam-
ily record contains number of rooms in the household (ROOMS) and family size
(PERSONS), the statement:

Example COMPUTE ROOMS_PER_PERSON = ROOMS / PERSONS;

will associate ROOMS_PER_PERSON with the family record. A report can then
be produced showing the average rooms per person for each family.

Hierarchies. 115

Conditional.Compute.Statement

Like the COMPUTE Statement, the conditionally computed variable is assumed to
belong to the lowest level record which contains a referenced variable (control or
observation) in the Conditional Compute statement. For example:

Example COMPUTE NEW_WEIGHT =
 1 IF WEIGHT=4;
 PERSON_WEIGHT IF OTHER;

If WEIGHT were at level 0 and PERSON_WEIGHT were at level 1, NEW_
WEIGHT would always be assigned to level 1.

RECODE.Statement

The RECODE variable may be assumed to apply to the record containing the old
variable value, whether the old variable is in the codebook or computed.

Using.Incomplete.Hierarchies

Default.Treatment

Normally, a hierarchical unit processed by TPL REPORT must be complete. For
example, a three level hierarchy cannot consist of only Level 0 records and Level
2 records. Before any processing is done on a hierarchical unit, at least one record
must be present at each level. Incomplete hierarchies are reported as errors. If any
level is missing, all subsequent records are discarded until a new record is found at
the highest level (i.e. the lowest level number).

The following sequence of records shows a complete hierarchy.

Hierarchies. 116

Complete Hierarchy

Level 0

Level 0

Level 1

Level 2

Level 2

Level 2

etc.

Examples of Incomplete Hierarchies

1. Missing Level 1

Level 0

Level 0

Level 2

Level 2

Level 2

etc.

2. Missing Level 2

Level 0

Level 0

Level 1

etc.

Incomplete hierarchy messages show where the problem occurred in the data file
and where processing was resumed. For example:

Hierarchies. 117

*** ERROR: Records out of sequence. Level 2 expected for record 6

*** ERROR: Recovered from level error on record 8

Forcing.Incomplete.Hierarchies.to.Be.Included.in.Reports

The statements

TABULATE INCOMPLETE HIERARCHIES = YES; (NO is the default)

and

REPORT INCOMPLETE HIERARCHIES = NO; (YES is the default)

can be used to control the treatment of incomplete hierarchies. By choosing TAB-
ULATE INCOMPLETE HIERARCHIES = YES; you can use data from higher
level records even though records are missing at the lowest levels.

Note that records cannot be missing from middle levels. For example, a Level 1
record cannot be included if it is followed by a Level 3 record.

The INCOMPLETE HIERARCHIES statements can be entered either in the
codebook after the BEGIN CODEBOOK statement or in the report request after
the USE statement. A statement in the report request will override any conflicting
statement entered in the codebook.

Example of Statements in Codebook

BEGIN hierarchy CODEBOOK

TABULATE INCOMPLETE HIERARCHIES = YES;

families RECORD MARKER achar = ‘A’ LEVEL 0

 FILLER 4

 achar CON 1 /* The marker field. 'A' is the only */
 (= ‘A’) /* valid value for this type of record. */

 month OBS 2 /* The month of the survey. */
. .
. .

Hierarchies. 118

Example of Statements in a Report Request

USE hierarchy CODEBOOK;

TABULATE INCOMPLETE HIERARCHIES = YES;
REPORT INCOMPLETE HIERARCHIES = NO;

RECODE quarter ON month;
 ‘1st Quarter’ if 1:3;
 ‘2nd Quarter’ if 4:6;

REPORT toplevel: quarter then ;

Following is the data used in earlier examples in this chapter. All hierarchies are
complete, because each PERSON record has at least one subordinate RESPONSE
record.

116m 85 Person
2Bed p4 Response
2Food b1 Response
2Service p4 Response
128f120 Person
2Bed g7 Response
2Food b3 Response
2Service g7 Response
145m 90 Person
2Bed b2 Response
2Food f5 Response
2Service f5 Response

We can make the first hierarchy incomplete by removing its RESPONSE records as
follows:

116m 85 Person with no Responses
128f120 Person
2Bed g7 Response
2Food b3 Response
2Service g7 Response
145m 90 Person
2Bed b2 Response
2Food f5 Response
2Service f5 Response

Hierarchies. 119

We can include the first PERSON record in reports by adding TABULATE IN-
COMPLETE HIERARCHIES; to the codebook or report request. In this case, we
will add it to the report request.

Example USE HOTEL CODEBOOK;

TABULATE INCOMPLETE HIERARCHIES = YES;

REPORT H3 ’Responses to Hotel Questionnaire on Service’:
M THEN PERSON THEN AGE THEN SEX THEN ROOM_FEE THEN
N THEN RESPONSE THEN QUESTION THEN ANSWER THEN RATING;

Responses to Hotel Questionnaire on Service

Row M Person Age Sex
Room
Fee N Response Question Answer Rating

1 1 1 16 m $85 (d) 0 (d) (d)
2 1 2 28 f $120 2 1 Bed g 7
3 1 2 28 f $120 2 2 Food b 3
4 1 2 28 f $120 2 3 Service g 7
5 1 3 45 m $90 2 4 Bed b 2
6 1 3 45 m $90 2 5 Food f 5
7 1 3 45 m $90 2 6 Service f 5

The values for the first PERSON record are in the first row of the report. Since
it has no RESPONSE records, no RESPONSE values can be shown. The values
are displayed as (d) or blank, depending on the variable type. The control and ob-
servation variables, N, Answer and Rating are shown as (d); the CHAR variable
Question is shown as blank. Note that the record variable Response is shown as
0, because no Response record has been found for the first person.

Interaction with SELECT Statement
If your report request has a SELECT statement that references one or more vari-
ables on the level of a missing record, that part of the SELECT statement will have
no effect. In the preceding report, if we had:

SELECT IF SEX = 'm' AND ANSWER = 'p';

the Person record with no lower level records would be selected on the basis of
SEX = 'm' even though it has no lower level records to satisfy ANSWER = 'p'.

Message.Suppression

By default, error messages will be reported when incomplete hierarchies are en-
countered. To suppress incomplete hierarchy messages, use the statement

REPORT INCOMPLETE HIERARCHIES = NO;

Repeating.Groups. 123

C h a p t e r 1 4

Repeating.Groups

vaRiabLEs that REPEat Within RECORds

Introduction

When one variable or a collection of variables repeat within a record, they can be
described as a repeating group.

One example of a repeating group is a time series in which each data record con-
tains a sequence of 12 values, one for each month of the year. Another example
would be a survey questionnaire that contains a series of questions where each
question has the same set of possible responses.

The repeating group feature lets you describe the repeating unit only once in the
codebook and assign a name to it. You can also assign a name and/or label to each
repetition so that the repeating group variable looks like a control variable with the
same number of values as the number of repetitions in the group.

Restrictions.on.the.Use.of.Repeating.Groups.in.Report

Repeating group data can be displayed in reports, but there are currently two cases
in which you should not try to do reports with repeating groups.

1. Multiple repeating groups in the same report, for example, if there are multiple
groups described in a codebook and you enter the statement:

REPORT G1: ALL;

2. Combinations of repeating groups and hierarchies in the same data file. This
combination could result in abnormal termination of your report job.

Repeating.Groups. 124

Describing.Repeating.Groups.in.the.Codebook
Format BEGIN GROUP group-name [‘print label’]

 [REDEFINES var-name] REPEATS n

[(Name1 and/or Label1, Name2 and/or Label2, ...
 Name-n and/or Label-n)]

 elementary-item description(s) follow

END GROUP group-name

The commas are required between group repetition names, labels, or name/label
pairs. The repetition value, n, must have a value of 1 or more.

To describe a repeating group continuation, use:

Format CONTINUE GROUP group-name

 elementary-item description(s) follow

END GROUP group-name

The following rules and comments apply to the description of repeating group vari-
ables in the codebook.

1. The REPEATS clause must have a value of 1 or more.

2. Within a repeating group there must be at least one elementary item. The
elementary items can be control, observation, char or filler. In addition, groups
can be contained within groups. We refer to this situation as “nested” repeat-
ing groups.

3. The repeating group name is a control variable which takes the values of 1
through n, where n is the repetition value. Each repetition can have an op-
tional name and/or print label. If a name is provided for a repetition, but no
label is provided, the name will be used as a print label. If no name or label
is provided for a repetition, the label “n group-name” will be assigned to that
occurrence.

4. Repeating groups can appear anywhere in codebooks, except that they cannot
span across data records of different types.

5. Group variables can be redefined and group variables can redefine other vari-
ables.

Repeating.Groups. 125

6. The CONTINUE GROUP clause describes the situation where all fields of the
group are not stored side by side. Instead, the repetitions of one or more fields
follow after all of the repetitions of the field(s) in the location where the group
is first defined.

How.Repeating.Groups.Interact.with.TPL.REPORT.
Statements

Record.Names,.Group.Names.and.the.Built-in.Variable.COUNT

Record name variables from the codebook have the usual meaning. Each record
name variable contains the count of records of its type. For each record, repeating
group variables count repetitions if their groups within the record.

The built-in observation variable COUNT keeps track of the over-all record count
for the data file, without regard to hierarchical levels or repeating groups.

REPORT.Statement

For our examples, we will use the following four data records and the codebook
describing these records. Each record contains information about a household: a
city code followed by a group of evaluations of city services. There are three rep-
etitions of the group, one for Police Protection, one for Library Services and one
for Street Maintenance. The evaluations are coded for Good, Fair, Poor or blank.

Data

01 GFP
01 GFP
02 PFG
03 FF (the last character in this record is a blank for "No Response")

Codebook

BEGIN GROUP_CB

HOUSEHOLD ’Household’ MASK 999 RECORD

Repeating.Groups. 126

 CITY ’City’ CON 2
 (
 ’Concordia’ = 1
 ’Frostburg’ = 2
 ’Silver Spring’ = 3
)
 FILLER 1

 BEGIN GROUP SERVICE ’Service’ REPEATS 3
 (’Police Protection’,
 ’Library Services’,
 ’Street Maintenance’)

 EVALUATION ’Evaluation’ CON 1
 (’Good’ = ’G’
 ’Fair’ = ’F’
 ’Poor’ = ’P’
 ’No Response’ = ’ ’
)
 END GROUP SERVICE

END GROUP_CB

We can view repeating groups as sub-records or records withing a record. Report
outputs depend on whether we use only variables from the record level or we use
variables from repeating groups, with or without variables from the record level.

Reports that Do Not Use the Group Variables
If all variables in the REPORT statement are from the record level, there will be
one row for each record. The report will not be affected by any repeating groups
that may be described in the codebook.

Reports that Use One or More Variables from a Repeating Group
If variables from a repeating group are used, there will be one row for each rep-
etition of the group. In this case, any record level variables will be joined to the
information of each group repetition.

In the following example using our small data file and codebook, the REPORT
statement references variables from both the record level and the repeating group
called SERVICE. The report has 12 rows, since each of the 4 records has 3 group
repetitions. Note that the HOUSEHOLD information is repeated for each repetition
of SERVICE evaluation.

Repeating.Groups. 127

 Example REPORT G1 ’Report using the repeating group called SERVICE.’:
 HOUSEHOLD CITY SERVICE EVALUATION;

Report using the repeating group called
SERVICE.

Row Household City Service Evaluation

1 1 01 1 G
2 1 01 2 F
3 1 01 3 P

4 2 01 1 G
5 2 01 2 F
6 2 01 3 P

7 3 02 1 P
8 3 02 2 F
9 3 02 3 G

10 4 03 1 F
11 4 03 2 F
12 4 03 3

Horizontal lines have been added to this report to separate the report rows from
each of the 4 records. Note that the column for the group variable called SER-
VICE contains the repetition numbers for the group.

If you use ALL or OTHER in the REPORT statement, the variables that go into the
report from the ALL or OTHER categories will be displayed in alphabetical order
by name without regard to whether they are at the record level or contained in a
group.

Using.Repetition.Values.and.Labels

Group repetitions can be referenced by repetition number the same as if these num-
bers were values of a control variable.

Labels for group repetitions can be displayed in report cells in the same way as
condition labels for control variables. In the following example, we use a FOR-
MAT statement with the Report G1 shown above. The FORMAT statement re-
places values with labels for all of the control variables in the report, including the
group variable called SERVICES.

Repeating.Groups. 128

Example FOR VARIABLES CITY, SERVICE AND EVALUATION:
 USE CONDITION LABELS;

Report using the repeating group called SERVICE.

Row Household City Service Evaluation

1 1 Concordia Police Protection Good
2 1 Concordia Library Services Fair
3 1 Concordia Street

Maintenance
Poor

4 2 Concordia Police Protection Good
5 2 Concordia Library Services Fair
6 2 Concordia Street

Maintenance
Poor

7 3 Frostburg Police Protection Poor
8 3 Frostburg Library Services Fair
9 3 Frostburg Street

Maintenance
Good

10 4 Silver Spring Police Protection Fair
11 4 Silver Spring Library Services Fair
12 4 Silver Spring Street

Maintenance
No Response

Labels. 129

C h a p t e r 1 5

Labels

CREating and fORmatting PRint LabELs

Any variable can have a print label associated with it. The print label follows the
variable name when the variable is described in the codebook or created in a report
request. When the variable is used in a report, this label will print in place of the
original variable name. Other report elements that can have print labels are listed
below. Two important report elements, report titles and labels assigned to values
in RECODE statements, are print labels and can contain any of the formatting ele-
ments described in this chapter.

If you do not specify print labels, default labels will be created for reports. Default
labels are satisfactory for identifying the contents of a report, but you may wish
to specify your own labels to make them more informative or to take advantage of
some of the label formatting options.

This chapter describes all of the formatting options you can use in individual la-
bels. For a description of default treatments, see the "Report" chapter.

A typical label consists of text that is bounded by single or double quote marks.
The text can include spaces, upper and lower case letters, and special characters.
Many formatting options are available for print labels. Break points can be chosen
for multiline labels, and alignment can be specified. If you are working in Post-
Script mode, you can vary the type styles within labels by inserting font specifica-
tions.

Print label options apply to all of the following report elements:

1. Records described in the Codebook
2. Control variables
3. Control variable values
4. Observation variables

Labels. 130

5. Char variables
6. Report titles
7. New values created with RECODE statements
8. Subtotals and grand totals

Automatic.Print.Labels

When print labels are not specified, they are automatically created according to the
following rules:

Observation.and.Char.Variables

If no label is assigned to an observation variable, the variable name is used as the
print label. This rule applies to variables that are described as RECORD, OBS or
CHAR in the codebook and to variables that are computed in a report request.

Control.and.RECODE.Variables.and.Their.Values

If no label is assigned to a control variable from the codebook or a RECODE
variable created in a report request, the variable name is used as the print label.
See the statement USE VARIABLE NAME to specify that a name should be used
regardless of the presence another label.

If no labels are assigned to the values of a control variable, labels are generated
from the condition names, if present, or from the values themselves. You can dis-
play labels in place of values in report cells. See the RECODE statement and the
USE CONDITION LABEL statement for ways of doing this.

Report.Titles

If no report title is assigned in the REPORT statement, the report name is used as
the title.

Subtotals.and.Grand.Totals

If no label is assigned, default labels are used. See the "Totals" chapter for de-
faults.

Whenever a name is used as a label, any letters used in the name are printed in
upper case. For example, if the observation variable called Income is not followed
by a print label, the name INCOME will be used as the default print label. If the
name contains underscore (_) characters, they will be replaced with blanks when
the name is printed. For example, the name Average_Income will print as AVER-
AGE INCOME.

Labels. 131

Creating.Your.Own.Print.Labels

Labels can be created in the codebook or report request. They can also be created
or replaced using REPLACE statements in a FORMAT request.

A simple label consists of a text string surrounded by single or double quotes. An
example of a simple label assigned in a codebook is:

INCOME 'Annual Income in Thousands' OBS 5

When the variable INCOME is used in a REPORT statement the label Annual
Income in Thousands will be used to identify the INCOME column in the report.

In the codebook, print labels can optionally be included following variable names
and can be assigned to control variable values. Examples of print labels assigned
in a codebook are:

FAMILIES 'Family Count' RECORD
AMT_WK 'Dollars spent per week' OBS 7
AUTO 'Automobile owned?' CON 1
 (
 YES 'Yes' = 1
 NO 'No' = 2
)
HEADS_WORK 'Class of work of family head' CON 1
 (
 ' White Collar' = 1
 ' Blue Collar' = 2
 ' Other' = 3
)

Within a report request, any of the TPL statements that create new variables can
optionally include print labels. A print label can also follow the report name in a
REPORT statement, in which case that print label will be used as the report title.
The following examples show uses of print labels within a report request.

COMPUTE INCOME 'Total Family Income' =
 HEAD_INCOME + OTHER_INCOME;

RECODE INC_CL 'Income Classifications' ON INCOME;
 'Less than $5,000' IF < 5000;
 '$5,000 to $10,000' IF 5000 :10000;
 'Above $10,000' IF OTHER;

SUBTOTAL MONTH_TOT 'Month subtotals' ON MONTH REPORT T3;
DISPLAY ALL;

Labels. 132

REPORT FAM_DAT 'Family Income Classifications' :
 INC_CL THEN INCOME THEN STATE;

Characters.Allowed.in.Label.Strings

With only a few exceptions, label strings can contain any character that is available
on your keyboard. The quote and backslash (\) characters must be entered in a
special way as described in the next section.

We recommend that you not enter tabs or carriage returns (typed with the <Enter>
key) in label strings. Tabs will be printed as blanks, and carriage returns will be
removed before printing. You can get the effect of a tab at the beginning of a label
by using the INDENT option described later in this chapter. If you are entering a
label string that is longer than one line, you can break it into multiple segments by
ending each line with a quote, typing <Enter>, and continuing on the next line be-
ginning with another quote. The segments will be joined when the label is printed.

If there are characters available on your printer that are not on your keyboard, you
can enter them in label strings either by using a character name or code. A char-
acter name is preceded by & and followed by ; For examples É represents
an E with an acute accent above it. Character names are case sensitive. é
represents e with an accute accent above it.

Character codes are entered by typing \nnn where nnn is the 3 digit decimal code
for the character. Three digits are always required. If the character can be rep-
resented by fewer than 3 digits, add leading zeros. For example, for a character
represented by the code 65, enter \065.

The value nnn must be the DECIMAL code for the character. The character code
tables in some software manuals show the octal or hexidecimal codes for the char-
acters. If you are referring to such a table, you must convert the code to its deci-
mal equivalent. Character set tables showing decimal codes and character names
are included at the end of this manual in an appendix.

Quotes.and.Backslashes.in.Labels

Since quotes are used to show the beginning and end of a label string, they must
be entered in a special way if they are to be used inside a label string. If single
quotes are used at the beginning and end of the label string, two successive single
quotes are required to print one single quote within the label. If double quotes are
used at the beginning and end of the label string, two successive double quotes are
required to print a double quote within the label.

Labels. 133

String.expression Will.print.as

'''FIRST EXAMPLE''' 'FIRST EXAMPLE'
'USER''S CHOICE' USER'S CHOICE
"User's Choice" User's Choice
'BUT ''LESS THAN'' 100' BUT 'LESS THAN' 100
"40 BUT LESS THAN 60""" 40 BUT LESS THAN 60"
"'" ' (a single quote inside double quotes)
'"' " (a double quote inside single quotes)
' ' (a blank inside single quotes)

The backslash (\) character has a special use for entering characters that are not
on the keyboard. If you want to include a backslash character in a label, enter a
double backslash. For example, the label string '\\In Thousands\\' will print as:

 \In Thousands\

Label.Length

Label length is virtually unlimited. The practical limit on the length of a label is
imposed by the requirement that there must be room for at least one line of data on
each page of a report. In other words, if a label is so long that it takes up a whole
page, there will be no space left for anything else.

The.Null.Label

The null label consists of two consecutive quote marks with nothing between them.
When a null label is assigned to a report or a variable used in a report, the label
space will be blank.

Null labels are most useful for suppressing values in RECODE statements. For
example, if we want to include family income values in a report, but suppress the
display of values greater than $99,999, we can recode income to contain original
values or null values:

RECODE REP_INC ON INCOME;
'' IF > 999999;
VALUE IF OTHER;

Labels.with.Multiple.Segments

The print label can be expressed as a single label string or as two or more seg-
ments separated by at least one space, as in:

'ALL NONMANUFACTURING' ' INDUSTRIES FOR 1985-90'

Labels. 134

When multiple segments are used, they will be interpreted as one label combining
the individual components. No space will be inserted to separate the merged seg-
ments, so for each pair of segments, a space must be included to separate words.
One advantage of this format is that each segment can be entered on a separate
line, although the segments will be merged as one continuous label. Another ad-
vantage is that label formatting options can be inserted between label segments.

Control.of.Label.Breaks

If a print label is too long for its allotted space, it will be automatically divided
over two or more lines. If you want more precise control over label break points,
you can use two special formatting options.

Slashes

The first formatting option is provided by the use of the slash (/) symbol. A slash
inserted between two label segments will cause the second segment to start on a
new line. Each additional slash will cause the insertion of one blank line. Each
slash at the beginning or end of a label will cause one blank line to be inserted.

Single slashes cause single spacing between segments. Multiple slashes cause ad-
ditional line spacing between segments. For example, three slashes separating two
print labels would cause triple spacing between them. The expression,

'Row One'/'Continue'/'Continue'//'Row Two'

would print in a report title as:

Row One
Continue
Continue
(space)
Row Two

Each segment of the title would be left justified within the report width unless an
alignment keyword, such as CENTER, is included in the title. In that case each
segment would be centered within the report width.

In the following RECODE example. the variable label, Industry Types, will have
one line of blank space below it. The three assigned value labels will be displayed
in the report cells in place of the original values and each will begin one line be-
low its normal starting line.

Labels. 135

RECODE IND_LABLS 'Industry Types' / ON INDUSTRY
 /'Manufacturing' IF 'A';
 /'Non-Manufacturing' IF 'B';
 /'Farming' IF 'C';

Conditional.Hyphens

The second formatting option allows you to specify where the label should break if
it is too long for the available space. This conditional hyphenation is best illus-
trated by an example.

'MANU'-'FAC'-'TUR'-'ING'

If there is enough space to print all of the components as one consecutive string,
they will appear as:

MANUFACTURING

If there is enough room for only the first seven characters plus a hyphen they will
appear as:

MANUFAC-

with TURING appearing on the next line. If only five spaces are available,
MANU- will appear on one line. FACTURING will next be considered for the
following line and segmented in the same way if necessary.

When a hyphen at the end of a label segment is followed by a conditional hyphen
and the label breaks at that point, only one hyphen will be displayed in the label.

Example For a column of width 10, the label 'Never-'-'Married' will be printed as:

Never-
Married

Hierarchy.of.Label.Break.Points

Labels are divided into multiple lines according to the following priorities.

1. Unconditional Break ('segment' / 'segment')
2. Blank within label string ('segment segment')
3. Hyphen within label string ('segment-segment')
4. Conditional hyphen ('segment' - 'segment')

If none of the above break points are found, the label will be broken at points that
allow the segments to be printed with hyphens at the break points.

Labels. 136

Label.Alignment

LEFT,.RIGHT.and.CENTER

The words LEFT, RIGHT and CENTER can be used with a label to override the
default alignment. Default alignment for different types of labels can be changed
with ALIGN statements as described in the FORMAT chapter, but a specification
of LEFT, RIGHT or CENTER in an individual label will always take precedence.

*****NOTE: For column labels, individual alignment specifications have not
yet been implemented in TPL REPORT. See the FORMAT statements ALIGN
COLUMN and ALIGN HEADING LABEL to align these labels left or right.

Note that the word CENTER can also be spelled CENTRE.

LEFT, RIGHT and CENTER are called alignment markers. They can be inserted
at the beginning of a label before the first quote, at the end after the last quote, or
between label segments if there is more than one segment. For example:

REPORT ONE
 LEFT 'ESTABLISHMENT DATA'
 RIGHT 'ESTABLISHMENT DATA' / / /
 LEFT 'Report B-1. Employment data for nonagricultural '
 'establishments by industry.'
 ALL;

In this example, the title will be formatted as:

ESTABLISHMENT DATA ESTABLISHMENT DATA

Report B-1. Employment data for nonagricultural establishments by industry.

As illustrated above, a label can have one or more alignment markers. They affect
the label according to the following rules.

1. If you put only one alignment marker in a label, regardless of its location in
the label, all segments of the label will take on the specified alignment. For
example, the following label with a single marker of RIGHT will be formatted
as two lines with both aligned to the right, even though the word RIGHT is
placed in the middle of the label.

Labels. 137

'All Establishments' / RIGHT 'Reporting this Year'

 will print as:

All Establishments
Reporting this Year

2. If there are multiple alignment markers in a label, any label section that does
not have an explicit alignment marker is assumed to be left-aligned.

 For alignment purposes, the first section of a label begins at the beginning of
the label. A section ends with any of the following label elements: /, RIGHT,
LEFT, CENTER, RIGHT IN SPACE, SPACE, and SPACE TO.

 For example, the label

CENTER 'Workers Compensation' / 'Mining' / RIGHT 'January'

 has the sections:

'Workers Compensation'
'Mining'
'January'

 The section 'Workers Compensation' is centered, because it is preceded by
CENTER. It ends with /. The section 'Mining' is left-aligned, because it has
no explicit alignment marker. It is ended by both a / and the word RIGHT.
The section 'January' is right-aligned, because it is preceded by RIGHT. If this
is the report title, it will be displayed as:

Workers Compensation
Mining

January

3. If there are two alignment markers between slashes, or between the beginning
and end of the label if there are no slashes, then the sections will be placed on
the same line with the specified alignments if there is enough space on the line
to do so. If an aligned section doesn't fit, it will be placed on the next line.
Consider the following report title:

REPORT TITLE_SAMPLE
LEFT 'Workers Compensation Report' RIGHT 'January'

Labels. 138

 If the report is wide enough for all of the title characters to fit on one line
without overlapping, the complete title will be placed on one line with a left-
aligned section and a right-aligned section:

Workers Compensation Report January

 If RIGHT and LEFT were reversed in this title as follows:

RIGHT 'Workers Compensation Report' LEFT 'January'

 then 'Workers Compensation' would be right-aligned on one line and 'January'
would be left-aligned on the next, since there would never be space for the
'January' following the right-aligned 'Workers Compensation' section.

 For another example, suppose a report is 50 characters wide. This means that
the title space is 50 characters. The first section of label is left-aligned and
takes up 15 characters. The second section is to be centered and takes up 26
characters. The centered section should start at position 25 (the center) - 13
(half the length of the centered segment) = 12. But the first section extends
beyond 12, so there is no room for the centered section. Consequently, the
centered section appears on a new line.

4. If you use multiple alignments within the same label, we recommend that you
explicitly divide your label into sections that will fit for each line of the label
and precede each section with the alignment of your choice. That way, you
will always get the expected result.

Alignment in Page Markers
The FORMAT statement called PAGE MARKER can only have an alignment
specified at the beginning (before any label segments, if present). This alignment
applies to the entire page marker.

If you want a page marker with part on the left and part on the right, try aligning
the page marker LEFT and inserting SPACE TO in front of parts of the marker to
"push" them over to the desired location. Some experimenting may be needed to
get things in the position you want. An example is:

PAGE MARKER = LEFT SPACE TO 3 cm 'Page ' NUMBER
 SPACE TO 12.5 cm 'HOUSEHOLD DATA';

Note that SPACE TO only applies to left-aligned labels, so this technique can only
be used with a left-aligned page marker. Note also that a left-aligned page markers
begins at the left margin of the page rather than the left edge of the report below it.

Labels. 139

See also RIGHT IN SPACE, described elsewhere in this chapter. This is another
option that can help you get a left and right section for a page marker. For ex-
ample:

PAGE MARKER LEFT 'Left marker'
 RIGHT IN SPACE 7.5 IN NUMBER;

In this example, the page width is 8.5 inches. Aligning the page NUMBER right
to a location of 7.5 inches puts it at the right margin of the page if the default left
and right margin widths of .5 inches are being used.

RIGHT.IN.SPACE.for.Right-Alignment.to.a.Selected.Point.in.a.Label

A specification of RIGHT in a label causes the following label section to be
aligned at the right edge of the label space. If you wish to right-align to some
other point within the label space, you can use RIGHT IN SPACE.

Format RIGHT IN SPACE location [unit]

The label section following RIGHT IN SPACE will be right-aligned to the loca-
tion. The optional unit of measure can be expressed as inches, cm, or points. If
no unit is specified, the unit is assumed to be characters.

The first section of a label begins at the beginning of the label. A label sec-
tion ends with any of the following label elements: /, RIGHT, LEFT, CENTER,
RIGHT IN SPACE, SPACE, and SPACE TO.

The location is measured from the beginning of the label space. For example, in a
report title, the label space begins at the left edge of the report.

Note that RIGHT IN SPACE applies only to left-aligned label sections. Certain
types of labels, such as column labels, are centered by default. With these, you
must use LEFT to left-align before specifying RIGHT IN SPACE, as shown in the
example below.

The location must be within the available space. For example, if you specify the
following for a heading label:

LEFT RIGHT IN SPACE 2 INCHES 'Health Insurance'

and the column width is only 1.5 inches, the label section can't be aligned to a
point 2 inches to the right.

If RIGHT IN SPACE is applied to a label section that cannot fit in the space
preceding the location, RIGHT IN SPACE is ignored. For example, if the label

Labels. 140

section is 5 inches long, and you specify RIGHT IN SPACE 3 INCHES, the label
section cannot fit in the 3 inch space.

Example In the following example, RIGHT IN SPACE is used to right-align two sections of
the report title 3 inches into the title space.

report one ’Report 86.’
 right in space 3 in ’Plan participation:’/
 right in space 3 in ’Three types of insurance.’ :
 health then life then other_ins;

Continuation.Labels.for.Report.Titles

Report titles are the only print labels that have automatic continuation labels. For
example, suppose that we have a report title set up as:

REPORT REG_TAB 'Region Summaries for 1981 - 91':

If the report continues beyond a single page, a continuation label will follow the
title for pages after the first:

 Region Summaries for 1981 - 91 - Continued

The continuation label ' - Continued' can be changed or removed using the FOR-
MAT statement REPLACE TITLE CONTINUATION WITH 'new continua-
tion'.

Indentation.and.Spacing.in.Labels

Changing.Label.Alignment.with.INDENT

INDENT specifications can be used in labels to assist in label alignment. If you
are working in line printer mode, you can often achieve the desired alignment by
adding or subtracting blank characters at the beginning of a label. In some cases,
however, you may find it easier to control label alignment using INDENT. This is
especially true if you are using the proportional fonts available in PostScript mode.
For additional aids to label spacing, see the section called "Spacing within La-
bels".

Format The format for the indent specification is:

INDENT [+ or -] amount [unit]

Labels. 141

where amount is the size of the indent (decimal numbers are allowed). The
amount can be up to about 25 inches.

The optional unit specification can be expressed as inches, cm or points.

Example INDENT .5 INCHES

A positive indent amount will shift the label right; a negative amount will shift the
label left.

If no unit is specified (as shown in the following example), the unit is assumed to
be characters.

INDENT works properly only with left-justified labels.

INDENT applies to all lines of a label that follow it. If you begin a label with
INDENT, then add another INDENT specification in the middle of the label, the
second INDENT will take effect at the beginning of the next line. For example:

indent 1 cm 'label line 1' indent .5 cm / 'label line 2'

will give the result:

 label line 1
 label line 2

If slashes are included in the label to show where the label should break to go to a
new line, an INDENT specification for the new line can be inserted either before or
after the slash. The label

indent 1 cm 'label line 1' / indent .5 cm 'label line 2'

will give the same result as the label shown above. It is identical except that the
INDENT for the second line follows the slash rather than preceding it.

Labels. 142

If you have not inserted slashes to show the break point for a long label but wish
to control the indentation following the break, you must insert an INDENT some-
where in the label before the break point. For example,

INDENT 3 'This is' INDENT 6 ' a long multi-line label.'

The first line of the label will be indented 3 characters. Continuation lines will be
indented 6 characters.

Indent Restrictions
There must to be space on the current line for at least two characters of label in
addition to the indentation.

Indent with PostScript Proportional Fonts
In line printer mode or in PostScript mode with a non-proportional font, all charac-
ters, including blanks, are the same width. In PostScript mode, if you are working
with a proportional font, the character width depends on the character. Numbers
will all have the same width, but for other characters the width will vary. For
example, the letter o will be wider than the letter i. In particular, a blank will take
up about half the space of the average character width or the width of a number. If
you have specified INDENT in characters, the width used for each unit of indenta-
tion will be the same as the width of a number in the font you are using.

If you are working only in line printer mode or in PostScript mode with non-pro-
portional fonts, you can often easily align labels by simply adding blanks to move
parts of the label left or right.

If you are working in PostScript mode with proportional fonts, use of INDENT
rather than blanks can help you in two ways:

1. You may want to begin work on your report in line printer mode, so that you
can display the report on the screen and/or print it on a line printer until you
have most of the format characteristics worked out -- then switch to PostScript
and proportional fonts. If you adjust label alignment with INDENT rather than
by adding blanks, your transition to PostScript mode will be easier. If you
use blanks instead, you will need about twice as many blanks to get the same
amount of space when you switch to a proportional font.

2. If you need to align an indented label with a particular character in the line
above, INDENT will give you finer control than you can get with blanks. You
can precisely adjust the label alignment by inches, centimeters or points.

Labels. 143

Spacing.within.Labels.Using.SPACE.and.SPACE.TO

You can use the words SPACE and SPACE TO to add a specific amount of space
within a label or to space over to a particular location. These spacing options can
be used in both line printer and PostScript modes, but they are especially useful
with PostScript's proportional fonts, because they let you add a specific amount of
space without regard to character sizes.

Format The formats for the two spacing options are:

SPACE amount [unit]
SPACE TO amount [unit]

where amount is the size of the space or the location to "space to". The amounts
can contain decimal points for fractional amounts such as 3.5 . The amount can be
up to about 25 inches.

The optional unit can be expressed as inches, cm or points. If no unit is specified,
the unit is assumed to be characters.

The spacing options should only be used with left-aligned label segments. If used
in centered or right-aligned segments, they will either be ignored or give results
other than what you expect. When SPACE TO is used, the location is always cal-
culated from the start position of the label without regard to indents or blanks that
may be included at the beginning of the label.

If a label segment is too long for the current line after space is added, it will be
continued to another line with no space at the beginning of the next line.

Examples 'Total' SPACE 10 CM 'All Universities'
'Total' SPACE TO 10 CM 'All Universities'

In the first example, there will be a space of 10 centimeters between 'Total' and 'All
Universities'. In the second example, space will be added between 'Total' and 'All
Universities' so that the distance from the start of the label to 'All Universities' is
10 centimeters.

Using.SPACE.TO.and.INDENT.Together...

SPACE TO and INDENT can be combined as shown in the following example
where SPACE TO is used to move a portion of the first line of a report title to 1
inch from the beginning and INDENT is used to indent additional lines to the same
location. Note that the font change in this title would not affect the non-PostScript
format.

Labels. 144

Example REPORT S1 LEFT 'Table 3.3e’
SPACE TO 1 INCH INDENT 1 INCH
'Petroleum Imports: Angola, Australia, Bahama Islands, Brazil, '
'Canada, and China.' /
FONT H 10 ’(Thousand Barrels per Day)’: ;

Table 3.3e Petroleum Imports: Angola, Australia,
Bahama Islands, Brazil, Canada, and China
(Thousand Barrels per Day)

Both INDENT and SPACE options are designed to work with left-aligned label
segments. All segments of the report title are left-aligned by default, but it is
possible to get different alignments for independent segments. The next title is
the same as above but the last line is centered. We can make the centering work
correctly by setting INDENT back to 0 for the last line so that no indentation is in
effect for that line.

Example REPORT S2 LEFT 'Table 3.3e’
SPACE TO 1 INCH INDENT 1 INCH
'Petroleum Imports: Angola, Australia, Bahama Islands, Brazil, '
'Canada, and China.' /
INDENT 0 CENTER FONT H 10 ’(Thousand Barrels per Day)’: ;

Table 3.3e Petroleum Imports: Angola, Australia,
Bahama Islands, Brazil, Canada, and China

(Thousand Barrels per Day)

PostScript.Font.Control.in.Labels

Fonts can be set for different types of labels, including titles, using PostScript
FONT statements in the FORMAT language. This method of font selection works
well if you want all labels of a certain type to have the same font. Sometimes,
however, you may need to use a different type style or size for particular labels or
for different sections within the same label. You can do this by including fonts in
individual labels. These font specifications take effect only in PostScript mode.
They are ignored in line printer mode.

For a complete list of available PostScript fonts, including bold, italic and under-
line fonts, see the FONT statement in the FORMAT section of the manual.

A font specification within a label takes the same form as in the FORMAT lan-
guage FONT statement. To change the font for an entire label, simply insert the

Labels. 145

FONT specification at the beginning. For example, the following label will be
printed in Times Bold Italic:

FONT TBI 'Revised'.

Fonts can change more than once within a label. For instance, a label could begin
with a section of bold-underlined type, change to italic and end with bold-italic.
To change fonts within a label, insert the font specifications anywhere between
strings.

The expression FONT RESET can be used at any point to restore the default label
font for a later section of the label. The following example shows how FONT and
RESET can be used in a title:

 'As published in '
 FONT HI 'Three Little Pigs'
 FONT RESET ' by Anon.';

The font size is optional. If the font specification is in the middle of a label and
does not include a size, the size is the same as for the previous part of the label. If
the font specification is at the beginning of the label and does not include a size,
the size is the same as the default size for that type of label.

A font remains in effect until another new font is specified or the end of the label
is encountered. The special font RESET is the same as the default font for that
type of label. Thus, for instance, if we have set the default of TITLE FONT = H
8, the example shown above would give the same result as:

 'As published in '
 FONT HI 8 'Three Little Pigs'
 FONT H 8 ' by Anon.';

In either case, the title would print as:

As published in Three Little Pigs by Anon.

The advantage of using the RESET font is that if you change the default font for a
particular type of label, you will not need to adjust individual labels to match the
new default.

For another example, assume that the default title font has been set with:

TITLE FONT H 10;

Labels. 146

If we want all parts of the title to have the default size, but different styles for
some sections, we can add FONT specifications to the title without including sizes.
For example,

CENTER 'Report B-4. '
 FONT HBU 'Sales Prices'
 FONT HB ' of New Houses Sold in the United States.'/
 FONT RESET '[Rounded to hundreds of dollars]'

This title would print as:

Report B-4. .Sales.Prices.of.New.Houses.Sold.in.the.United.States.
[Rounded to hundreds of dollars]

If we later find that we need to increase or decrease the size of the title font for all
reports, we can do so by changing only the TITLE FONT statement. Size adjust-
ments in the individual titles will be automatic. Assuming that we change the
default title font to TITLE FONT H 8, the title shown above will print as:

Report B-4..Sales.Prices.of.New.Houses.Sold.in.the.United.States.

[Rounded to hundreds of dollars]

If fonts of different sizes are used in a label, the vertical spacing for the label is
determined by the largest font, even if the larger font is not used in all lines of the
label. For total labels or labels in cells, if the DEFAULT FONT is larger than the
label fonts, the spacing will be determined by the DEFAULT FONT.

Superscripts.and.Subscripts

Superscripts and subscripts can be used in labels. These take effect in PostScript
mode only. In line printer mode, the superscript and subscript notations are ig-
nored.

Enter the superscript or subscript notation in the label in front of the appropriate
label segments. For superscript, use SUP or SUPER; for subscript, use SUB.
The superscript or subscript specification will apply from that point in the label,
either to the end of the label or to the next occurrence of the notation NORMAL.
These notations can be mixed with other label features such as font, spacing and
line break specifications.

Superscript characters are raised by the same amount as as superscripted footnote
symbols would be; subscripts are lowered to the base line of the label.

Labels. 147

Example 'Regular label part ' SUP 'Superscript part ' NORMAL 'End'

The label text 'Regular label part ' will be printed at the normal level, the label text
'Superscript part ' will be raised, and the label text 'End' will be at the normal level.

Masks. 148

C h a p t e r 1 6

Masks

fORmatting data vaLuEs With masks

For observation variables, values that do not have masks are rounded to the
nearest whole integer and displayed with no special symbols except commas. The
values are centered in the report columns. If you want a different format for val-
ues, you can specify the format using a print mask.

With a mask, you can format data with decimal points, commas, and special
characters such as dollar signs and percent symbols. When a mask is used, data
is centered in the report columns based on the size of the mask, or right-alignment
can be specified. If you are working in PostScript mode, you can choose the type
style for values by inserting font specifications in masks.

A mask can be assigned to any observation variable described in the codebook
or computed in a report request. Whenever the variable is used in a report, the
mask determines the format for the variable's values. The REPLACE MASK
statement can also be used in a FORMAT request to assign or replace a mask
either by variable or by column. To replace a report value with a different value or
some text, see the RECODE statement.

The mask functions as a pattern for formatting the values. In its simplest form, it
consists of a succession of 9's, one for each digit position of the largest expected
value. For example, a mask of:

MASK 9999

would indicate that the largest expected value has four digits. The values would
be centered based on the size of a four digit number and would be printed without
commas or other special characters.

Masks. 149

Adding.Decimal.Points.and.Commas

When decimal points and commas are to be displayed with the values, the symbols
are indicated in positions relative to the 9's. The following mask will format the
values with a comma and two decimal places:

MASK 9,999.99

If a value is larger than the mask and the mask contains one or more commas, ad-
ditional commas will be inserted as required.

A mask cannot end with a comma or a decimal point. If commas are used in a
mask, the commas must separate groups of three 9's, starting at the decimal point,
if present, or the right-most 9 and proceeding to the left. If there are fewer than
three 9's following a comma, they will be ignored. For example, a mask of 999,99
will be treated the same as a mask of 999.

Decimal values are rounded to the number of decimal places shown by the mask.
If a decimal value is formatted without a mask, it is rounded to the nearest integer
value.

Rounding.Rule

Rounding is done according to the "round even" rule: 5 is rounded up or down
depending on the digit to the left of the 5. If the digit to the left of the 5 is even,
it rounds down. If the digit to the left is odd, it rounds up. (A blank to the left is
considered to be a zero and thus even.)

For example, with a mask of 99.9:

5.8500 -> 5.8 (8 is even -> round down)
5.7500 -> 5.8 (7 is odd -> round up)

This rounding rule is part of the IEEE and ANSI standards for binary and floating
point arithmetic.

Note that detail values may not add to totals because of rounding. This is true
regardless of the rounding rule being used. The following illustrates results with
the "round even" rule. In this case, the sum of the rounded detail values is greater
than the rounded sum.

2.5 -> 2 (2 is even -> round down)
4.5 -> 4 (4 is even -> round down)

7.0 ≠ 6

Masks. 150

Creating.Decimal.Places

A value is assumed to be a whole number with no decimal places unless:

• it contains values described with a SHIFT LEFT
clause in the codebook;

• it contains values described as floating point in the
codebook; or

• it contains values resulting from computations that
add decimal places (for example, division in a Com-
pute statement).

If the value is assumed to be a whole number and is formatted with a mask that
contains a decimal point, the whole number will be printed to the left of the
decimal point with 0's to the right of the decimal point. For example, if the mask
99,999.99 is used to display a cents aggregation of 47378, the displayed result will
be 47,378.00, since the decimal point is assumed after the 8.

To show values of this type with the correct number of decimal places, the decimal
places must be created by division in a COMPUTE statement. For the dollars and
cents example, we can create two decimal places by dividing the values by 100 in
a COMPUTE statement as in:

COMPUTE DOLLARS USING 99,999.99 = CENTS / 100;

The value of 473.78 used with the mask 99,999.99 will then be displayed correctly
as 473.78.

Leading Zeros
When a decimal value less than zero is printed, it is always displayed with a zero
to the left of the decimal point. An example is 0.48. This is true regardless of
what mask is used for the value, even a mask such as MASK .99. If you do not
want to display these zeros, you can remove them by using the FORMAT statement
DELETE LEADING ZEROS; If this statement is used, our example value will
print as .48 instead of 0.48.

$,.%.and.Other.Character.Strings.in.Masks

A mask can be preceded or followed by a character string bounded by quote
marks. In this case, the character string will be displayed with all values to which
the mask applies. For example, if an entire column is to be printed with a trailing
percent symbol, a mask such as 99.9'%' could be used. Likewise, if an entire col-
umn is to be printed with a leading dollar sign, a mask such as '$'9,999.99 could
be used.

Masks. 151

A mask can consist of only a character string bounded by quote marks. In this
case, the character string will be displayed alone without the value. You can even
make a report value blank by using MASK ' '.

See also the chapter called RECODE for additional ways of replacing values with
text or combining values with text in reports.

Replacing.Rounded.Digits.with.Zeros

Data can be rounded and displayed with trailing zeros by inserting zeros in the
mask. For example, a mask of 999,000 causes data to be rounded to the nearest
thousand and displayed with three zeros in place of the rounded digits. The value
876859 will be displayed as 877,000.

Zeros in masks are ignored if they are to the right of a decimal point or if there are
any 9's to the right of the zeros. A mask of 9909 is treated the same as a mask of
9999; a mask of 9900.00 is treated the same as a mask of 9999.99.

Alignment.of.Values

Data values for which a mask is given will be centered within the column width
unless other alignment is specified. The number of characters making up the mask
will be used to control the centering. The mask may be thought of as being posi-
tioned at the center of the column, with values being aligned with the mask from
right to left. For example, a mask of '$'99,999 used together with a column width
of 10 (including the column divider) would give the following results.

Value. . Will.display.as

23567 | $23,567 |

146 | $146 |

In line printer mode, if a mask cannot be perfectly centered because of an uneven
number of spaces, it is adjusted to the right one position. For example, if there
are 9 spaces available for a 6 character mask, the mask will be positioned with
2 spaces to the left and 1 space to the right. In PostScript mode, the mask will
always be centered.

The keywords RIGHT and CENTER can be used with a mask to force alignment
of values to the right side or center of the column. For example:

COMPUTE WK_SALARY 'Weekly Salary'
 MASK '$'999,999 RIGHT = 40 * PAY_RATE;

Masks. 152

Since the default alignment for masks is CENTER, you do not need to add this
word to a mask to specify centering.

See also the statements ALIGN CELLS and ALIGN COLUMN in the FORMAT
chapter for additional ways of aligning data.

Note ALIGN statements can be applied to any type of variable, not only observation
variables. For observation variables, masks and ALIGN statements such as ALIGN
COLUMN interact. If both a mask and an ALIGN statement apply to the same
column, the last specification wins.

Treatment.of.Large.Values

If a value has more digits than shown in its mask, column spaces to the left of the
mask space are used, if available. If there is not enough space, the following steps
are taken as required to print the value:

1. The value is aligned to the right regardless of the
alignment specified by the mask.

2. Leading and trailing mask strings are removed.

3. Digits to the right of a decimal point are deleted one at
a time.

4. If there is still not enough space to print the value, the
value is replaced with (f) to indicate that it will not fit.

PostScript.Font.Control.in.Masks

In PostScript mode, the font for data values is determined by the DEFAULT FONT
that you have chosen for PostScript report output. Sometimes, however, you may
need to use different type styles or sizes for particular variables. You can do this

Masks. 153

by including fonts in individual masks. These font specifications take effect only
in PostScript mode. They are ignored in line printer mode.

For a complete list of available PostScript fonts, see the FONT statement in the
FORMAT section of the manual.

A font specification in a mask takes the same form as in the FORMAT language
FONT statement for masks. To change the font for an entire mask, simply insert
the FONT specification at the end of the mask. For example:

COMPUTE SALARY MASK RIGHT '$'999,999 FONT.TBI.8 = 12 * MO_RATE.

Note For a data mask, the FONT specification must be at the end of the mask and the
FONT applies to the entire data mask.

If you want to use a variety of fonts within a mask, you may be able to get the de-
sired result by using a RECODE statement. Fonts can be varied within RECODE
value assignments. For example:

RECODE AVG_AGE 'Age' ON AGE;
FONT TIU 'Average ' FONT RESET 'Age' FONT HB VALUE IF ALL;

The font size specification is optional. If size is not specified, the size will be
determined by the PostScript DEFAULT FONT.

The vertical spacing of a data row is not adjusted for the font specifications of in-
dividual mask fonts. The spacing is set according to the largest font in a RECODE
value for the data row OR the DEFAULT FONT -- whichever is larger. If fonts
of different sizes are used for different columns and some of the mask font sizes
are substantially larger than both the RECODE values and the DEFAULT FONT
sizes, it is possible that the data values with large fonts could overlap those above
or below.

Masks. 154

Sample.Report.Using.Masks

The following report show how various data values would be displayed with differ-
ent masks.

use banking codebook;

select 10; /* show only the first 10 records */

compute bal_dol center ’Loan’/’Balance’ mask.right.’$’999,999 = bal;
compute rate ’Effective’/’Interest’ mask.’Rate.’.99.99’%’.font.tiu = regz/100;

report m1: loan_no then bal_dol then rate;

M1

Row
Loan

Number
Loan

Balance
Effective
Interest

1 00004 $1,000 Rate 15.00%
2 00008 $5,743 Rate 5.25%
3 00011 $1,546 Rate 5.25%
4 00036 $3,144 Rate 5.25%
5 00040 $3,065 Rate 5.25%
6 00041 $2,594 Rate 5.25%
7 00043 $3,009 Rate 5.25%
8 00043 $12,900 Rate 14.00%
9 00044 $100,000 Rate 0.00%

10 00045 $15,000 Rate 0.00%

 PostScript. 155

C h a p t e r 1 7

PostScript

PubLiCatiOn quaLity REPORts using POst-
sCRiPt

PostScript®, developed by Adobe Systems Incorporated, is a printer-independent
language for describing a page of text and/or graphics. With TPL REPORT Post-
Script features, you can create publication-quality reports with choices of type style
and size, including proportional type. Because PostScript provides a standard way
of describing a page, PostScript reports can be printed on any laser printer or type-
setting machine that processes PostScript. In Windows, you can use Ted, the TPL
Editor, to print PostScript reports on any of the printers you use.

Even if you do not publish reports, you may wish to take advantage of the Post-
Script features for the following reasons. First, the reports look like they have
been professionally typeset and are very impressive. Second, you can get much
more information on a page with proportional type styles. Unless you use up-
per case letters throughout your labels, the labels will take up less space than they
would with a fixed character width.

In TPL REPORT PostScript mode, you can select both the type style and the type
size for all kinds of labels, including titles, and for the data values in your reports.
With proportional type styles, special formatting is required to get the correct
column alignments for a report. TPL REPORT does this special formatting for the
entire range of PostScript type styles and sizes. Another special PostScript feature
lets you rotate reports for sideways printing.

You can print PostScript reports directly from TPL REPORT or combine them
with text using other desktop publishing software. This User Manual provides an
example of how the reports can be combined with text. All of the reports shown
in this manual were prepared using TPL REPORT in PostScript mode. The text
was prepared using an editor (word processing program). Then the text and reports
were combined using a desktop publishing system.

 PostScript. 156

Windows Note You can display and print PostScript reports directly from Ted, the TPL Editor,
regardless of whether or not you have a PostScript printer. To print the reports in
other ways, such as from the command line, you need to have a PostScript printer
as described below under UNIX Notes.

UNIX Notes You need to have a PostScript printer to print PostScript reports. If you do not
have a PostScript printer, you may still be able to print PostScript reports by
adding a PostScript board or cartridge to your computer or printer, or by using
a program that translates PostScript for the type of printer you have. Due to the
variety of options and the rapidly changing technology, it is difficult for us to make
a recommendation here.

PostScript reports created on a UNIX system can also be displayed and printed on
a Windows PC using View or Ted, the TPL Editor. Please contact QQQ Software,
Inc. if you need one of these programs.

PostScript.FORMAT.Statements

PostScript options are chosen with FORMAT statements that can be entered in a
format request or in a TPL profile. The FORMAT statements that are especially
relevant to PostScript are:

POSTSCRIPT to select PostScript format for reports;
FONT to select type style and size;
REPLACE.MASK.FONT. to change only the mask font;
ROTATE for sideways printing;
EXTRA.LEADING to control line spacing;
RULE.WEIGHT,
DOWN.RULE.WEIGHT,
RETAIN.CROSS.RULES..WEIGHT.=.n and
RETAIN.SIDE.RULES..WEIGHT.=.n to adjust the thickness of rules.
CODEPAGE for non-English alphabets.
DEFAULT.COLOR. to set the default color (see COLOR Default);
LABEL.COLOR to set the color default for labels (see COLOR Default);
RULE.COLOR to set the color default for rules (see COLOR Default);
SYMBOL.COLOR. to set the color default for symbols (see COLOR Default);
COLOR =.NO and
REPLACE.COLOR. color WITH FONT font to substitute fonts for colors;
REPLACE.MASK.COLOR to change cell color.

These statements are documented extensively in the FORMAT chapter. See also
the chapter called "Color" for an introduction to color features.

 PostScript. 157

Getting.Started.with.PostScript

Windows The installation process sets PostScript defaults in the TPL TABLES system profile
so that you can get properly formatted PostScript reports automatically. You can
change, delete or override any of the installation defaults with FORMAT state-
ments. See the FORMAT statements, POSTSCRIPT and FONT, for complete
details. If you wish to change from PostScript to ascii text output, you can do so
with the FORMAT statement POSTSCRIPT = NO;.

UNIX When you install TPL TABLES, you can choose between PostScript and line
printer (ascii text) mode. If you choose PostScript, the installation process will set
PostScript defaults in the TPL TABLES system profile so that you can get properly
formatted PostScript reports automatically. You can change, delete or override any
of the installation defaults with FORMAT statements. See the FORMAT state-
ments, POSTSCRIPT and FONT, for complete details.

Use of PostScript requires a choice of type style and size. We call this combina-
tion of style and size a FONT. When TPL TABLES is installed to run in Post-
Script mode, a set of FONT statements is entered in the TPL TABLES profile. If
there are no FONT statements, TPL TABLES will assume a font of C 12 (Courier
12). This will result in reports that look very much like ascii text reports.

There is only one other thing to consider before getting PostScript output. This
is the specification of sizes for pages, margins and report characteristics such as
columns.

When using PostScript, you should express page size and margin sizes in some-
thing other than characters and lines. This is because, with PostScript, you can
choose different character sizes. If page and margin sizes are expressed in char-
acters and lines, the size of the page will vary as the character size changes. This
result is usually undesirable.

For example, the following statements will "shrink" the report into the lower left
portion of the page:

POSTSCRIPT = YES;
PAGE WIDTH = 80;
PAGE LENGTH = 66;
DEFAULT FONT = H 8; /* Helvetica 8 */

 PostScript. 158

If you are using 8 1/2" by 11" inch paper, you can get your report properly posi-
tioned on the page by changing the page specification so that it does not depend on
character size. For example:

PAGE WIDTH = 8.5 IN;
PAGE LENGTH = 11 IN;

or

PAPER = LETTER;

LETTER is one of the paper size options in TPL REPORT. For other built-in
paper sizes, see the FORMAT statement called PAPER.

For most printers, PostScript printing requires a margin. If you try to print some-
thing that fills the paper to the edges, you may lose part if it. Therefore, we do not
recommend margin sizes of 0 when using PostScript.

Switching.between.Line.Printer.and.PostScript.Modes

In general, if you will be switching between line printer and PostScript mode, sizes
other than those for the page and its margins will work well in both modes if they
are expressed in characters. If you are using a proportional font in PostScript, you
will often be able to get more characters within a given width. The most common
exception is when you have a label in upper case letters. Upper case letters are
often wider in a proportional font.

Sizes specified in inches, centimeters or points will work in line printer mode
as well as in PostScript mode. If you are not requesting PostScript output, the
measures will be converted to 12 pt equivalents in characters. With 12 pt type, 1
inch can contain 10 characters in the horizontal direction and 6 lines in the vertical
direction.

Jobs that have been set up for PostScript printing can be converted to ascii text
mode by simply changing the FORMAT specification to POSTSCRIPT = NO;.
Any other FORMAT specifications that relate only to PostScript will be ignored.
Again, you should be aware of size specifications. For example, a column width,
such as .7 in, that is appropriate for a font with a small size may seem very narrow
when you convert to ascii text mode.

 PostScript. 159

Report.Output.Files

Ascii text reports are saved with file names such as a1.rep or industry.rep. The
comparable PostScript reports are saved in files named a1.ps or industry.ps.

UNIX Note Since PostScript reports cannot be reviewed on the screen, you may wish to pre-
pare your reports in "draft" form with POSTSCRIPT set to NO, then switch to
POSTSCRIPT = YES; when you know that the report content is correct. If you
wish, you can transfer PostScript reports to a Windows PC to review them using
View or Ted, the TPL Editor. Please contact QQQ Software, Inc. if you need one
of these programs.

Printer.Selection.--.UNIX

If you have both a PostScript and a non-PostScript printer attached to your com-
puter, you can use a FORMAT statement to choose the appropriate printer. See the
PRINT COMMAND statement in the FORMAT chapter for details.

Using.PostScript.Reports.with.other.Software

If you ask TPL REPORT to prepare the PostScript reports for use by other pro-
grams, it will divide the reports into pages and save each page in a separate En-
capsulated PostScript (EPS) file. Each file will have a name that is a combination
of the the page number, the report number and the suffix .eps. Assume a report
request with 3 reports, where the first report has two pages and the other reports
have a single page. If the report names are A1, A2 and A3, the EPS files will be
named:

P1R1.EPS
P2R1.EPS
P3R2.EPS
P4R3.EPS

This process is described in detail in the appendix "Run Instructions". If you have
many pages, refer to the PAGE MARKER statement in the FORMAT chapter for
a good way of marking the pages with the file names.

Font.Selection

Fonts can be selected for report elements, such as titles, variable labels or masks,
with FORMAT FONT statements. Font specifications can also be included in in-
dividual labels and masks for additional customizing. These detailed specifications
are described in the chapters on labels and masks.

 PostScript. 160

PostScript.Examples

Following are FORMAT statements requesting PostScript output and the report that
was formatted using these statements. Note that if we change the PostScript state-
ment to POSTSCRIPT = NO;, the FONT and DOWN RULE WEIGHT state-
ments will be ignored, because they only affect PostScript reports.

POSTSCRIPT = YES;
PAPER = LETTER;

DEFAULT FONT = H 10; /* Helvetica 10 */
TITLE FONT = HB 12; /* Helvetica-Bold 12 */
VARIABLE LABEL FONT TI 12; /* Times-Italic 12 */

RETAIN ALL RULES;
RETAIN SIDE RULES;
FOR VARIABLE NUMBER: DOWN.RULE.WEIGHT = 2;

FOR COLUMN 1: ALIGN COLUMN LEFT;
 COLUMN WIDTH 20;

Employee Report for December 1998

Row Type of Job Pay Rate Sex

1 Clerk/Typist 5.53 f
2 Director of Operations 21.49 m
3 Staff Secretary 7.35 f
4 Executive Secretary 9.21 f
5 Accounting Clerk 5.00 m
6 Payroll Clerk 5.19 f
7 Accounting Supervisor 8.65 f

 PostScript. 161

Dashes.in.PostScript

There are three sizes of "dash" characters available in PostScript. A short dash is
used for hyphenation. This dash is the hyphen character on your keyboard. A me-
dium dash is used as the footnote symbol for the EMPTY built-in footnote ("Data
not available."), and a long dash is used in title continuations. The choice of dash
can be changed for the title continuation with the FORMAT statement REPLACE
TITLE CONTINUATION; .

The medium and long dashes are special characters that are not on your keyboard
but can be entered with \nnn where nnn is a character code. The choice of char-
acter code depends on the TPL Codepage being used. See the appendix called
"Character Sets" for details about Codepages. A better way to enter these char-
acters is by using their names with & in front and ; following. &endash; can be
used to specify the medium dash while &emdash; can be used for the long dash.

Suppose we wish to replace the dash in the title continuation with an endash. We
could use the statement:

Example REPLACE TITLE CONTINUATION WITH '&endash; continued';

Color. 162

C h a p t e r 1 8

Color.and.Grey

using COLOR in REPORts

General.Information.on.Color

You can specify color for individual labels, including titles, and for masks within
codebooks, report requests and FORMAT requests. Color defaults for data values,
labels and rules (horizontal and vertical lines) can be specified with FORMAT
statements.

The word COLOR can also be spelled COLOUR.

COLOR specifications are only effective in PostScript mode. They are ignored in
line printer mode.

Effect.on.Monochrome.Printers

If reports that use color are printed on a non-color PostScript printer, the colors
will print as shades of grey. See the FORMAT statement COLOR = NO for tips
on switching between color and monochrome.

Important This chapter is best viewed in the pdf form since colors are not displayed in the
paper manual.

r.g.b.colors

Colors are specified by a combination of red, green and blue. We will refer to
them as r g b where the amount of each color in the mix is indicated by a value
from 0 to 100. For example, the color blue has the r g b numbers 0 0 100. In
other words, there is no red, no green, and the maximum amount of blue.

Color. 163

Color.Chart

A color chart file called colors.ps is included with the TPL system. It can be
found in either the doc subdirectory or the examples subdirectory of the TPL
system directory, depending on the version of TPL you have. If you have a color
PostScript printer, you can print this chart on your color printer to see what colors
are printed for a variety of r g b colors.

The color chart is also shown on the next page of this manual. With the PDF ver-
sion of the manual open in Adobe Acrobat Reader, you can print the page on your
color printer.

There is very little consistency between color printers, so the same r g b color
printed on one color printer may look quite different when printed on another.
With the color chart, you can choose precisely from the colors as printed by your
printer

Color. 164

 0 20 99 0 20 80 0 20 60 0 20 40 0 20 20 0 20 0 0 0 0 0 0 20 0 0 40 0 0 60 0 0 80 0 0 99

20 20 9920 20 8020 20 6020 20 4020 20 2020 20 020 0 020 0 2020 0 4020 0 6020 0 8020 0 99

 0 60 99 0 60 80 0 60 60 0 60 40 0 60 20 0 60 0 0 40 0 0 40 20 0 40 40 0 40 60 0 40 80 0 40 99

20 60 9920 60 8020 60 6020 60 4020 60 2020 60 020 40 020 40 2020 40 4020 40 6020 40 8020 40 99

40 60 9940 60 8040 60 6040 60 4040 60 2040 60 040 40 040 40 2040 40 4040 40 6040 40 8040 40 99

 0 99 99 0 99 80 0 99 60 0 99 40 0 99 20 0 99 0 0 80 0 0 80 20 0 80 40 0 80 60 0 80 80 0 80 99

20 99 9920 99 8020 99 6020 99 4020 99 2020 99 020 80 020 80 2020 80 4020 80 6020 80 8020 80 99

40 99 9940 99 8040 99 6040 99 4040 99 2040 99 040 80 040 80 2040 80 4040 80 6040 80 8040 80 99

60 99 9960 99 8060 99 6060 99 4060 99 2060 99 060 80 060 80 2060 80 4060 80 6060 80 8060 80 99

80 99 9980 99 8080 99 6080 99 4080 99 2080 99 080 80 080 80 2080 80 4080 80 6080 80 8080 80 99

99 99 9999 99 8099 99 6099 99 4099 99 2099 99 099 80 099 80 2099 80 4099 80 6099 80 8099 80 99

60 60 9960 60 8060 60 6060 60 4060 60 2060 60 060 40 060 40 2060 40 4060 40 6060 40 8060 40 99

80 60 9980 60 8080 60 6080 60 4080 60 2080 60 080 40 080 40 2080 40 4080 40 6080 40 8080 40 99

99 60 9999 60 8099 60 6099 60 4099 60 2099 60 099 40 099 40 2099 40 4099 40 6099 40 8099 40 99

99 20 9999 20 8099 20 6099 20 4099 20 2099 20 099 0 099 0 2099 0 4099 0 6099 0 8099 0 99

80 20 9980 20 8080 20 6080 20 4080 0 2080 20 080 0 080 0 2080 0 4080 0 6080 0 8080 0 99

60 20 9960 20 8060 20 6060 20 4060 20 2060 20 060 0 060 0 2060 0 4060 0 6060 0 8060 0 99

40 20 9940 20 8040 20 6040 20 4040 20 2040 20 040 0 040 0 2040 0 4040 0 6040 0 8040 0 99

Color. 165

Color.Definitions.in.color.tpl

Colors can also be referenced by name where the colors have been defined in a file
called color.tpl. Establishing color definitions in this way can be very convenient
if you have a set of standard colors that you use frequently, because you do not
need to remember the r g b values for the colors. Instead, you can reference the
colors by name. This approach also allows you to choose different sets of standard
color definitions for different printers and adjust your color output to the different
printers simply by using a different color.tpl file.

The TPL REPORT installation process creates a file called color.tpl and puts it in
the TPL system directory. Several examples of color definitions are included in
this file. You can edit it to change or add to the color definitions. If you want to
leave the system color file unchanged but use a different set of color definitions for
your own jobs, you can make a copy of color.tpl in the subdirectory where you are
working and edit it to include your own set of color definitions. The color defini-
tions in the directory where you are working will override the ones in the color.tpl
file in the TPL system directory.

The format of a color definition in color.tpl is:

Format color r g b

where color is a name that you choose to associate with a specific color definition
and r, g and b are numbers between 0 and 100 (inclusive) which specify the red,
green, and blue components of a color.

Note Color definitions entered in color.tpl DO NOT end with a semicolon (;).

Note If you enter a color definition in color.tpl with the color name GRAY or GREY, it
will be ignored. These names are reserved for grey characters and shading.

Example Following is an example of a color.tpl file:

red 100 0 0
green 0 100 0
blue 0 0 100
brown 60 40 0
cyan 0 100 100
yellow 100 100 0
light_yellow 100 100 20
purple 40 0 100
magenta 100 0 100
orange 90 60 0
black 0 0 0

Color. 166

Effect The colors red, green, blue, brown, cyan, yellow, light_yellow, purple, magenta,
orange and black are defined in the color.tpl file and can be referenced by name in
any TPL REPORT color specifications.

Example To choose the color RED as the default for all characters and rules in a report, you
can use the FORMAT statement:

DEFAULT COLOR = RED;

This statement has the same meaning as the statement:

DEFAULT COLOR = 100 0 0;

Example To choose the color BLUE for the report title and column labels, you can use the
FORMAT statement:

LABEL COLOR = BLUE;

This statement has the same meaning as the statement:

LABEL COLOR = 0 0 100;

Employee Report for December 1998

Row Type of Job Pay Rate Sex

1 Clerk/Typist 5.53 f
2 Director of Operations 21.49 m
3 Staff Secretary 7.35 f
4 Executive Secretary 9.21 f
5 Accounting Clerk 5.00 m
6 Payroll Clerk 5.19 f
7 Accounting Supervisor 8.65 f

Note on Changing Color Definitions in color.tpl
If you include color names in individual labels, including titles, or in masks within
codebooks or report requests, you should be aware that these colors are “built into”
the labels and masks when the codebooks or report requests are first run. TPL
REPORT converts the color names to the literal r g b numbering and saves this
numbering as part of the labels or masks as they are processed. Thus, if a code-
book is processed with one set of color name specifications and then the color.
tpl file is changed, the old color specifications will continue to apply to the labels
in that codebook until the codebook is reprocessed. Similarly, changing color.tpl
before a TPL REPORT rerun will be effective for FORMAT statement colors but
not for report request colors.

Color. 167

Recommendation
If you reference colors by name in a codebook, then change the color.tpl file, you
will probably want to reprocess the codebook to switch to the new color defini-
tions.

If you run a report request in which colors are referenced by name, then change
color.tpl, you will probably want to run the job over from the beginning to get the
new color definitions. Doing a rerun with FORMAT statements will not change
the original label or mask colors that were assigned in the report request.

Printing.Color.Separations.for.Reports

Color separations cannot be printed directly from TPL REPORT, but you can print
them easily using desktop publishing software. First, ask TPL REPORT to convert
your reports to Encapsulated PostScript (EPS) files. The reports will be converted
into EPS files with one report page per file. You can then bring the resulting EPS
report pages into documents created with desktop publishing software. If the
reports have color, the EPS files will automatically include the information needed
for the desktop publishing software to print CMYK color separations. You do not
need to do anything special to make this happen.

Example In PageMaker, after bringing an EPS report page into the document, choose
“Print”, then “Color”, then click on “Separations”.

The.Special.Color.GREY

You can specify GREY in any situation where COLOR is allowed. GREY prints
equally well on both color and non-color PostScript printers. It can be particularly
useful for shading if you have a non-color PostScript printer. It is less useful for
labels or data values, since letters and numbers do not print very well in a grey
shade. GREY is specified with a number between 0 (white) and 100 (black).

*****NOTE: Shading has not been implemented for TPL REPORT*****

GREY can also be spelled GRAY.

The following example show the use of GREY in FORMAT statements.

Examples REPLACE LABEL WITH GREY 30 ’A grey label’;

Since GREY is a special built-in color, the color names GREY and GRAY can
only be used with a number that specifies the degree of shading. If there is a defi-
nition of GREY or GRAY in the color.tpl file, the definition will be ignored.

Color. 168

Color.Specifications.for.Individual.Labels.and.Masks

Color can be added to labels, including titles, and to masks within codebooks,
report requests and format requests. Color specified in individual labels and masks
overrides colors specified in the FORMAT statements, DEFAULT COLOR and
LABEL COLOR.

Labels

COLOR can be used freely within a label in the same way as other types of label
characteristics such as fonts, spacing and line breaks.

Example "This is" COLOR RED " a two-tone label." COLOR 20 20 80

The label will print as follows:

“This is” will be printed in the default label color.

“ a two-tone label.” will be printed in RED as defined in the color.tpl file.

Masks

COLOR can appear anywhere in a data mask. Note that this is different from a
FONT specification which must be at the end of a mask. When used in a data
mask, COLOR applies to the entire mask.

Example MASK COLOR 100 0 0 999.99 '%'

The data values and percent sign will be printed in color 100 0 0 (red).

RECODE.Values

You can assign colors to new values entered in a RECODE statement whenever
these values contain label elements.

Setting.COLOR.Defaults.for.Characters.and.Rules

COLOR defaults can be set for all characters and rules used in reports. Defaults
can be set in either the profile or a format request using the following FORMAT
statements. Colors can be specified in r g b format or using color names that have
been defined in color.tpl.

Format DEFAULT COLOR = color;
LABEL COLOR = color;

Color. 169

RULE COLOR = color;
SYMBOL COLOR = color;

Color defaults are applied as described below. For additional details, see the sec-
tion on "COLOR Defaults" in the FORMAT chapter. In cases where color speci-
fications are entered directly into individual report elements such as labels, masks
or footnotes, these individual specifications will take precedence over the default
COLOR specifications.

DEFAULT.COLOR is the print color for the entire report if no other colors are
specified. If you do not set DEFAULT COLOR, the default is black. If RULE
COLOR and LABEL COLOR are specified, the DEFAULT COLOR remains as the
default color for report cells.

RULE.COLOR is the print color for rules. It applies to all rules, including rules
added by the FORMAT statement RULE EACH. If no explicit RULE COLOR is
specified, rules are printed in the default color.

LABEL.COLOR is the print color for all text in reports except character strings
in cell masks. These strings are printed in the default color. If no explicit LABEL
COLOR is specified, all labels and titles are printed in the default color.

SYMBOL.COLOR is the print color for all footnote symbols. If SYMBOL
COLOR is not set explicitly, the default label color is used for symbols.

Example DEFAULT COLOR = 0 20 99;
FOR REPORT 1: REPLACE TITLE WITH COLOR RED ’Red report title’;
FOR REPORT 2: RULE COLOR = RED;

Effect All reports will be printed in the default color 0 20 99 (a shade of blue) except as
follows. The first report will have a red title. The rules in the second report will
be red, and the rest of the second report will be printed in the default color.

Replacing.Mask.Color

With the FORMAT statement, REPLACE MASK COLOR, you can replace the
color of a mask without disturbing any other specifications in the mask and without
re-entering the entire mask. Unlike most MASK statements, this one applies to all
types of variables, observation, control and char.. See the FORMAT chapter for
complete details.

Mask color can be replaced for a single cell, a group of cells or the entire report.
If you replace the mask color for an entire report, the mask color serves as a de-

Color. 170

fault color setting for the report cells without affecting other parts of the report that
are colored by the DEFAULT COLOR statement.

Format REPLACE MASK COLOR WITH color;

The color can be specifed in r g b format or using color names that have been
defined in color.tpl.

Example FOR ROW 1: REPLACE MASK COLOR WITH RED;
FOR ROW 1 COLUMN 1: REPLACE MASK COLOR WITH BLUE;
FOR VARIABLE INCOME: REPLACE MASK COLOR WITH GREEN;

Effect The mask color for the first row will be red except in column 1 where the mask
color will be blue. The rows and/or columns containing INCOME values will have
a mask color of green.

 Exports. 171

C h a p t e r 1 9

Exports

COnvERting POstsCRiPt REPORts tO OthER
fORmats

Introduction

Reports created in PostScript mode can be exported to CSV (delimited) or EPS
files. This chapter describes the export of CSV files. EPS (Encapsulated Post-
Script) files are described elsewhere in the manual.

PDF Format
Adobe Acrobat PDF format is a commonly used format for exchanging documents
including reports. It is often used for web display when the author wishes to
display the document with more precise formatting than is available using HTML.
The Acrobat Reader, which is used for displaying the PDF file, is available free.

PostScript reports can be distilled to Acrobat PDF format. In the Windows ver-
sion of TPL REPORT, you can do this as an export from TED if you have Adobe
Acrobat Distiller available on your computer. If you do not have Acrobat Distiller,
you can install and use Ghostscript (gs815w32.exe) to create PDF files. After TPL
REPORT is installed, an installation icon for GPL Ghostscript may be on your
desktop. Otherwise, it can be found in C:\program files\gpl. See PDF in TED
Help for more information.

CSV.(delimited).Export

In exported CSV files, each cell value is contained in double quotes and the values
are separated by commas. The wafer labels, if any, and the stub labels are added
to the data as extra columns at the beginning of each row. If you do not want
these label columns, delete the wafer labels and the stub before exporting. The

 Exports. 172

bottom level of the heading is used as the first row of the CSV file. This row
provides field names for the columns of the file. If you do not want this row of
names, delete the heading before exporting. You may also change the heading
labels before exporting if you want better field names.

Footnotes symbols are not included in the labels or values, but other mask items,
such as $, %, or mask text, are retained in the data values.

See the Format statement CSV DIVIDER to separate the values with a character
other than comma.

Windows Note If you are exporting interactively from TED, there is an option to enter a charac-
ter other than comma to be used as the divider between the values in the exported
file(s), or you can select Tab as the divider.

CSV.Files

By default, exported CSV files are saved in a job's TPLRnnnn subdirectory. One
CSV file is created for each report in the job with a name that includes the report-
name and a suffix of .csv on the file name. For example, if the report is CPS_
REP then the csv file will be cps_rep.csv.

Windows Note If you are exporting interactively from TED, the exported file(s) will be saved us-
ing the File Name and Current Directory shown in the Export screen. You can
change the name and directory if you wish.

How.to.Request.CSV.Export

Only PostScript tables can be exported to CSV files. Instructions depend on
whether you are running TPL REPORT under Windows or UNIX.

Windows
CSV files are exported from TED. See TED Help for details on exporting interac-
tively. To produce CSV in a batch job, see TPL Help or the appendix on Scripts.

UNIX
If you run TPL using the command line prompts, a prompt will ask if you want to
export CSV. To produce CSV using a command argument, see the appendix with
UNIX Run Instructions. See also the Format statement CSV OUTPUT = YES/NO
to prevent the prompts.

TPL-SQL. 173

C h a p t e r 2 0

TPL-SQL

intROduCtiOn tO thE databasE intERfaCE

TPL-SQL is an optional database interface for TPL. It allows TPL Tables and
TPL Report to read data directly from a SQL database. When you use the inter-
face, you do not need to first extract the data from the database. So you do not
need space to store the extracted data. You also do not need to know SQL. TPL
automatically generates the request to extract just the data it needs. It processes
the data as it extracts it, so there is not even a need for extra temporary storage.
Further, TPL does not write on your database. Anyone with read access to the data
can produce tables or reports.

In TPL Tables and TPL Report, there is very little difference between accessing a
stand-alone sequential file and accessing one or more relations stored in a database.
If you already know TPL Tables or TPL Report and know the structure of your
data, you will find it very easy to use TPL-SQL. The primary differences between
processing a sequential file and processing a database are found in describing the
data in your codebook.

ODBC Note This chapter applies to all versions of TPL-SQL, including the Windows version
that accesses databases via ODBC. If you are using the Windows version of TPL-
SQL, we recommend that you use Codebook Builder to generate a codebook.
Most of the information contained in this chapter is also included in the Codebook
Builder Help, along with instructions on how to use Codebook Builder.

tERminOLOgy - yEs, yOu Want tO REad this

Unfortunately, TPL Tables and relational theory use the same words to mean dif-
ferent things. In relational terminology, a table is approximately the equivalent of
a flat sequential data file in TPL terminology. In TPL terminology, a table is the
final product of a TPL Tables run. To avoid confusion, when we refer to a table

TPL-SQL. 174

we mean the output of a TPL Tables run. We will refer to the data file used in
relational terminology as a SQL table or a relation. Variable and field are used
interchangeably. The SQL term column will not be used as this could be confused
with TPL Tables and TPL Report output columns.

tPL-sqL COdEbOOk

The primary difference between using TPL Tables or TPL Report with a sequen-
tial file and using them with TPL-SQL can be found in the description of the data
contained in the TPL codebook.

Note Codebooks for SQL databases cannot contain repeating groups.

Sequential files may be either flat files or hierarchical files. Each row of a sequen-
tial file is called a record. If all records are of the same format, the file is flat. If
records of different format are interspersed, the file is called hierarchical. The
order of the records on the sequential file determines the hierarchical membership;
i.e. the children immediately follow their parent.

When using TPL-SQL, TPL Tables and TPL Report process data stored in SQL
databases as hierarchies. But in the case of a SQL database, records of different
types are not interspersed. Instead, the records of each type are stored in separate
SQL tables. Since the order of records cannot be used to describe hierarchical
relationships, something else must be used. This other thing is a pairing between
fields on different SQL tables. We call such a pairing, an association, and state-
ments which define them are association statements. The fields in association
statements are frequently but not always key fields. They are the fields that are
specified in SQL requests in the where clause of joins.

A TPL codebook describing a sequential hierarchical file consists of a description
of one or more records. Each record description consists of a description of its
constituent fields. A TPL codebook which uses TPL-SQL consists of descriptions
of one or more SQL tables. Each SQL table description consists of a description
of its constituent fields. In addition, the TPL-SQL codebook includes association
statements which define how multiple SQL tables are to be processed together.

A.Simple.TPL-SQL.Codebook.Example

Though much of this document discusses hierarchical files, we will begin with a
flat file example. Suppose we have a flat sequential file describing a family. The
TPL codebook might be:

TPL-SQL. 175

Sequential Begin Families Codebook
File Version Family .Record

Filler.7
Region control 1
 (
 "Northeast" = 1
 "North Central" = 2
 "South" = 3
 "West" = 4
)
Living_Qrt "Living Quarters" control 1
 (
 "Owned" = 1
 "Condominium" = 2
 "Rented" = 3
 "Unknown" = " "
)
Persons_in_family obs 2
Gross_income_of_head obs 7
Gross_income_of_spouse obs 7
End Families Codebook

If we now load our data into a SQL database we can describe our data file to TPL
using the following:

SQL Database Begin Families Codebook SQL
Version Family defines "family" Table

Region defines "region" control 1
 (
 "Northeast" = 1
 "North Central" = 2
 "South" = 3
 "West" = 4
)
Living_Qrt defines "living_qrt" "Living Quarters" control 1
 (
 "Owned" = 1
 "Condominium" = 2
 "Rented" = 3
 "Unknown" = " "
)
Persons_in_family defines "persons_in_family" obs 2
Gross_income_of_head defines "gross_income_of_head" obs 7
Gross_income_of_spouse defines "gross_income_of_spouse" obs 7
End Families Codebook

TPL-SQL. 176

The only necessary changes are that SQL is added after Codebook; Record be-
comes Table; and the Filler field is eliminated. In most cases a defines clause is
also needed. A change in meaning which is not discernible concerns the order of
fields in the record or SQL table description. In a sequential file description, the
fields must be listed in the order they occur in the file. In a SQL database descrip-
tion, the order of the fields is arbitrary within a SQL table. Another change is that
it is not necessary to describe all of the fields in a SQL table in your codebook.
Perhaps some of the fields are confidential and should not be used. Other fields
may be text fields which are not appropriate for tables. If you do not have TPL
Report, you may wish to omit these fields. For sequential file codebooks you are
required to mark the space these fields occupied as Filler. In a codebook describ-
ing a SQL table, the fields can just be omitted.

Defines.Clause

The defines clause is used to map TPL variable names into SQL database field
names. If the defines clause is omitted, TPL assumes that the SQL database field
name is the same as the TPL variable name except that it is all uppercase. In the
above example, all of the SQL database field names are assumed to be in lower-
case. So the defines clauses are necessary. Define clauses are discussed more
fully later.

A.Better.Solution.-.Using.Information.from.the.Database

The simple transformation above is not the recommended way of creating a TPL-
SQL codebook. The SQL database contains much of the information contained in
the TPL codebook. If the TPL codebook information does not match the database
information, then errors or incorrect reports will result. Thus instead of requiring
the transformation described above, TPL provides a way to automatically query the
database for the relevant information contained within the database. You activate
this processing by omitting the information you can obtain from the database. The
recommended codebook source is:

You Write Begin Families Codebook SQL
Family Table
Region defines "region" control .get.conditions.from.data
Living_Qrt defines "living_qrt" "Living Quarters" control from.data
Persons_in_family defines "persons_in_family" obs
Gross_income_of_head defines "gross_income_of_head" obs
Gross_income_of_spouse defines "gross_income_of_spouse" obs
End Families Codebook

TPL-SQL. 177

In this codebook source, field widths and obs modifiers such as float have been
eliminated as have control variable condition values lists. Instead of listing the
condition values, we have included get conditions from data or its shorter syn-
onym from data.

Unix

On computers running Unix, use the tpl conditions program to process the above
codebook source. The tpl conditions program will fill in the field widths, datatype
details and control variable conditions to create a new codebook source. The new
codebook source shown below can be edited to provide better condition names. It
should then be run through tpl codebook to produce a compiled codebook. For
more details, see the Appendix titled TPL Conditions and the sections on tpl con-
ditions and tpl codebook in Run Instructions (UNIX) for more details.

TPL-SQL Begin Families Codebook SQL
Generates Family defines "family" Table

Region defines "region" control 1
 (
 "1" = "1"
 "2" = "2"
 "3" = "3"
 "4" = "4"
)
Living_Qrt defines "living_qrt" "Living Quarters" control 1
 (
 "1" = "1"
 "2" = "2"
 "3" = "3"
 " " = " "
)
Persons_in_family defines "persons_in_family" obs 2
Gross_income_of_head defines "gross income of head" obs 7
Gross_income_of_spouse defines "gross_income_of_spouse" obs 7
End Families Codebook

Windows

On computers running Microsoft Windows, the above codebook source is processed
directly by the codebook processor to produce the following source. The data
source and password if required are also provided to the codebook program. See
Run Instructions (Windows) and Scripts (Windows) for more details.

NOTE: It is important for Windows sources that each variable description
start on a new line. Otherwise the new source described below may not be cor-
rect.

TPL-SQL. 178

When the codebook processor has completed its work, a new codebook source is
created with evaluated to expressions to show the information obtained from the
database. The actual conversion depends upon both the data and the database man-
agement system. A possible conversion of our example follows:

TPL-SQL Begin Families Codebook SQL
Generates Family defines "family" Table

Region defines "region" control get conditions from data evaluated.to control 1
 (
 "1" = 1
 "2" = 2
 "3" = 3
 "4" = 4
)
Living_Qrt defines "living_qrt" "Living Quarters" control from data
. evaluated.to control 1
 (
 "1" = 1
 "2" = 2
 "3" = 3
 " " = " "
)
Persons_in_family defines "persons_in_family" obs evaluated.to obs 2
Gross_income_of_head defines "gross income of head" obs
. evaluated.to obs 7
Gross_income_of_spouse defines "gross_income_of_spouse" obs
. evaluated.to obs 7
End Families Codebook

You may wish to edit and reprocess this new source. This will enable you to do
such things as provide better labels for condition values. If the codebook name is
Families, the new codebook source will be FAMILIES.S.

Conversions.from.Database.to.TPL.Data.Types

In our example, we assumed that all of the data was loaded into the database as
character fields of the same length as the original data. This is not necessary. SQL
databases support many formats of data and conversions of data from one format to
another. However, you as a user of TPL do not need to worry about these conver-
sions. In general all you need to do is label the fields as observation, control, or
character. The system will correctly determine the exact data type and place it
in the evaluated to clause. You can use these data types explicity, but this is not
recommended.

TPL-SQL. 179

Restrictions There are some restraints on what fields you can label observation or control. For
example, if a data field contains alphabetic characters, it should not be used as an
observation. TPL will detect and report some of these errors when the codebook is
created. Others will only be detected when table or report jobs are processed.

ODBC.Data.Type.Conversions

The following chart shows the acceptable conversions from ODBC to TPL
datatypes.

. . TPL.Types.

ODBC.Types. . Obs. Con. Char2

date y y y
time y y y
timestamp y y y
char y1 y y
varchar y1 y y
longvarchar y1 y y
numeric y y y
decimal y y y
tinyint y y y
smallint y y y
integer y y y
bigint y y y
float y y y
double y y y
binary y y y
varbinary y y y
longvarbinary y y y
bit y y y
real y y y

1 If a character string described as obs contains non-numeric values, this will be
detected when a table or report is processed. It will not be detected by the code-
book processor.

2 Character may be a new data category for you. It is similar to control but with-
out the requirement of a list of possible conditions. In TPL Report it can be used
in selects, recodes, conditional computes or report statements. In TPL Tables it can
be used in selects, defines or conditional computes but not directly in tables

TPL-SQL. 180

Oracle.Data.Type.Conversions

The following chart shows the acceptable conversions from Oracle to TPL data
types.

. . . TPL.Types.

.Oracle.Types Obs. Con. Char2

date y y y
char y1 y y
varchar2 y1 y y
varchar y1 y y
number y y y
long n n n
raw n n n
long raw n n n
rowid n n n
mslabel n n n

1 If a character string described as obs contains non-numeric values, this will be
detected when a table or report is processed. It will not be detected by the code-
book processor.

2 Character may be a new data category for you. It is similar to control but with-
out the requirement of a list of possible conditions. In TPL Report it can be used
in selects, recodes, conditional computes or report statements. In TPL Tables it can
be used in selects, defines or conditional computes but not directly in tables

Sybase.Data.Type.Conversions

The following chart shows the acceptable conversions from Sybase to TPL
datatypes.

. . . TPL.Types.

.Sybase.Types Obs. Con. Char2

char y1 y y
varchar y1 y y
bit y y y
binary y y y
tinyint y y y
smallint y y y
integer y y y
float y n n
long float y n n
money y n n
datetime y y y
decimal y y y
numeric y y y
image n n n

TPL-SQL. 181

1 If a character string described as obs contains non-numeric values, this will be
detected when a table or report is processed. It will not be detected by the code-
book processor.

2 Character may be a new data category for you. It is similar to control but with-
out the requirement of a list of possible conditions. In TPL Report it can be used
in selects, recodes, conditional computes or report statements. In TPL Tables it can
be used in selects, defines or conditional computes but not directly in tables

New.Data.Types

In addition to the usual codebook data types, the following data types may be gen-
erated in the evaluated to clause. You should not enter these directly. However,
you may wish to add a time-unit to generated obs date fields.

obs varying and con varying — These are just regular observation and control
variables stored on the database as varying length fields. TPL Tables and TPL
Report automatically handle these data types so you can treat them as if they are
normal fixed-length fields. "Short" control variable values are right-padded with
blanks. This data type is currently implemented for databases only.

character varying — TPL Report does not pad these fields when they are dis-
played. This data type is currently implemented for databases only.

money or obs money — This is a floating point data type. If there is no explicit
mask provided, the system defaults to a mask of $999.99. This data type is cur-
rently implemented for databases only.

control date or character date — The format of the date is determined by a da-
tabase environment variable. If you change the value of this environment variable,
you must rerun your codebook against the database before you run a table or report
request. Dates are sorted and displayed in chronological order rather than character
sort order. This data type is currently implemented for databases only.

Sybase If client Sybase software is not installed on the computer on which
TPL is running and installation Option 1 was used to install TPL,
control date fields will be displayed in US English. If you wish to
display dates in a different format, then you can explicitly change the
generated labels.

obs date time-unit — where time-unit may be year, day, hour, minute, or sec-
ond. If you chose to explicitly call a field obs date and omit time-unit, then the
system will assume a time-unit of day. This data type is currently implemented for
databases only.

TPL-SQL. 182

Oracle The field evaluates to the number of units since January 1, 1900 at
00:00:00. Dates are floating point numbers so decimal values will be
shown if a mask is provided which specifies them.

Sybase The field evaluates to the number of units since the current time (when
job is run). Thus all past dates are negative and future dates are posi-
tive. Dates are truncated integer values not decimal fractions.

ODBC The meaning of time units in databases accessed via ODBC depends
upon the underlying database system. Consult your database manuals
for information on this.

The obs date data type is especially useful for computing time intervals; e.g.,

Compute Life_span = Death_date_in_years - Birth_date_in years;

Note that the time unit for the two terms in the compute must be the same or a
trash answer will result.

Label-Code.Tables

It is common in SQL databases to have SQL tables which pair code values with
longer descriptions or labels. This can save a considerable amount of space in
your database. It also allows the description to be changed without changing large
numbers of database records. When an extract is made from the database, a SQL
join is normally performed so that the label rather than the code is displayed with
the other data fields. The TPL codebook can make use of these label-code pairs to
create condition sets for control variables.

In our earlier example of codebook generation we included the line:

Living_Qrt "Living Quarters" control from data

This generated the following:

Living_Qrt "Living Quarters" control from data evaluated to control 1
 (
 "1" = 1
 "2" = 2
 "3" = 3
 " " = " "
)

TPL-SQL. 183

Suppose we had in our database a SQL table lq_tab with fields lq_code and lq_
lab and values:

. lq_code. lq_lab

 1 Owned
 2 Condominium
 3 Rented
 ' ' Unknown

The lq_code field in the lq_tab SQL table has the same range of values as the
Living_Qrt field of the family SQL table. So we can substitute the new TPL
codebook statement:

Living_Qrt "Living Quarters" control from lq_tab(lq_lab,lq_code)

The result is:

Living_Qrt "Living Quarters" control from lq_tab(lq_lab,lq_code)
evaluated to control 1
 (
 "Owned" = 1
 "Condominium" = 2
 "Rented" = 3
 " Unknown" = " "
)

The SQL table containing the label-code pairs can be referenced in this way with-
out itself being described elsewhere in the codebook.

The label and code fields must be put in the parentheses in the order shown above,
that is label first and code second.

Alternate.Names.-.The.DEFINES.Clause

By default, the TPL name for a field is the same as the name of the field on the
database. There are some cases where this is not desirable. For example, in a
sequential file we sometimes wish to use the same field as both an observation
variable and a control variable. We accomplish this by using a redefine clause.
TPL-SQL codebooks cannot have redefine clauses, but the defines clause can be
used to accomplish the same result.

TPL-SQL. 184

tpl-name1 defines sql-name control from data
tpl-name2 defines sql-name obs

The sql-name is the name for the database field. It may be placed within quotation
marks. This is useful if it happens to be a TPL keyword or is otherwise not a valid
name for a TPL variable. tpl-name1 and tpl-name2 are two TPL variable names.
They can be used in table and report requests as well as association statements in
the codebook. The only place the SQL name can be used is in the special SQL
SELECT statements discussed later.

A codebook description with a defines may include all of the standard codebook
field qualifiers; e.g.,

Living_quarters "Living Quarters" defines Living_Qrt control
condition label is "Housing type = " value from data

Sybase Sybase is case sensitive; that is, lower-case letters and upper-case
letters are not treated as equal. TPL is case sensitive only for items
within quotes. Thus if Sybase fields were given lower-case names
when the fields were created in the database, defines must be used to
reference them. For example, if a Sybase field is "Last_name" then
consider the following TPL codebook statements:

1) Last_name CONTROL GET CONDITIONS FROM DATA;

2) LAST_NAME DEFINES Last_name CONTROL
 GET CONDITIONS FROM DATA;

3) LAST_NAME DEFINES "Last_name" CONTROL
 GET CONDITIONS FROM DATA;

Statement (1) is not acceptable since TPL will convert Last_name to
LAST_NAME which will not match the database field name.

Statement (2) is also unacceptable since again TPL will convert Last_
name to LAST_NAME

Statement (3) is correct because TPL will not change the case of the
quoted item.

TPL-SQL. 185

ODBC Some databases accessed via ODBC in the Windows version of TPL-
SQL are case sensitive in the same way as described for Sybase above.
If you get error messages saying that your database fields cannot be
found, it may be because you need to enclose the database field names
in quotes. If you use the Codebook Builder to prepare your codebook,
you do not need to be concerned with this. Codebook Builder will
provide the names from the database and enclose them in quotes.

Fields within a single SQL table must have unique names. However, it is com-
mon practice for fields in different SQL tables within the same database to have
the same name. This is especially true for fields used for TPL associations or SQL
joins. When processing a request, TPL Tables and TPL Report must know which
SQL table should be used to retrieve data for a variable. There are two options
available in TPL Tables and TPL Report. First, you can use the SQL technique
of qualifying a name when there is an ambiguity. For example suppose both the
Company SQL table and the Employee SQL table have a field called company_
id. A TPL Tables request can include a Table statement such as:

Table T1: Company.company_id by region, total;

An alternate approach using TPL would be to use defines clauses in your codebook
to give the two fields different TPL names.

Creating.Subfields.with.Substr

The substr feature lets you describe variables that are subparts of fields in your
database. In non-database codebooks, this funtionality is provided by Redefine.

The list of data types supported for Substr should be the same as the list supported
for Control variables.

The syntax for a subfield is:

SUBSTR(sql-name, start-position, length-of-subfield)

The sql-name is the name of the field in the database. If the sql-name is not a
valid TPL name or is in a database that is case sensitive, it must be enclosed in
quotes. In addition, quotes are required for lower case sql-names. Start-position
is relative to the sql-name field

TPL-SQL. 186

An example from a codebook source with subfields is:

COMPANY_CODE "Company Code" Defines "company_code" Con from Data
company_type Defines Substr("company_code", 1, 2) Con from Data
Numeric_part Defines Substr("company_code", 3, 3) Con from Data

An example of a resolved codebook source with all database-derived information
filled in is:

COMPANY_CODE "Company Code" Defines "company_code" Con
Right Blank Fill from Data evaluated to Con 5 (
"AM703" = "AM703"
"AP001" = "AP001"
etc.
)
 company_type Defines Substr("company_code", 1, 2) Con from Data
evaluated to Con 5 (
"AM" = "AM"
"AP" = "AP"
etc.
)
Numeric_part Defines Substr("company_code", 3, 3) Con Right Blank Fill from
Data evaluated to Con 5 (
 "001" = "001"
.
.
"703" = "703"
etc.
)

Multiple.SQL.Tables.and.Association.Statements

A SQL database typically has many SQL tables in it. A TPL codebook for a SQL
database need not describe all of these SQL tables. However a TPL codebook will
usually describe more than one SQL table. The method for describing multiple
SQL tables is basically the same as that used for describing multiple record types
for a sequential hierarchical file. Separate descriptions are included for each SQL
table. In addition, in the SQL case, one or more association statements must be
provided to relate the separate SQL tables.

An.Example

Consider the Families codebook we discussed earlier. Suppose our SQL database
also contains a SQL table of family member data. Our combined codebook source
might look like the following:

TPL-SQL. 187

Begin Families Codebook SQL
Family defines "family" Table
Family_id defines "family_id" obs
Region defines "region" control .get conditions from data
Living_Qrt defines "living_qrt" "Living Quarters" control from data
Persons_in_family defines "persons_in_famly" obs
Gross_income_of_head defines "gross_income_of_head" obs
Gross_income_of_spouse defines "gross_income_of_spouse" obs

Member defines "member" Table
Family_id defines "family_id" obs
Age defines "age" obs
Sex defines "sex" control from data
Education defines "education" control from data
Favorite_car defines "favorite_car" from car(car_id,car_name)

Family.is.parent.of.member.where.Family.Family_id.=.Member.Family_id;
End Families Codebook

The example consists of two descriptions of individual SQL tables plus one asso-
ciation statement near the end which relates the two SQL tables. Notice that each
of the SQL table descriptions has a field, Family_id, on it. This field is used by
the association statement to connect the members with their family. The association
statement asserts that a Member record belongs to a particular Family whenever
the family_id on the Member record matches the Family_id on the Family re-
cord. The parent tells the system that Family is above Member in a hierarchical
relation. In other words, each Family may have multiple Members. TPL imposes
few restrictions on the data types of the terms on each side of the equal sign in a
where clause. However a database error will result if one of the terms is an inte-
ger or floating point number in the database and the other contains a non-numeric
value.

When TPL Tables or TPL Report processes a request using this association state-
ment, it will read each Family record, get the Family_id from the record and then
use this Family_id to retrieve from the Member SQL table each of the Member
records which have this Family_id. It will then read the next Family record, get
its Family_id and proceed in the same way.

Warning Fields on the right side of an association statement should be indexed. Other-
wise performance may be unaccepable. See the section on "Optimizing Perfor-
mance" for more information.

By default, if a Family record has a Family_id which appears on no Member
records, the Family record is rejected with an error message. The TPL codebook
statements Process incomplete hiearchies = yes or no and Report incomplete
hierarchies = yes or no will alter this behavior in the same way as it does with
sequential hierarchies.

TPL-SQL. 188

Now suppose we wish to add the Car SQL table to our codebook. Each Member
has one Favorite_car. Then we do not have a parent relation but rather what we
call a sibling or sib relation. The addition to our codebook might be:

Car defines "car" table
Car_id defines "car_id" control from data
Car_name defines "car_name" character
Car_cost defines "car_cost" obs
Car_weight defines "car_weight" obs

Member.is.sib.of.Car.where.Member.Favorite_car.=.Car.Car_id

When TPL Tables or TPL Report processes a database using this new association
statement, for each Member record it reads, it will determine the favorite_car for
that Member. This Favorite_car code will be searched for in the Car_id field of
the Car SQL table. If exactly 1 match is found, processing will proceed normally.
If no record in the Car SQL table has the appropriate Car_id an error message
will result and both the Member and Car records will be discarded. If multiple
Car records are found to have matching Car_ids, an error message will result and
the "duplicate" Car records will be rejected. Which Car record is kept is unde-
fined. If Report incomplete hierarchies = no is specified, no error message will
be reported for either the case of no Car records or multiple Car records.

The effect of Tabulate incomplete hierarchies = yes depends upon whether a
table or report is being created. In a TPL Tables job, Tabulate incomplete hier-
archies = yes causes a higher level record with no lower level records to contribute
to cross tabulations which only involve the higher level records. But when we are
using sib associations, both records are at the same level. So there can be no cross
tabulations to which the Member record contributes and the Car record does not.
Thus Tabulate incomplete hierarchies = yes has no effect on records in an incor-
rect sib association in TPL Tables job.

In a TPL Report job, Tabulate incomplete hierarchies = yes results in a report
row being generated for a record which does not have a sibling. The sibling col-
umns for that row are marked as missing data.

It is not an error if multiple Members have the same favorite car or if some car is
the favorite of no members. All that is required for a correct sib association is that
each record from the SQL table to the left of the sib association have exactly one
match in the SQL table to the right of the sib association. This brings up an im-
portant point that will be discussed more fully later. When a table or report request
is processed, the resulting output will depend upon which associations are used.
In our example, if we compute the average cost of favorite_cars by using our sib
association to get from the Member SQL table to the Car SQL table we will not

TPL-SQL. 189

get the same result as we would if we just calculated the average cost of cars in the
Car SQL table. In the former case, the average is weighted by how many mem-
bers have a car as their favorite. In the latter case, the average is unweighted.

More.on.Association.Statements

In the above example, Member and Car were associated using a single pair of
fields. In some cases multiple pairs of fields must be used to specify an associa-
tion. These pairs are connected by and. Consider a database of Employers and
Employees. Assume some of the Employers have many branches. An Employee
is employed at a single branch. The branch is designated by both a Company_id
and a Branch_id. Then we might have two different association statements to
relate the Employee SQL table to the Employer SQL table:

Employer is parent of Employee where
Employer.Company_id = Employee.Company_id

Employer is parent of Employee where
Employer.Company_id = Employee.Company_id
and Employer.Branch_id = Employee.Branch_id

A table or report request may use either of these associations. If the first one is
used and we calculate the average number of employees per employer we will get
the average number of employees per company. If we use the latter association
statement we will get the average number of employees per branch.

As a notational convenience, the association statements can be written more con-
cisely as:

Employer is parent of Employee where Company_id = Company_id

Employer is parent of Employee where Company_id = Company_id
and Branch_id = Branch_id

The SQL table name to the left of an equal sign in a where clause is assumed to
be the same as the SQL table name to the left of parent or sib and the SQL table
name to the right of the equal signs is assumed to be the same as the SQL table
name to the right of parent or sib.

Use.of.%INCLUDE.in.Codebooks

A TPL codebook describing a large complex database can become very long. An
easy way to make the codebook more manageable is to create separate files for
descriptions of each SQL table. You can then use the %INCLUDE feature to as-

TPL-SQL. 190

semble these files into a single TPL codebook. This technique is especially use-
ful for corporate databases which are used by many different categories of users.
Certain users will produce tables or reports from only some of the SQL tables
while other users will use a different set of SQL tables for their work. Separate
TPL codebooks may be made for these different users by including only those SQL
table descriptions that they will need for their work.

Codebook.Abstract

When the TPL codebook processor is run against a SQL database, multiple files are
produced. For MS Windows, one is the new codebook source with evaluations in
it. This was discussed earlier. The second file is the .K file which is the codebook
executable. This is a file that is not intended for reading. The third file is the .L
file which contains error messages for an unsuccessful codebook or the Abstract
of a successful codebook run. The Abstract for a TPL-SQL codebook is similar to
the Abstract produced from a sequential file with a few exceptions.

A codebook for a sequential file contains columns for the number of bytes de-
scribed, the level, and the parent of each record. None of these are relevant to
a SQL database record. The sequential file codebook also contains information
on the location of each field within a record. This is also not relevant for a SQL
description.

The TPL-SQL codebook abstract contains two things not found in a sequential file
codebook. One is the SQL column name. This name will match the TPL variable
name unless a defines has been used to change the TPL name.

The second addition to a TPL-SQL codebook abstract is a list of the Association
statements that have been specified. Each of these association statements has a
number assigned to it. This number is important. It may be needed in creating a
plan for processing the data in a table or report request.

TPL CODEBOOK Copyright(C) 2005 QQQ Software, Inc. All Rights Reserved.Version 6.0 of CO-

DEBOOK compiled on Wed May 11 18:03:09 EST 2005.

TPLDB ABSTRACT FOR DATABASE tpldb

Created 6/17/05 at 4:49:16 PM from codebook source tpldb.cbk

The records and variables described in your codebook are listed below

in alphabetical order. For non-database codebooks, the first position

of each record is location 1.

RECORD SQL TABLE

OFFICE BRANCH

COMPANY COMPANY

TPL-SQL. 191

EMPLOYEE PERSON

SQL DATABASE ASSOCIATIONS

 1: OFFICE is parent of EMPLOYEE where ID = ID

 2: COMPANY is parent of OFFICE where COMPANY_ID = COMPANY_ID and

 BRANCH = BRANCH

VARIABLE SQL COLUMN SIZE TYPE TPL RECORD

NUMBER_EMP SIZE 4 OBS OFFICE

OFFICE BRANCH — RECORD OBS OFFICE

BIRTH BIRTH — CON EMPLOYEE

BIRTH_C BIRTH — CHAR EMPLOYEE

BIRTH_O BIRTH — OBS EMPLOYEE

BRANCH BRANCH 4 OBS COMPANY

BRANCH BRANCH 4 OBS OFFICE

COMPANY COMPANY — RECORD OBS COMPANY

COMPANY_CHAR COMPANY_NAME 20 CHAR COMPANY

COMPANY_ID COMPANY_ID 4 OBS COMPANY

COMPANY_ID COMPANY_ID 4 OBS OFFICE

COMPANY_NAME COMPANY_NAME 20 CON COMPANY

ID IDX 1 OBS OFFICE

ID ID 10 OBS EMPLOYEE

PERSON FULLNAME 20 CON EMPLOYEE

SALARY SALARY 8 OBS EMPLOYEE

SEX SEX 1 CON EMPLOYEE

EMPLOYEE PERSON — RECORD OBS EMPLOYEE

End CODEBOOK processing

tabLE and REPORt REquEsts fOR sqL da-
tabasEs

A TPL Tables or TPL Report request run against a SQL database looks very much
like a request run against a sequential file. There are five main differences:

1) The command line for invoking the job is slightly different. (The command line
options appropriate for your database system are described in the run instruc-
tions appendices.)

2) A job run against a SQL database may require that some variable names be
qualified with the name of their SQL table.

3) A SQL database request may include Association statements.

TPL-SQL. 192

4) A request run against a SQL database may require a plan to specify how the
data is to be read.

5) Statements can be included to optimize performance. A table or report request
run against a SQL database may include a SQL Select statement in addition to
or instead of a regular TPL Select statement. You can use a SQL Fetch state-
ment in your profile or format request for additional performance tuning.

Qualified.Names

All TPL variable names for sequential file fields must be unique. As was stated
earlier, for a SQL database, the TPL names need be unique only for a given SQL
table. TPL must know which SQL table it should retrieve data from. If there is
an ambiguity, the variable names must be qualified by the TPL name for the SQL
table; e.g. Employer.Branch_id or Employee.Branch_id. TPL Tables and TPL
Report will produce an error message whenever an ambiguity exists.

The need for qualified names can be completely eliminated by using defines
clauses in the codebook to assign unique TPL names to each database field. If you
have not done this, TPL still minimizes the need for qualified names by the follow-
ing procedure.

Suppose you wish to use Branch_id which is found on both the Employee SQL
table and the Employer SQL table. The first time you use Branch_id in your
request you must qualify it; e.g. Employee.Branch_id. From that point forward,
TPL will assume that when you use Branch_id you mean Employee.Branch_id.
If in fact you wish to use Employer.Branch_id, you must explicitly qualify the
name. From that point forward, you must qualify all occurrences of Branch_id.
If this rule seems complicated, don't worry. You may choose to always qualify am-
biguous TPL names. Also, if you fail to qualify a name that requires qualification,
TPL will produce an error message rather than risk making an incorrect assumption
about what you intend.

Association.Statements.in.Table.or.Report.Requests

In some cases, you may wish to create a table or report which requires an associa-
tion of SQL tables which was not anticipated when the TPL codebook was created.
Rather than require that the codebook be recreated, TPL allows you to add associa-
tion statements to a TPL Tables or TPL Report request. Association statements in
table and report requests are the same as association statements in the codebook
except that a semicolon (;) is required at the end of each association statement.
Association statements, if included in a request, must be located immediately after

TPL-SQL. 193

the Use statement of the table or report request. They are assigned numbers in or-
der of occurrence beginning after the last number used by the codebook association
statements. For example, if the codebook has 3 association statements and a table
request has 2 more, the two table request association statements will be numbered
4 and 5.

The.Processing.Plan

By far the most important difference between a TPL Tables or TPL Report request
run against a SQL database and against a sequential file concerns the sequence of
records delivered to TPL for processing. In processing a sequential file the data re-
cords are delivered to TPL in precisely one possible order — the order the records
appear on the file. In the database case, the records may be delivered to TPL in a
variety of orders. The "same" request can produce radically different output if a
different sequence of records is delivered to TPL.

The sequence of records delivered to TPL is determined by a Plan. A Plan is a list
of association statements which "chain" together the SQL tables. A plan is valid
for a request if it satisfies a collection of conditions:

1) All variables used in the request must be on SQL tables chained together in the
plan.

2) No SQL table may be visited more than once in following the plan chain.

3) The plan must define a single hierarchical path through the database.

The next few sections will discuss these conditions.

What.is.a.Chain?

SQL tables are chained together by a set of associations if starting from some node
SQL table, we can get from it to each of the other SQL tables in the chain by go-
ing from the SQL table on the left of an association to a SQL table on the right
of an association. For example suppose we have the following associations (the
where clauses have been omitted for clarity):

1: A is parent of B where ...
2: B is parent of C where ...
3: B is sib of G where ...
4: G is parent of F where...
5: C is parent of D where ...
6: E is parent of D where...
7: D is parent of F where ...

TPL-SQL. 194

Starting with A as our node we can get to B (using 1) then C (using 2) then D (us-
ing 5) then F (using 7). So A→B→C→D→F form a chain. We can also form the
chains E→D→F and A→B→G→F and several others. There is no chain which
includes both A and E. So a table request which uses data from SQL table A and
SQL table E could not be processed using the collection of Association statements
listed.

How.Can.A.SQL.Table.Be.Chained.to.Itself?

The requirement that a plan not pass through the same SQL table twice is because
TPL would not know which pass should be used to evaluate a variable. In some
database formats people do wish to violate this rule. Suppose for example you
have all employees including supervisors in the same file. You wish to have a
count of how many employees have supervisors who earn particular salaries. You
would like to use the Association:

Employee is parent of Employee where employee_id = is_supervised_by;

The solution to this problem is to use the defines construct in the codebook. In
our previous examples we have assigned a new TPL name to a SQL field. We can
also use a defines to assign a new name for a SQL table. Our codebook would
include the following statements:

Employee Table
description of employee fields

Supervisor defines Employee Table
same description of fields

Supervisor is parent of Employee where employee_id = is_supervised_by

What.is.a."Single.Hierarchical.Path"?

Probably the easiest way to identify a "single hierarchical path" is to assign level
numbers to the SQL tables in a plan. The node of the plan is the SQL table on
the left of the first association statement. It is assigned level 0. Follow the plan
chain. If the association statement contains sib the SQL table on the right is given
the same level number as the SQL table on the left. If the association statement
contains parent then the SQL table on the right is given a level number 1 higher
than the SQL table on the left. Now look at your completed list. If any two par-
ent associations have SQL tables with the same level number on the left, the plan
does not define a single hierarchical path. Consider the association statements we
looked at earlier:

A is parent of B where ...
B is parent of C where ...
B is sib of G where ...

TPL-SQL. 195

G is parent of F where...
C is parent of D where ...
E is parent of D where...
D is parent of F where ...

One plan we specified was A→B→G→F. If we apply our test to this plan we get:

A [level.0] is parent of B [level.1]
B [level.1] is sib of G [level.1]
G [level.1] is parent of F [level.2]

No two parent associations have the same level number so the plan is a single
hierarchical path.

Another valid plan is: A→B→G→C which uses the rules

A [level.0] is parent of B [level.1]
B [level.1] is sib of G [level.1]
B [level.1] is parent of C [level.2]

Compare this with the chain A→B→C→G→F. This chain uses

A [level.0] is parent of B [level.1]
B [level.1] is parent of C[level.2]
B [level.1] is sib of G [level.1]
G [level.1] is parent of F [level.2]

In this example, the second and fourth associations both are parent relations start-
ing at level 1 so we do not have a single hierarchical path.

Why.Does.TPL.Need.a.Single.Hierarchical.Path?

An example is probably the easiest way to answer this question. Suppose we have
a database with 3 SQL tables. The SQL tables are Company, Company_car, and
Employee. These SQL tables are connect by:

Company is parent of Company_car where company_id = owner_id
Company is parent of Employee where company_id = employer_id

These association statements jointly define a plan which violates the single hierar-
chy requirement. Now consider the following table request:

Compute Ratio = Car_price / Employee_salary;
Post compute Ave_car_salary_ratio =Ratio / Company_car;
Table T1: Company_location, Ave_car_salary_ratio;

TPL-SQL. 196

This table request should tell us something about the cost of keeping employees
happy in different locations. Unfortunately, TPL Tables cannot process this re-
quest. The problem is that there is no way to compute Ratio since we cannot
pair an Employee_salary with a particular Car_price. We don't know who drives
which car.

Let's change the example slightly. Suppose each company buys only one model of
car. Then our association statements become:

Company is sib of Company_car where company_id = owner_id
Company is parent.of Employee where company_id = employer_id

Now our plan is valid and our table request works. We know which car the em-
ployee has because we know his company and which car the company buys. So we
can compute Ratio.

TPL doesn't allow multiple hierarchical paths in a single table or report request
because the TPL system then does not have enough information to combine fields
from the different paths.

Plan.Selection

When the TPL Tables or TPL Report request processor encounters a request which
is to be run against a database, the system analyzes the request and the associa-
tion statements in the request and codebook. If you have specified a plan, it tests
whether the plan you specified is valid for your request. If you have not specified
a plan, it determines all valid plans for the request. If there is exactly one valid
plan, the plan is reported at the end of the translation step and processing contin-
ues. If there is no valid plan or there are multiple valid plans, processing stops.

When there is no valid plan for your request, you have two choices. First you may
add additional association statements to your request or codebook so that all re-
quired SQL tables are chained into a single plan. If this cannot be done, you must
modify your request by eliminating all references to fields on the SQL tables which
cannot be linked into the plan chain. Sometimes splitting a job into two separate
jobs will enable you to get all of the data you want from the database while using
valid plans.

If your request can be processed using more than one valid plan, the TPL system
will list all valid plans and stop at the end of the translation step. At this point
you must examine the listed plans and determine which if any correctly capture the
desired meaning of your tables or reports. You must then add a plan statement to
your request and reprocess the request. The following is an example of the output
at the end of the translation step:

TPL-SQL. 197

PLANS:

Read: COMPANY

 3: COMPANY is parent of OFFICE where COMPANY_ID = COMPANY_ID and

 BRANCH = BRANCH

 2: OFFICE is sibling of OFFICE_1 where COMPANY_ID = COMPANY_ID and

 BRANCH = BRANCH

 1: OFFICE is parent of EMPLOYEE where ID = ID

Read: OFFICE

 2: OFFICE is sibling of OFFICE_1 where COMPANY_ID = COMPANY_ID and

 BRANCH = BRANCH

 1: OFFICE is parent of EMPLOYEE where ID = ID

 4: EMPLOYEE is parent of COMPANY where ID = OWNER

Read: EMPLOYEE

 4: EMPLOYEE is parent of COMPANY where ID = OWNER

 3: COMPANY is parent of OFFICE where COMPANY_ID = COMPANY_ID and

 BRANCH = BRANCH

 2: OFFICE is sibling of OFFICE_1 where COMPANY_ID = COMPANY_ID and

 BRANCH = BRANCH

*** ERROR: Since there is more than one possible plan for processing

this request, you must select one of the above plans by inserting a

plan statement in your request. Suppose the plan you wish to use has

the numbers 3,1,2 in that order next to the association statements.

Then your plan statement would be:

 PLAN 3 1 2;

How.to.Specify.a.Plan

A plan specification is just the word PLAN followed by a list of association state-
ment numbers (in processing order) followed by a semicolon (;). An example of a
plan statement is:

PLAN 3 5 12;

Association statement numbers may be obtained from the list of valid plans as in
the example above. Alternately, they may be obtained from the codebook abstract.
As mentioned before, if you add new association statements to your table or report
request, their statement numbers are just the next unused numbers. A PLAN
statement may occur anywhere in a table or report request after the USE statement
and any association statements.

TPL-SQL. 198

Plans.and.the.COUNT.Variable

Count is a built-in variable in TPL Tables. If a cross-tabulation has no explicit
observation variable, Count is implicitly taken to be the observation variable. In
a sequential hierarchical file Count gives a count of the number of records at the
lowest level of the hierarchy. In a table request run against a SQL database, Count
gives the equivalent result — a count of the number of records accessed from the
SQL table on the right of the last association statement in the plan. The danger
inherent in this is that if the plan changes, the count will also change.

Suppose we have a database with Industry, Company, and Employee SQL tables.
The SQL tables use the associations:

1: Industry is parent of Company where industry_id = industry_id
2: Company is parent of Employee where company_id = company_id

We produce a table statement:

Table T1: Industry_category, Company_location;

Assuming Industry_category is on the Industry SQL table and Company_loca-
tion is on the Company SQL table, the plan is just:

Plan 1;

Thus the table will be a count of companies for each location and industry catego-
ry. Now suppose we add a second table to our request:

Table T2: Industry_category, Education_level;

where Education_level is on the Employee SQL table. Our request now requires
the plan:

Plan 1 2;

The implicit Count now counts employees. Without changing the first table, we
have changed its meaning. We now get a count of employees for each industry
category and location instead of a count of companies.

The safest way to avoid problems in counting is to always explicitly include the
SQL table name in any cross-tabulations that do not already have an observa-
tion variable. Then you will know exactly what you are counting.

TPL-SQL. 199

Optimizing.Performance

Indexing.for.Multi-Table.Processing

Fields on the right side of an association statement should be indexed in the data-
base. This is true for sibling, one-to-one associations as well as for hierarchical,
one-to-many associations.

TPL does not use joins to process multiple SQL tables. Instead it processes the
data in a hierarchical fashion. Suppose you have a database with Employer and
Employee SQL tables. The tables are in a parent-child relationship where matches
are on the basis of employer_id on each of the SQL tables. You wish to produce
a TPL table using both of these SQL tables. TPL will read the first Employer
record and find the value from that record for the employer_id field. It will then
search through the Employee SQL table for each Employee record with the
desired Employer_id. If your database does not have an index built on Employ-
er_id on the Employee SQL table, then TPL will have to read through the entire
Employee SQL table for each Employer. This can produce unacceptable perfor-
mance!

In order to avoid this performance problem, your database must have indexes built
on the key fields used on the "child" or right-hand side of the Association state-
ment. If multiple key fields are needed to relate two SQL tables, you will get the
best performanace if your database has an index based on the combined fields.

SQL.Select

A table or report request run against a SQL database may include a SQL Select
statement in addition to or instead of a regular TPL Select statement. The SQL
Select statement provides support for an optimization which sometimes produces
significantly improved performance. If you use a regular TPL Select statement in
your table or report request with a SQL database, all records which follow the plan
are delivered to TPL for processing. Those which fail the Select are rejected by
TPL. If you use a SQL Select statement, records are rejected within the database
software. Use of this statement improves performance by reducing network traffic
and by saving TPL from processing data which it does not need.

Importance of Indexing and an Efficient SQL Select Statement
If the SQL Select statement excludes a large share of the data, a significant time
savings can result. However, you must be careful that your SQL Select statement
is efficient. TPL passes the SQL Select statement to the database system "as is"
without attempting to optimize it.

TPL-SQL. 200

SQL Select improves performance only if doing selection within the database is as
fast as doing it within TPL. If you are selecting on a non-indexed field, the data-
base selection is usually much slower than TPL selection. So don't use SQL Select
if the field being selected on is not indexed.

In one case a user had 300,000 establishment records in his database. He had an
indexed field cycle on Establishment. He first tried the SQL Select statement:

SQL Select on establishment "cycle between 115 and 123";

Using this statement, his request took 2 hours.

He replaced his SQL Select statement with:

SQL Select on establishment
 "cycle in (115,116,117,118,119,120,121,122,123)";

This TPL request produced the same results but took only 5 minutes to process.

The reason why the second one was so much faster is that since cycle was indexed,
the individual values in the in clause could be found quickly while the between
construction required the database to do a sequential search for values in the range.

Description of SQL Select
The syntax of a SQL Select statement is:

SQL Select on SQL-Table "selection-string";

SQL-Table is the TPL name for a SQL table. selection-string is a string of text
which is appended unchanged to the where clause of a SQL Select statement.
Since the selection-string is not modified by TPL, it should contain SQL field
names rather than TPL variable names.

Suppose the Age field is on the SQL table Person. Our TPL codebook has used a
defines clause to assign the TPL name Age_obs to Age. Then the following two
statements should produce the same result:

Select if Age_obs < 50;
SQL Select on Person "Age < 50";

Sybase.and
ODBC. String values passed in SQL select statements must be in single
 quotes; e.g.

 SQL Select on Company "name = 'QQQ Software' ";

TPL-SQL. 201

If TPL and the database software are both running on the same computer, there
will be little difference in performance between having TPL reject records and hav-
ing the database software reject the records. Bigger differences will occur if TPL
and the database software are running on different machines and if the selection is
to be done at the bottom level of the hierarchy defined by the plan. In such cases
data will be rejected before it travels across your network. If the machine running
the database software is faster than the machine running TPL, additional perfor-
mance improvements will be realized.

In most table and report requests, far more records are retrieved at the bottom level
of the processing hierarchy than at higher levels. If a record fails a select at a level
above the bottom level of the hierarchy, then no records will be retrieved from the
database from lower levels regardless of whether a TPL Select or a SQL Select
is used. Thus if selection is done above the bottom level of a hierarchy, there is
unlikely to be much difference in performance between using a regular TPL Select
and a SQL Select.

Difference in Results between Regular Select and SQL Select
In rare cases, SQL Select and regular Select can produce different results. The
differences only occur when Tabulate Incomplete Hierarchies = Yes; has been
specified.

Suppose we have a database with Family and Member data. If a family has no
members, it will still contribute to the table if Tabulate Incomplete Hierarchies =
Yes; is specified. Instead, suppose the database family does have members but a
SQL Select is used to remove all of its members. To TPL, the cases are the same
and the family will contribute to the table if Tabulate Incomplete Hierarchies =
Yes; is specified.

Now suppose the database family does have members but a regular Select is used
to remove all of them. TPL requires that an entire hierarchical unit pass a Select
in order for any part of it to be included in the tabulation (see the section on the
Select statement in the Hierarchies chapter). So the family is excluded regardless
of the setting for Tabulate Incomplete Hierarches. In this rare case, SQL Select
allows a family to be included which a regular Select excludes.

SQL.Fetch

The SQL Fetch statement is a tuning parameter which should be placed in your
profile.tpl file or in your format statements. It affects the amount of data that is
moved from the SQL Server to TPL on each request for data.

TPL-SQL. 202

The syntax of a SQL Fetch statement is:

SQL Fetch count = n;

where n is an integer. The default is 10.

In cases where TPL is executing on one machine and your database is on another,
the choice of value can strongly affect network traffic and performance. In a typi-
cal example, changing the SQL Fetch Count value from 1 to 10 caused the job to
run in 1/3 of the time!

Choosing too high a value for SQL Fetch Count will cause the job to use more
memory than needed. This can actually slow down performance. Too small a
value will degrade performance. If your table or report request uses a single SQL
relation, then there is no theoretical limit to how high a value you can use. How-
ever there is probably little to be gained by using a value greater than 100. If you
are processing a database hierarchically, select a SQL Fetch Count value no larger
than the largest number of records at the bottom of the hierarchy associated with
any given record immediately above. For example, if you are processing a family-
member hierarchy and no family has more than 12 members, then 12 is the ideal
choice for SQL Fetch Count. The exact choice is not critical. There will be little
performance difference if you use 15 or 8.

summaRy

TPL-SQL provides TPL Tables and TPL Report with direct access to data stored
on a SQL database. No intermediate storage is required. You do not need to know
SQL in order to user the interface.

A TPL-SQL codebook is a simplified standard TPL codebook. It differs from a
standard codebook in that information such as field widths can be omitted because
these can be obtained from the database itself. The one important addition found
in TPL-SQL codebooks is association statements which specify how different
SQL tables are to be processed together. These association statements are chained
together to form a plan for reading through the data during processing of a table or
report request.

A TPL-SQL table or report request is also very similar to a standard TPL Tables
or TPL Report request. The primary difference is that you may need to select the
plan that is to be used in processing the data.

Format. 203

C h a p t e r 2 1

Format

thE fORmat LanguagE

Introduction

The FORMAT language gives you precise control over the format of your reports.
The automatic formats provided by TPL REPORT are usually acceptable for a
quick look at your data. However, presentation or publication standards in your
organization may require that you adjust your report formats in ways that cannot
be achieved by using TPL statements alone. In other cases, you may find that the
default values for such things as column widths or page size are not appropriate for
the types of reports you are doing. These defaults can be changed with FORMAT
statements.

Several FORMAT statements apply only to the preparation of reports in PostScript
mode. With PostScript, you can choose proportional fonts, type sizes and colors
for different parts of your reports. PostScript reports can be printed on any laser
printer or typesetting machine that processes PostScript code. A separate chapter
contains instructions on getting started with PostScript. If you do not have a way
of printing PostScript reports, you can ignore the statements that apply to Post-
Script only.

A special FORMAT statement called DATA REPORTS can be used to format
your reports as a data file that can be used as input to other types of software, such
as TPL TABLES, spread sheets or graphics programs.

Note.for.Users.of.TPL.TABLES

TPL REPORT and TPL TABLES share the same FORMAT language. Some of the
statements do not behave in exactly the same way in both, because of the differ-
ences between reports and tables. In addition, some of the statements only apply
to one of the two: reports or tables.

Format. 204

All statements in the TPL profile are FORMAT statements. Since the FORMAT
language is shared, you can use the same TPL profile for both TPL TABLES and
TPL REPORT.

If a statement that applies only to tables is included in a report job, it is ignored by
TPL REPORT. For example, a statement such as REPLACE WAFER LABEL has
no meaning in TPL REPORT, because reports don't have wafers.

The word TABLE is replaced by the word REPORT when it is read by TPL RE-
PORT. For example, if you use the DATA TABLES statement with TPL REPORT,
you will get DATA REPORTS.

Where.to.Put.FORMAT.Statements

FORMAT statements are prepared using an editor and saved in a file called a
format request. The format request can be used along with the TPL report request
file.

FORMAT statements can also be included in your TPL profile. This is a good ap-
proach if you want certain statements to apply to all of your reports whenever you
run a TPL REPORT job.

Composition.of.FORMAT.Statements

A FORMAT statement consists of two parts: a FOR clause and an ACTION clause.
The ACTION clause specifies what is to be done to the reports. The FOR clause
specifies where the ACTION clause should take effect.

A typical FOR clause is:

FOR REPORTS 1 TO 3 COLUMNS 1, 3 AND 5 :

Some typical ACTION clauses are:

COLUMN WIDTH = 14;
TOP MARGIN = .5 IN;
REPLACE MASK WITH 99,999.99;
PAGE WIDTH = 140;

FOR clauses are optional. If there is no FOR clause before an ACTION, the FOR
clause from a previous statement applies to the new ACTION. If there is no previ-
ous FOR clause, the ACTION applies to the entire set of reports in the request.

Format. 205

The following set of FORMAT statements shows how ACTIONS can be grouped
with FOR clauses. The first two statements apply to all reports unless specifically
changed by subsequent FOR clauses.

PAGE WIDTH = 120;
FOR REPORT 1 :
 REPLACE TITLE WITH 'Sales results sorted by region.';
 COLUMN WIDTH = 20;

FOR REPORT 2 COLUMNS 1, 3, AND 5:
 COLUMN WIDTH = 12;
 REPLACE MASK WITH 9,999,999;

FOR REPORT 3 VARIABLE DOLLARS: REPLACE LABEL WITH 'Revenue';

Action.Levels

Different types of ACTION clauses take effect at different levels: request, report,
column, or cell.

For example,

PAPER = LETTER;

is applicable at the report level; that is, you cannot specify different paper sizes for
different reports created by the same report request. On the other hand, COLUMN
WIDTH can be specified for individual columns within individual reports.

If any part of a FOR clause is inapplicable for an associated ACTION because of
the level of the ACTION, the term in the FOR clause is ignored. Consider the
FORMAT statement:

FOR REPORT 3 COLUMNS 1 TO 6 :
 RETAIN CROSS RULES;

This statement will cause horizontal rules (lines) to be inserted above and be-
low the column labels and at the bottom of report 3. The column restrictions are
inapplicable, so they will be ignored. If REPORT 3 were omitted from the FOR
clause, cross rules would be inserted in all reports in the request.

When an ACTION is specified with a FOR clause that does not apply, TPL RE-
PORT follows the statement with a message in the OUTPUT file. If you find that
some of your FORMAT statements are applied (or not applied) in the way that you
expect, check the OUTPUT file for messages.

Format. 206

Action.Conflicts

If two or more conflicting actions are specified for the same part of a request, the
last one specified will win. An example of actions in conflict is two column widths
specified for the same column:

COLUMN WIDTH = 12;
FOR REPORT 1 COLUMNS 1 TO 5: COLUMN WIDTH = 8;

In this case, all columns in the request will have a width of 12 except columns 1 to
5 in report 1. Those columns will have a width of 8.

Action.Size.Specifications

For any action that specifies a size, the size is specified by

amount [unit]

where amount is a number and unit is optional. If no unit is specified, characters
are assumed. If a unit is specified, the amount can be a decimal number and the
unit can be expressed as inches, centimeters or points using any of the following
words or abbreviations:

inch
inches
in
ins
cm
points
pt
pts

Fractional sizes must be specified as decimal numbers. For example,

STUB WIDTH = 2.5 IN;

What.can.be.in.the.FOR.Clause?

The following elements can be referenced in a FOR clause:

REPORT
COLUMN
VARIABLE
CONDITION

REPORT and COLUMN can be referenced by number. REPORT, VARIABLE and
CONDITION can be referenced by name.

Format. 207

Note Report rows cannot be referenced in FOR clauses. Row references, such as FOR
ROWS 3 TO 6, are ignored. Some statements, such as SKIP LINE EVERY and
RULE EVERY can perform actions on rows without specific row references.

Variables can be specified by

FOR VARIABLE variable name:

Variable references only have meaning for actions applied to columns.

Control variable conditions can be specified by

FOR CONDITION variable name(condition number):

 or

FOR CONDITION variable name(condition name):

Condition references only have meaning for actions applied to values in report
cells.

Multiple variables or conditions can be referenced in the same FOR clause, with
or without commas between them. Examples are:

FOR VARIABLE A VARIABLE B :
FOR VARIABLES A, B, C :
FOR CONDITIONS VAR(1), VAR(2), VAR1(1) :
FOR CONDITIONS VAR1(1,2), VAR2(1) :

Reports can be specified by

FOR REPORT report name(s):

 or

FOR REPORT report number(s):

 or

FOR REPORTS ALL:

Ranges of values can be expressed in the FOR clause using the word TO. Com-
mas, equal signs, and the word AND are optional. For example,

FOR REPORT C3, COLUMN = 1 AND COLUMNS 4 TO 6 :

means the same as

FOR REPORT C3 COLUMNS 1 4 5 6 :

Format. 208

FOR clauses can include increments. For example,

FOR COLUMNS 1 TO 8 BY 2 :

This clause means: In the range 1 to 8, begin with column 1 and take every 2th
column. It means the same as the following clause.

FOR COLUMNS 1 3 5 7 :

The.Format.Actions

The FORMAT ACTIONS are grouped by type and listed below. In the FORMAT
reference section of this chapter, statements are ordered alphabetically and de-
scribed in detail.

Note All FORMAT statements must end with a semicolon (;).

Control.Page.Size
PAGE LENGTH = size;
PAGE LENGTH = AUTOMATIC;
PAGE WIDTH = size;
PAGE WIDTH = AUTOMATIC;
PAPER = paper-type;

Change.Column.Widths
COLUMN WIDTH = size;
COLUMN WIDTH = AUTOMATIC;
COLUMN WIDTH = AUTOMATIC MAXIMUM = size;

Delete.or.Retain.a.Report.or.Part.of.a.Report
DELETE ALL RULES;
or BLANKS;
RETAIN COLUMNS;
 CROSS RULES;
 DOWN RULES;
 HEADING;
 LEADING ZEROS;
 REPORTS;
 SIDE RULES;
 TITLE;

Format. 209

Rules.and.Blank.Lines
RULE EVERY n;
SKIP LINE EVERY n;

Bank.Columns
BANK AFTER COLUMN;
BANKS PER PAGE = n;
SKIP n LINES AFTER BANK;

Margin.Sizes (see MARGIN)
LEFT MARGIN = size;
RIGHT MARGIN = size;
TOP MARGIN = size;
BOTTOM MARGIN = size;

Mark.Pages.with.Page.Numbers.and.Other.Information
PAGE MARKER marker specifications;
BOTTOM PAGE MARKER = marker specifications; (PostScript only)

Align.Left,.Right.or.Center
ALIGN CELLS direction;
ALIGN COLUMN direction;
ALIGN HEADING LABELS direction;
ALIGN REPORT direction;
ALIGN TITLE direction;

Control.Position.of.the.NUMBER.Column
NUMBER RIGHT;
NUMBER LEFT;
NUMBER BOTH;

Replace.Labels,.Masks.and.Values
REPLACE LABEL WITH label;
REPLACE MASK WITH mask;
REPLACE TITLE WITH label;
REPLACE TITLE CONTINUATION WITH label;
USE CONDITION LABEL;
USE CONDITION NAME;
USE CONDITION VALUE;
USE VARIABLE NAME;
USE VARIABLE LABEL;

Format. 210

Replace.Column.Divide.Character
REPLACE DIVIDE CHARACTER WITH 'char';

Format.Reports.as.a.Data.File
DATA REPORTS;
DATA REPORTS ZERO FILL;

PostScript
POSTSCRIPT = YES; (or NO)
FONT = type/size;
ROTATE;
EXTRA LEADING = n;
RULE WEIGHT = n;
DOWN RULE WEIGHT = n;
REPLACE MASK FONT WITH font;
RETAIN CROSS RULES WEIGHT = n and/or DOUBLE;
RETAIN SIDE RULES WEIGHT = n;

Color.PostScript
COLOR defaults:
 DEFAULT COLOR = color;
 LABEL COLOR = color;
 RULE COLOR = color;
 SYMBOL COLOR = color;
COLOR = NO; (or YES)
REPLACE COLOR color WITH FONT font;
REPLACE MASK COLOR WITH color;

Print..and.Export.Control..(UNIX only)

Normally (in default mode), the system will prompt you at the end of a job to find
out whether you want to print outputs or export files to other formats. You can use
the following statements to select the print options in advance.

CSV OUTPUT = YES or NO or PROMPT;
EPS OUTPUT = YES or NO or PROMPT;
PRINT OUTPUT = YES or NO or PROMPT;
PRINT TABLES = YES or NO or PROMPT;

The default for all statements is PROMPT.

Format. 211

The.NUMBER.Variable.in.FORMAT.Statements

The NUMBER variable is a special built-in variable that contains the row number
for each row of data in a report. By default, a NUMBER column is included as
the first column for each page of report output, headed by the label "Row". The
NUMBER column does not have a column number, but it can be referenced by
name in FOR clauses.

NUMBER can be used in the following FORMAT statements:

FOR VARIABLE NUMBER: DELETE COLUMN;
FOR VARIABLE NUMBER: RETAIN COLUMN; (the default)
FOR VARIABLE NUMBER: REPLACE MASK WITH mask;
FOR VARIABLE NUMBER: REPLACE LABEL WITH label; (default is "Row")
FOR VARIABLE NUMBER: ALIGN COLUMN LEFT, RIGHT or CENTER; (the default)
FOR VARIABLE NUMBER: ALIGN CELLS LEFT, RIGHT or CENTER; (the default)
FOR VARIABLE NUMBER: ALIGN HEAD LEFT, RIGHT or CENTER; (the default)
FOR VARIABLE NUMBER: COLUMN WIDTH = n;
NUMBER RIGHT;
NUMBER LEFT; (the default)
NUMBER BOTH;

NUMBER RIGHT and NUMBER LEFT specify whether the NUMBER column
should be on the right or left of the other columns in the report. NUMBER BOTH
means that the NUMBER column should be put on both sides.

Examples NUMBER RIGHT;
FOR REPORT 1, VARIABLE NUMBER:
 REPLACE LABEL WITH 'Row Number";
FOR REPORT 2 VARIABLE NUMBER AND COLUMN 3:
 COLUMN WIDTH = 6;

Use.of.FORMAT.Statements.in.Profile

Any FORMAT statement can be included in your TPL profile (the file called pro-
file.tpl). These statements will be the default values for all runs, or, if you have a
profile in your current directory, the statements from that profile will determine the
defaults for all jobs run from that directory.

In addition to the standard FORMAT statements, there are a few statements which
are peculiar to the profile. The EDITOR statements are initially set when you
install TPL REPORT.

Format. 212

International.Formats.and.Non-English.Alphabets..(profile only)
CODEPAGE = name;
COUNTRY = name;

PostScript.Display..(profile only)
DISPLAY NAME = PostsScript-displayer;

Editor.Specifications.(UNIX profile only)
EDITOR NAME = editor_name ;
EDITOR FILE = editor_file ;

Other statements can be added to the profile to control what information is dis-
played on the screen and whether the output should be printed.

Printer.Selection.(UNIX profile only)
PRINT COMMAND = 'command';

Format. 213

fORmat LanguagE REfEREnCE

Introduction

In the preceding section, we have provided an overview of the FORMAT language.
In this section, we describe each FORMAT statement in detail. The statement
descriptions are arranged in alphabetical order.

Format. 214

ALIGN.CELLS

 Format There are three possible alignments for data cells.

ALIGN CELLS LEFT;
ALIGN CELLS RIGHT;
ALIGN CELLS CENTER;

 Meaning The entries in the report columns, called cells, can be aligned to the left, right
or center. If a cell entry is more than one line long, all lines of the entry will be
aligned the same way.

You will find this statement particularly useful if you wish to change the default
alignment for CONTROL and CHAR values and for changing the alignment of
OBSERVATION values without entering alignments into individual masks. If both
a mask and an ALIGN CELL specification apply to the same column containing
values for an observation variable, the last specification wins.

Left-alignment is often desirable for CHAR and CONTROL variables with cells
containing long text values. Right-alignment is often desirable for OBSERVATION
variables.

See also the statement called ALIGN COLUMN. This statement can be used to
align both the label at the top of the column and the values below in the same
direction.

 Note For variables created with RECODE statements, alignments that are built into the
values will take precedence over ALIGN specifications.

 Level ALIGN CELLS can be specified for individual columns, specified either by column
number or by variable name.

 Default ALIGN CELLS CENTER;

 Example ALIGN CELLS RIGHT;
FOR REPORTS 2 AND 3, VARIABLES CITY, LAST_NAME, COMPANY:
 ALIGN CELLS LEFT;

 Effect All cells will be aligned to the right, except those for the variables CITY, LAST_
NAME and COMPANY in reports 2 and 3. In these reports, the values will be
aligned to the left.

Format. 215

ALIGN.COLUMN

 Format There are three possible alignments for report columns.

ALIGN COLUMN LEFT;
ALIGN COLUMN RIGHT;
ALIGN COLUMN CENTER;

 Meaning Both the labels at the tops of columns and the values entered in the cells below are
aligned in the same direction. They can be aligned to the left, right or center. If
any label or cell entry is more than one line long, all lines of the label or cell entry
will be aligned the same way.

For observation variables, masks and ALIGN COLUMN interact. If both a mask
and an ALIGN COLUMN specification apply to the same column containing val-
ues for an observation variable, the last specification wins.

ALIGN COLUMN is equivalent to the combination of ALIGN HEAD and ALIGN
CELLS where both are specified in the same direction. See these statements for
additional details.

If no specific columns are selected with a FOR clause, ALIGN COLUMN applies
to all columns, including the special built-in NUMBER column. If you are select-
ing columns in a FOR clause, you must reference the NUMBER variable by name
if you want to include it.

 Note For variables created with RECODE statements, alignments that are built into the
values will take precedence over ALIGN specifications.

 Level ALIGN COLUMN can be specified for individual columns, specified either by
column number or by variable name.

 Default ALIGN COLUMNS CENTER;

 Example ALIGN COLUMNS LEFT;
FOR REPORT 1, COLUMNS 2 AND 3: ALIGN COLUMNS RIGHT;

 Effect All column labels and the values below will be aligned to the left, except those for
columns 2 and 3 of the first report. In these columns, the labels and values will be
aligned to the right. For reports other than REPORT 1, the NUMBER column will
be aligned to the left.

Format. 216

ALIGN.HEAD

 Format There are three possible alignments for heading labels.

ALIGN HEAD LEFT;
ALIGN HEAD RIGHT;
ALIGN HEAD CENTER;

The following are equivalent to the sequence of words ALIGN HEAD. The word
LABEL (singular) can be used in place of the word LABELS (plural).

ALIGN HEADING LABELS
ALIGN HEAD LABELS
ALIGN HEADING

 Meaning The labels at the top of each report column can be aligned to the left, right or cen-
ter. If a heading label is more than one line long, all lines of the heading label will
be aligned the same way.

You will find this statement particularly useful if you wish to change the default
alignment for all heading labels without entering an alignment specification into
each individual label. If you have included an alignment of LEFT, RIGHT or
CENTER in an individual label that is used as a heading label, the alignment speci-
fied within the label will override the ALIGN HEAD statement.

*****NOTE: For column labels, individual alignment specifications have not
yet been implemented in TPL REPORT. *****

See also the statement called ALIGN COLUMN. This statement can be used to
align both the label at the top of the column and the data below in the same direc-
tion.

 Level ALIGN HEAD can be specified for individual columns, specified either by column
number or by variable name.

 Default ALIGN HEAD CENTER;

 Example ALIGN HEAD RIGHT;
FOR REPORT 3 VARIABLE CITY: ALIGN HEAD CENTER;

 Effect All heading labels will be aligned to the right, except those for the variable CITY
in report 3. In this report, the labels above the CITY column will be centered.

Format. 217

ALIGN.REPORT

 Format There are three possible report alignments.

ALIGN REPORT LEFT;
ALIGN REPORT RIGHT;
ALIGN REPORT CENTER;

 Meaning A report is aligned (LEFT, RIGHT, or CENTER) between the left and right mar-
gins. If the report is too wide to fit on the page, it will automatically be divided
into as many sections as necessary (one page per section) with each section aligned
the same way. If a report is divided into sections by a BANK statement, each sec-
tion will be aligned the same way.

 Level Report alignment can be controlled at the report level. Report alignment cannot
change within a report.

 Default ALIGN REPORT CENTER;

 Example ALIGN REPORTS LEFT;
FOR REPORT 3: ALIGN REPORT CENTER;

 Effect All reports except the third will be aligned with the left margin on the page. The
third report will be centered.

Format. 218

ALIGN.TITLE

 Format There are three possible alignments for report titles.

ALIGN TITLES LEFT;
ALIGN TITLES RIGHT;
ALIGN TITLES CENTER;

 Meaning The report title can be aligned with the left or right edges of the report, or it can be
centered within the width of the report. If the title is more than one line long, all
lines of the title will be aligned the same way.

You will find this statement particularly useful if you wish to change the default
title alignment for all re[prts without entering an alignment specification into each
individual report title. If you have included an alignment of LEFT, RIGHT or
CENTER in an individual report title, the ALIGN TITLE specification will not ap-
ply to that report title.

 Level Title alignment can be controlled at the report level.

 Default ALIGN TITLE LEFT;

 Example ALIGN TITLES CENTER;
FOR REPORT 2: ALIGN TITLE RIGHT;

 Effect The report title will be centered for all reports except the second. For the second
report, the report title will be aligned with the right edge of the report.

Format. 219

BANK.AFTER.COLUMN

 Format A FOR clause is required to identify the column(s) where banking should take
place.

FOR [column specification]: BANK AFTER COLUMN;

where column specification can be the word COLUMN followed by one or more
column numbers and/or the word VARIABLE followed by one or more variable
names.

 Meaning BANK allows you to specify a break point for a report so that a wide report can
be split into sections. Each section is printed on a separate page with all necessary
labels repeated for each section of the report.

 Level Bank points are specified by column but are controlled at the report level. Bank
points cannot change within a report.

 Default If the report is too wide for the page, it is banked automatically into as many sec-
tions as necessary.

 Example FOR COLUMNS 4, 8 AND VARIABLE CITY: BANK AFTER COLUMNS;

 Effect Assume that the CITY column is the eleventh column of the report. The first page
of the report will contain columns 1-4; the second page of the report will contain
columns 5-8; the third page of the report will contain columns 9-11. The remain-
ing columns (assuming there are few enough to fit) will be on the fourth page of
the report.

 Restrictions If you specify a break point beyond the end of the report, the BANK statement will
be ignored. For example, if a report has ten columns, the statement

FOR COLUMN 15: BANK AFTER COLUMN;

will be ignored.

FOR VARIABLE NUMBER: BANK AFTER COLUMN; does not make sense,
because NUMBER, if present in the report, is automatically included in each bank
of the report.

Format. 220

BANKS.PER.PAGE

 Format BANKS PER PAGE = n;

where n is a number. The word IS can be used in place of =. Both are optional
and can be left out altogether.

 Meaning If a report is too wide to fit on a page, it is automatically broken into sections
called banks. Banking can also be requested explicitly with the BANK AFTER
COLUMN statement. By default, each bank begins on a new page. The BANKS
PER PAGE statement can be used to print multiple banks on a page.

One line is skipped between banks unless you request a different spacing with the
SKIP AFTER BANKS statement. With the statement SKIP 0 LINES AFTER
BANKS; the banks will be joined with no space between banks. See the SKIP AF-
TER BANKS statement for details.

Banks are centered on the page unless a different alignment has been specified.

A report title appears only once on a page regardless of the number of banks. It
is formatted according to the most narrow bank on the page and aligned at the left
edge of the top bank unless a different alignment has been specified.

 Note All banks on a page will take up the same amount of vertical space. If you have
different width banks on the same page, you may find that the page ends sooner
than you expect, especially if you have a very narrow bank that requires the report
title to be broken into several lines. In addition, if one bank has a very long
column label that must be broken into several lines, the space requirement for that
label will apply to all of the banks. Each bank may then take more vertical space
than you expect.

 Level BANKS PER PAGE can be specified at the individual report level.

 Default BANKS PER PAGE = 1;

Format. 221

 Example BANKS PER PAGE = 3;
 FOR VARIABLES COUNTRY AND REGION:
 BANK AFTER COLUMNS;

Complete list of shipping records.

Row A4 BULK_GEN COM1 COM2 COM3 COUNTRY

1 0000 0 0 04 041 542
2 0000 0 0 04 044 588
3 0000 0 0 08 081 225
4 0000 0 0 08 081 307
5 0000 0 0 08 081 421
6 0000 0 0 08 081 428
7 0000 0 0 08 081 470

Row Dollars DPORT E4 LEG MONTH REGION

1 6,519,575 2004 0410 1 12 5
2 448,407 2004 0440 1 12 5
3 239,013 2004 0810 1 12 2
4 2,037,000 2004 0810 1 12 3
5 34,603,211 2004 0810 1 12 4
6 3,415,548 2004 0810 1 12 4
7 5,564,700 2004 0810 1 12 4

Row Short Tons TYPE_SERVICE YEAR

1 54,710 5 85
2 3,662 5 85
3 1,143 5 85
4 9,700 5 85
5 214,295 5 85
6 22,214 5 85
7 28,495 5 85

 Example BANKS PER PAGE = 3;
SKIP 3 LINES AFTER BANKS;

 Effect Each page of the report will contain 3 banks with 3 blank lines between the banks.
If the number of banks in the report is not a multiple of 3, then the last page will
contain fewer than 3 banks.

 Note The NUMBER column that appears by default as the first column of a report is
repeated for each bank. The row numbers in this column can be used to match up
the rows of different banks.

. Restrictions There must be enough vertical space on the page for each bank to contain at least
one line of data.

Format. 222

CODEPAGE..(PROFILE.only)

CODEPAGE determines the character set and sort order for your requests and re-
ports. It is most often used for non-English languages that have alphabetic charac-
ters not available in the default CODEPAGE.

See also the statement called COUNTRY to set standards for features such as cur-
rency symbols and date/time formats.

 Important If you add a CODEPAGE or COUNTRY statement to your profile, change a
CODEPAGE or COUNTRY statement in your profile, or make changes to coun-
try.tpl, you need to restart TPL to activate the changes. When running a report
request, you must use the same CODEPAGE and COUNTRY statements that
you used when processing your codebook. Otherwise, you will have conflicting
standards. In particular, conflicts in CODEPAGE will cause the sort order to be
scrambled.

. Note If you use CODEPAGE and/or COUNTRY statements, place them at the beginning
of your profile.

. Format CODEPAGE = cp-name;

where cp-name is a CODEPAGE name. The word IS can be used in place of =.
Both are optional and can be left out altogether.

. Level CODEPAGE applies to all reports.

 Windows.Default CODEPAGE = WIN88591;

 UNIX.Default CODEPAGE = ISO88591;

. Meaning The CODEPAGE statement determines the following:

1. the character set that includes the alphabet you wish to
use in names and labels,

2. the character set for PostScript reports, and

3. the sort sequence for the character set.

Format. 223

The character sets associated with different CODEPAGES are contained in files
that are installed in the TPL system directory. These files have names that end
with .cp. The names correspond to the supported codepages. For example, for
CODEPAGE = WIN88591; the character set information is contained in the file
WIN88591.cp. For CODEPAGE = ISO88591; the character set information in
contained in the file ISO88591.cp.

The .cp files are ASCII text files that can be printed or displayed on the screen but
you should not change them. Please tell us if you think that a change should be
made for your alphabet.

Alphabet for Names
The TPL alphabet depends on the CODEPAGE. The default CODEPAGE is ad-
equate for many, but not all, languages. If you need additional letters, look at the
CODEPAGES in the Appendix to find an alphabet that you can use.

The Character Set for Printing PostScript
TPL automatically provides the printable characters for the selected CODEPAGE.

The Sort Sequence
The proper order for sorting depends on the character set used. TPL will use the
sequence that goes with the character set selected by the CODEPAGE statement.

The sort sequences for all character sets are stored in a file called sort.tpl that is
installed in the TPL system directory. This is an ASCII text file that you can print
or display on the screen. It can be edited according to the instructions included
at the beginning of the file. We would appreciate your telling us if you think that
changes should be made in the sort.tpl file that we distribute with the TPL soft-
ware.

If.You.Need.to.Select.a.CODEPAGE

Consult the character set tables in the Appendix called "Character Sets" and use the
codepage name from any table that contains the characters that you need.

Format. 224

COLOR.Defaults

. Format DEFAULT COLOR = r g b;
LABEL COLOR = r g b;
RULE COLOR = r g b;
SYMBOL COLOR = r g b;

where r, g and b, are numbers between 0 and 100 (inclusive) which specify red,
green, and blue components of color.

. Meaning COLOR defaults can be set for all characters and rules (lines) used in reports. The
defaults are applied as follows.

DEFAULT.COLOR is the print color for the entire report if no other colors are
specified. If RULE COLOR and LABEL COLOR are specified, the DEFAULT
COLOR remains as the default color for report cells.

RULE.COLOR is the print color for rules. It applies to all rules, including rules
added by the FORMAT statement RULE EACH n. If no explicit RULE COLOR
is specified, rules are printed in the default color.

LABEL.COLOR is the print color for all text in reports except character strings
in cell masks. These strings are printed in the default color. If no explicit LABEL
COLOR is specified, all labels, titles and footnote texts are printed in the default
color.

SYMBOL.COLOR is the print color for all footnote symbols. If SYMBOL
COLOR is not set explicitly, the default label color is used for symbols.

In cases where color specifications are entered directly into individual report ele-
ments such as labels, masks or footnotes, these individual specifications will take
precedence over the default COLOR specifications.

COLOR defaults apply only to characters and rules. For background shading
in color or grey, see the SHADE statement (or COLOR shading).*****NOTE:
Shading has not yet been implemented for TPL REPORT. *****

Format. 225

Note on Cell Color
There is no default color statement that applies only to report cells. If you wish to
change the cell color without affecting other report elements that are to be dis-
played in the default color, you can use the FORMAT statement, REPLACE CELL
COLOR (or the equivalent REPLACE MASK COLOR), to replace the mask color
for entire reports. This statement affects only cell color and does not change the
other mask characteristics of a cell.

Note on Underlining
The color for underlining is determined by the labels or masks to which the under-
lining applies if it is part of the font for the labels or masks.

. Level All COLOR statements can be specified for individual reports.

 Default The default color is black.

. Example DEFAULT COLOR = 0 20 99;
FOR REPORT 1: REPLACE TITLE WITH COLOR 100 0 0 ’Red report title’;
FOR REPORT 2: RULE COLOR = 100 0 0;

. Effect All reports will be printed in the default color 0 20 99 (a shade of blue) except as
follows. The first report will have a title in the color 100 0 0 (red). The rules in
the second report will be printed in the color 100 0 0 (red). The rest of the second
report will be printed in the default color.

Alternate.Format.for.the.COLOR.Statements

Colors can also be referenced by name where the colors have been defined in a file
called color.tpl.

. Format DEFAULT COLOR = color;
LABEL COLOR = color;
RULE COLOR = color;
SYMBOL COLOR = color;

where color is a user-selected name that has been assigned to a color definition in
the color.tpl file.

The color.tpl file is installed as part of the TPL system with several colors already
defined. You can customize this file to add the colors of your choice. For com-
plete details, see the section called "General Information about Color" in the Color
chapter.

Format. 226

. Example DEFAULT COLOR = BLUE;
FOR REPORT 2: RULE COLOR = BROWN;
FOR REPORT 2, COLUMN 1: REPLACE MASK WITH COLOR RED 999.9;

. Effect All reports will be printed in the default color BLUE except the second report.
The rules in the second report will be printed in the color BROWN. Since the
color RED is included within the mask for the first column of the second report,
the data values in that column will be printed in RED. The rest of the second
report, the labels and the other data values, will be printed in the default color.

Format. 227

COLOR.=.NO

In some cases a report is designed to be printed on a color PostScript printer but
must be previewed on a monochrome PostScript printer. Colors are printed on a
monochrome printer as shades of grey. The resulting report is often hard to read,
and different colors sometimes convert to the same shade of grey. Two additional
statements may be added to your FORMAT request to deal with this.

. Format COLOR = NO;
REPLACE COLOR c WITH FONT f;

where c is a color name or r g b specification and f is a font name and optional
font size.

COLOR = YES; is the default. If you have not specified COLOR = NO; the RE-
PLACE COLOR statements are ignored.

If COLOR = NO; is selected, and no REPLACE COLOR statement is provided, all
color information is ignored and the reports are printed in black and white.

If COLOR = NO and REPLACE COLOR statements are included, the reports are
still printed in black and white but the REPLACE COLOR statements are used to
substitute special fonts for color.

. Note Replacement of table elements such as masks or labels in statements that follow
a REPLACE COLOR statement may nullify the color replacement for those table
elements. You can avoid this possibility by putting the REPLACE COLOR state-
ment at the end of the format request. For example:

 FOR REPORTS ALL: REPLACE COLOR GREEN WITH FONT HB;

 Example Suppose you have a report intended for printing on a color printer and suppose that
you wish to use a RED data mask to emphasize certain report cells. You need to
preview this report on a monochrome printer but you want the red cells to stand
out. You can accomplish this by adding the following two statements to your
FORMAT request or profile.

COLOR = NO;
REPLACE COLOR RED WITH FONT HB;

Now all red cells will be displayed in Helvetica Bold. When you are ready to print
on your color printer, just replace COLOR = NO; with COLOR = YES; The RE-
PLACE statements need not be removed since they will be ignored.

Format. 228

Restrictions Changing the color of a string of characters does not change its length, but chang-
ing the font and especially the font size of the string does change its length. RE-
PLACE COLOR statements are intended for use in previewing reports before final
printing on a color printer. To aid in doing this, all report layout is done before the
font changes are applied. Consequently, if a wider font is specified in a REPLACE
COLOR statement, some character strings may be too wide to fit in their space.
Thus, they may overlay some of the adjacent rules or stub filler dots. If the font
size is not changed, this will rarely happen but it is possible.

Alternate.Approach

If you want to produce a publication-quality report that emphasizes certain report
cells or labels with color and can be printed on both a monochrome and color
printer, you can assign both a color and a distinguishable font to the cells or labels
that you want to emphasize. Do not use a REPLACE COLOR statement but do
use COLOR = NO; when printing on a monochrome printer. On a color printer,
both the color change and the font change will highlight the emphasized cells or
labels. On a monochrome printer, the font change will show the emphasis.

Format. 229

COLUMN.WIDTH

 Format COLUMN WIDTH = amount [unit];

where amount is a number and unit is optional. If no unit is specified, characters
are assumed. If a unit is specified, the amount can be a decimal number and unit
can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left out.

 Meaning For specified columns, make the report columns n characters (or other units) wide.
The column width includes the column divide character. If the column width is n
characters, then the column will have one less than n character positions for data
plus one position for the divide character.

You can specify different column widths for different columns, referencing the
columns by column number or by variable. If the column width action is not re-
stricted by a FOR clause, the column width will be the same for all columns in all
reports.

See also COLUMN WIDTH AUTOMATIC in this chapter for automatic adjustment
of columns widths to fill the available space.

 Level Column width can be specified for individual columns or variables but is controlled
at the report level. For a particular column, the column width will be the same
throughout any one report.

 Default The default width for each column is based on the data type. In all cases, the
width includes one extra character to allow for a blank space between columns.
See the REPORT chapter for additional details.

For the NUMBER variable, the column width is 10.

 Example COLUMN WIDTH = 15;
FOR VARIABLE STATE_OF_RESIDENCE: COLUMN WIDTH = 12;
FOR REPORT 3 COLUMNS 2 AND 4: COLUMN WIDTH = 8;

 Effect The first FORMAT statement sets column width to 15 for all reports. If the second
statement follows in the same format request, it sets column width to 12 for any
STATE_OF_RESIDENCE columns. The third statement sets column width at 8 for
columns 2 and 4.

 Restrictions In line printer mode, the minimum width is 3; in PostScript mode, it is 4.

Format. 230

COLUMN.WIDTH.AUTOMATIC

 Format COLUMN WIDTH = AUTOMATIC;
COLUMN WIDTH = AUTOMATIC MAXIMUM = n [unit];

where n is a number that specifies a width, and unit is optional. If no unit is
specified, characters are assumed. If a unit is specified, the amount can be a deci-
mal number and unit can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left out
altogether. AUTO is a synonym for AUTOMATIC and MAX is a synonym for
MAXIMUM.

 Meaning You can use these statements if you wish to "stretch" reports to the full width of
the page minus the margins; if you wish to have all reports be the same width,
regardless of the number of columns; or if you wish to have all banks of a report
be the same width, even if they have different numbers of columns.

If you specify COLUMN WIDTH AUTOMATIC; extra space is added to the col-
umns so that the report takes up the full width of the page minus the left and right
margins.

In some cases, COLUMN WIDTH AUTOMATIC; will make columns wider than
is desirable. This is especially likely when a banked report has only a small num-
ber of columns in the last bank. COLUMN WIDTH AUTOMATIC MAXIMUM
n; can be used to limit the effect of automatic column widths so that no column
will have a width greater than n. Note that if you have set an explicit width for a
column that is wider than the maximum automatic value, this column will not have
its width reduced. Note also that if you specify a maximum automatic value for
columns, the final width of the report may not be as wide as the page width minus
the margins.

 Level These statements can be specified at the individual report level.

 Default COLUMN WIDTH = 10;

unless explicitly specified otherwise.

Format. 231

 Example Assume that for a report with 5 columns, we have the following FORMAT state-
ments:

PAGE WIDTH = 80;
LEFT MARGIN = 10;
RIGHT MARGIN = 10;
COLUMN WIDTH AUTOMATIC;

 Effect The available space for the columns will be 80 - 10 - 10 = 60 (i.e. the page width
minus the margins). Each column will be expanded from the default width of 10
to a width of 12 so that the full page width will be used.

 Restrictions The NUMBER column is not affected by this statement.

These statements can work with greater precision in PostScript mode than in line
printer mode. For example, if COLUMN WIDTH AUTOMATIC; is specified in
line printer mode and the available space divided by the number of columns yields
a fractional number, some adjustments must be made to allow for the fact that all
characters and spaces have the same width.

If these statements are used with PAGE WIDTH AUTOMATIC; they will be ig-
nored, regardless of the order of the statements.

Format. 232

COUNTRY..(PROFILE.only)

. Note If you are using U.S. standards for such things as data formats, currency symbol
and date/time formats, you do not need to use this statement. If you do use a
COUNTRY statement, place it at the beginning of your profile. Before doing
this, you should check the profile to see if any decimal numbers are used. If they
are, you may need to edit them so that they conform to your country's standards
as described below in the section called "Separators in Masks and Decimal Con-
stants".

See also the statement called CODEPAGE to select a character set and sort order
for languages other than English.

. Format COUNTRY = country-name;

where country-name is the name of a country listed in the country.tpl file. The
word IS can be used in place of =. Both are optional and can be left out altogeth-
er.

. Meaning The COUNTRY statement lets you select appropriate standards for items such as
thousand separator, decimal separator, currency symbol, and date/time formats.
The standards are set in the file called country.tpl. This file is installed in the TPL
system directory. It is an ASCII file that can be printed or displayed on the screen.
The country-name that you enter in the COUNTRY statement must match a name
in country.tpl. Associated with each country in the file, you can see the standards
that have been set for that country.

The countries that currently have entries in the file are listed below. If your coun-
try name is not on this list, look in country.tpl to see if it has been added. If your
country is not in country.tpl, you will need to edit the file to add the standards for
your country. If you add a country to country.tpl, please send your entry to us.
We will add it to our country.tpl file so that your country will always be included
when you get new versions of TPL software.

*****NOTE: The special treatment for currency symbols has not yet been
implemented for TPL REPORT, but currency symbols can be entered as
strings in masks. See the chapter called "Masks". *****

Format. 233

AUSTRALIA JAPAN
AUSTRIA MEXICO
BELGIUM_DUTCH NETHERLANDS
BELGIUM_FRENCH NZEALAND
BRAZIL NORWAY
CANADA POLSKA
CANADA_FRENCH PORTUGAL
DENMARK SKOREA
FINLAND SPAIN
FRANCE SWEDEN
GERMANY SWITZERLAND
ICELAND TAIWAN
IRELAND UK
ITALY US

If there is an entry for your country but you wish to change the standards, you can
edit the country.tpl file. Follow the directions contained in the file accurately. Er-
rors in this file could cause your TPL jobs to fail. As with profile.tpl, you can edit
the file in the TPL system directory, or you can make a customized copy to use in
the directory where you are running your TPL jobs.

Separators in Masks and Decimal Constants
For the default country US, the decimal separator is "." and the thousands separa-
tor is "," . The COUNTRY statement lets you choose different defaults so that you
can enter masks and numeric constants and have values print with the separators
that are customary in your country.

Enter masks according to your country standard. For example, if your thousands
separator is "." and your decimal separator is "," then a valid mask would be
MASK 9.999,99 .

Note that if your country uses a period "." as the decimal separator you must enter
comma "," as the thousands separator in masks. In the output, the data will use the
correct symbol for the thousands separator if it differs from comma. Similarly, if
your country uses a comma "," as the decimal separator, you must enter a period as
the thousands separator in masks.

For example, some countries, such as France and Finland, use comma "," as the
decimal separator and blank as the thousands separator. Blank can be entered in
country.tpl, but a mask with a blank will cause a syntax error. If you use blank as
the thousands separator, you must enter the mask using a period as the thousands
separator. The data values will be printed correctly with blank as the thousands
separator.

Format. 234

Enter numeric constants according to your country standard. For example, if your
decimal separator is "," then 457,22 is a valid entry. The thousands separator is
not relevant, because thousands separators cannot be entered in numeric constansts.

. Note This feature does not extend to observation variable values in a data file. If they
have decimal or thousands separators, they must conform to US standards, i.e.
period for decimal and comma for thousands.

Effect on Currency Formats
If you have entered the COUNTRY statement in your profile, the currency sym-
bol will be taken from the corresponding country entry in country.tpl. This entry
also determines whether the symbol should be displayed before or after the money
value, with or without a blank between. As already noted, you can edit country.
tpl if you wish to change the symbol or its placement.

The rules for entering currency symbols in masks in codebooks and statements
vary depending on the type of currency symbol for your country. In any case, if
your country name and codepage specifications are correct, a Postscript output
will have the correct currency symbol inserted in the correct place in your data
values. If you are using a non-Postscript printer, what will be printed depends on
your printer. Changes to the country.tpl file can usually fix non-Postscript printer
problems.

1. For some countries, the currency symbol is a single special character such as
the UK Sterling symbol. For this type of currency symbol, you may enter
either $ or the special symbol in your print masks.

2. For other countries such as France, the currency symbol is a regular letter in
the alphabet. In such cases you must use the US $ in your print masks, but the
letter will be used as the currency symbol in formatting data values.

3. For currency symbols such as Kr and Cr$ that contain more than one charac-
ter, you must use the US $ in your print masks, but the correct combination of
symbols will be used in formatting the data.

 Examples COUNTRY = Denmark;
User specified mask is: $999,99
Output for 332.76 is: 332,76Kr

COUNTRY = UK;
User specfied mask is: £999.99
Output for 332.76 is: £332.76

COUNTRY = CANADA_FRENCH;
User specfied mask is: $99.999,99
Output for 54332.76 is: $54 332,76

Format. 235

In some countries it is customary to insert a blank space between the currency
symbol and the value. Because space is often limited in columns of data, we have
not included blank characters for currency symbols in our country.tpl file. If you
wish to have the blank space inserted, you can change the currency style field in
your country.tpl file to request the blank space for your country's entry.

. Note TPL software does not support currencies that put the currency symbol at the deci-
mal point place. Please contact us if you have a requirement for this format.

Special Treatment for Currency Symbols in Output
TPL provides special treatment for masks that contain the US currency symbol
$. For example, in a column of numbers with a mask of $999.99, only the first
number in the column will be displayed with a $. (See the MASK chapter for a
more detailed description of the $ treatment.) Non-US currency symbols are given
similar treatment.

Date and Time Formats
Whenever date and time are displayed by TPL, the formats are determined by
COUNTRY. For example, if you use DATE or TIME in the FORMAT statement
called PAGE MARKER and have specified COUNTRY = SWITZERLAND, the
statement:

PAGE MARKER = "Page " NUMBER " Job run on " DATE " at " TIME;

will produce reports with page numbers, date and time in the following format:

Page 1 Job run on 31.12.95 at 14,24,38

. Level COUNTRY applies to all reports.

. Default COUNTRY = US;

. Restrictions. When running a report request, you must use the same CODEPAGE and COUN-
TRY statements that you used when processing your codebook. Otherwise, you
will have conflicting standards. In particular, conflicts in CODEPAGE will cause
the sort order to be scrambled.

Format. 236

CSV.DIVIDER

. Format CSV DIVIDER = "c";

where c can be any character, including blank, and the quotes can be single or
double. The word IS can be used in place of =. Both are optional and can be left
out altogether.

. Meaning For exported CSV files, the default divider (delimiter) between values is comma.
CSV DIVIDER can be used to specify a different divider character.

. Level The divider is controlled at the request level. The same divider applies to all re-
ports within the same report request.

. Default CSV DIVIDER = ",";

. Example CSV DIVIDER = " ";

. Effect When the reports are exported to CSV format, the values will be separated by a
blank character.

. Restriction If a Tab is entered as the divider, it will be treated the same as a blank. If you are
using the Windows version of TPL and do the export interactively from Ted, you
can select Tab as the divider.

CSV.OUTPUT..(UNIX.only)

. Format CSV OUTPUT = YES or NO or PROMPT;

Normally, when you have created PostScript reports, TPL REPORT will prompt
you at the end of a job to find out if you would like to export the reports to other
formats. To prevent the prompt for CSV, you can use this statement with YES or
NO.

Format. 237

DATA.REPORT

 Format DATA REPORT;
DATA REPORT ZERO FILL;

 Meaning The DATA REPORT statement is especially useful if you are extracting data for
subsequent use with other software such as TPL TABLES, spread sheets or graph-
ics programs.

It formats the reports so that they can be used as data files. All title and label in-
formation is removed along with the space between pages. As with normal reports,
each data report is put into a separate file. Each column, including the last, has a
single blank space at the right end.

Only masks and cell alignments remain in effect. If you need decimal points in
the numbers or if you plan to use the data reports as input to software that does not
allow commas in the data, you may need to add your own mask for the data since
the default mask inserts commas in numbers that are longer than 3 digits and does
not include decimal points. Since the default alignment for values is CENTER,
you may also wish to use masks or ALIGN CELL statements to left or right-align
the data according to the requirements of the software you plan to use with the
data reports.

Any other display information that you want to keep in the tables can be preserved
with RETAIN statements.

 Note If you have data values wider than the default column widths, you will probably
need to add COLUMN WIDTH specifications so that the values won't "wrap" and
add unwanted lines to the data reports.

The page width of a data report is automatically calculated to hold all columns of
the report so that all values in a data row will be on the same line if the column
widths are adequately large. In other words, wide data reports are not automati-
cally banked.

ZERO.FILL

By default, any space not occupied by the values or associated mask characters
will be filled with blanks. If you use the ZERO FILL option, these blanks will be
replaced with zeros.

 Level Data reports can be specified at the individual report level.

Format. 238

 Default Reports are formatted with complete title, label and footnote information, margins
and pagination.

 Example FOR REPORT 1: ALIGN COLUMNS RIGHT;
 DATA REPORT;

 Effect Format the first report as a data file with the values right-adjusted within each col-
umn.

 Example REPLACE MASK WITH 9999;
ALIGN COLUMNS RIGHT;
DATA REPORTS ZERO FILL;

 Effect Format all reports as data files with the data values right-adjusted within each col-
umn and no commas or decimal places in values of observation variables. Replace
blanks to the left or right of data values with zeros.

 Note The DATA REPORTS statement is equivalent to the following collection of FOR-
MAT statements:

TOP MARGIN = 0;
LEFT MARGIN = 0;
PAGE LENGTH = AUTOMATIC;
PAGE WIDTH = AUTOMATIC;
DELETE TITLE;
DELETE HEADING;
DELETE FOOTNOTES ALL;
DELETE ALL RULES;
RETAIN BLANKS;
PAGE MARKER = '';

You must take care that you do not unintentionally override parts of the DATA RE-
PORT effect by following the DATA REPORTS statement with a FORMAT state-
ment that conflicts with one of the above. For example, the sequence

DATA REPORTS;
PAGE LENGTH = 66;

would override the PAGE LENGTH AUTOMATIC statement that is built into
DATA REPORTS and cause gaps to appear between pages.

 Restrictions DATA REPORTS cannot be used in POSTSCRIPT mode.

Special indicators, such as the (c) that indicates a computation error, are not re-
moved from data reports.

Format. 239

DELETE

The following statements are defaults. They are described with their corresponding
RETAIN statements. See the RETAIN statements for details.

DELETE ALL RULES;
DELETE BLANKS; (default for CHAR values formatted for printing)
DELETE CROSS RULES;
DELETE DOWN RULES;
DELETE SIDE RULES;

Format. 240

DELETE.COLUMNS

 Format DELETE COLUMNS;

 Meaning DELETE COLUMNS usually only makes sense if used with a FOR clause that re-
stricts the number of columns deleted. The format of the report is adjusted so that
it looks as if the deleted columns were never there.

In the FOR clause, columns can be selected by column number or by variable
name.

If the NUMBER column is present, it can be referenced only by name (FOR
VARIABLE NUMBER ...). If the NUMBER column is in its default position as
the left-most column, then the next column after it is COLUMN 1.

 Level Deletion of columns can be specified for individual columns or variables.

 Default RETAIN COLUMNS;

 Example FOR REPORT 3 COLUMN 1: DELETE COLUMN;

 Effect The first column of the third report will be deleted. The format of the report will
be adjusted accordingly. If the NUMBER column is the left-most column, then the
deleted column will be the one following the NUMBER column.

 Example FOR VARIABLES NUMBER AND REGION, COLUMN 3: DELETE COLUMNS;

 Effect For all reports, the NUMBER and REGION columns will be deleted, along with
column 3. If the NUMBER column is on the left, column 3 is the third column
following the NUMBER column.

Format. 241

DELETE.HEADING

. Format DELETE HEADING; or
DELETE HEADER; or
DELETE HEAD;

. Meaning The column headings labels are removed from the report. The report title is im-
mediately followed by the first line of data.

. Level Heading deletion can be specified for individual reports.

. Default RETAIN HEADING;

. Example FOR REPORT 1: DELETE HEADING;

. Effect The column headings will be removed from the first report in the request. All of
the other reports will be formatted with the column heading labels present.

Format. 242

DELETE.LEADING.ZEROS

. Format. DELETE LEADING ZEROS;

. Meaning. When decimal values less than zero are printed, no leading zeros are printed to the
left of the decimal point. For example, the number 0.45 will print as .45 with no
zero to the left of the decimal point.

. Level Deletion of leading zeros can be specified for individual reports.

. Default. RETAIN LEADING ZEROS;

. Example DELETE LEADING ZEROS;

. Effect. . .16 2.05
 2.05 .16
 .53 .53
 .94 .94

Format. 243

DELETE.REPORT

. Format DELETE REPORT;

. Meaning If not used with a FOR clause, DELETE REPORTS will cause all reports to be de-
leted from the output. If it is used with a FOR clause that specifies which reports
should be deleted, only the specified reports will be deleted from the report output.
This statement can be useful if you have a report request for many tables, but you
want to create only certain ones at any particular time.

 Note DELETE REPORT does not actually delete reports. Instead, it prevents them from
being created. The statement must be present when the job is first run; otherwise,
it will have no effect. You cannot use this statement to delete reports after they are
created.

. Level Report deletion can be controlled at the individual report level.

. Default RETAIN REPORTS;

. Example FOR REPORTS 2 AND 3: DELETE REPORTS;

. Effect The second and third reports will be deleted. All others will be retained.

. Example DATA REPORTS;
FOR REPORTS ALL: DELETE REPORTS;
FOR REPORT 3: RETAIN REPORT;

. Effect The third report will be formatted as a data file. All other reports will be deleted.

Format. 244

DELETE.TITLE

. Format DELETE TITLE;

. Meaning Reports are formatted without title lines at the top of each page.

. Level Title deletion can be controlled at the report level.

. Default RETAIN TITLE;

. Example FOR REPORT 2: DELETE TITLE;

. Effect The second report will be formatted without title lines at the top of each page.

DISPLAY.NAME.(UNIX/Linux.Profile.only)

 Windows.Note The Windows version of TPL REPORT uses TED, the TPL editor, to display Post-
script reports. DISPLAY NAME is ignored.

. Format DISPLAY NAME = PostsScript-displayer;

where PostScript-displayer can be either just the program name or the name includ-
ing a full path if needed.

. Meaning. When a TPL REPORT job run in PostScript mode completes successfully, you will
be asked if you wish to display the report(s). If you answer "yes", the report(s)
will be displayed using the PostScript-displayer as a separate process. If you
have multiple reports, each will be opened in a separate process.

. Examples

. . Sun.Solaris:

 DISPLAY NAME = pageview;
 DISPLAY NAME = /usr/openwin/bin/pageview;

. . Linux.(using.KDE):

 DISPLAY NAME = kghostview;

Format. 245

DOWN.RULE.WEIGHT

 Format DOWN RULE WEIGHT = n;

where n is a number. The word IS can be used in place of =. Both are optional
and can be left out altogether. The word LINE can be used in place of the word
RULE.

 Meaning This statement applies in PostScript mode only. If RETAIN DOWN RULES is
specified to retain vertical lines between the columns of a report, the DOWN
RULE WEIGHT statement can be used to adjust the thickness of these lines.
These lines are called down rules. The rule weight is expressed in points where
each point is 1/72 inches.

The thickness of the rules will increase or decrease according to the rule weight
number specified. Note that the appearance for a particular rule weight on the
printed page will vary from printer to printer. This is especially true with printers
of different dpi (dots per inch).

DOWN RULE WEIGHT can be restricted to specific columns. This is useful, for
example, if you wish to emphasize the division between certain columns by in-
creasing the width of the dividing rule. In the FOR clause, columns can be select-
ed by column number or by variable name. When a column is selected, the new
rule weight is applied to the dividing rule that follows the specified column.

 Note If the NUMBER column is the left-most column (the default position for it), it
does not have a column number. This means that the column numbering starts
at the first column following the NUMBER column on the left. In this case, the
NUMBER column can only be referenced by name: FOR VARIABLE NUMBER.

This statement does not apply to side rules. A weight can be specified for side
rules as part of the RETAIN SIDE RULES statement.

See also, the statements RULE WEIGHT and RETAIN SIDE RULES WEIGHT
= n for additional ways to control the thickness of lines in reports.

 Level DOWN RULE WEIGHT can be specified at the individual column level.

 Default DOWN RULE WEIGHT = .5;

Format. 246

unless the default rule weight has been set to a different value with a RULE
WEIGHT statement.

 Example FOR REPORT 3: RETAIN DOWN RULES;
FOR REPORT 3 COLUMNS 2, 4: DOWN RULE WEIGHT = 1.5;

 Effect All rules in the third report will have the default rule weight except the rules that
follow columns 2 and 4. These two rules will be thicker than the others.

 Example RETAIN DOWN RULES;
FOR VARIABLE NUMBER: DOWN RULE WEIGHT = 2;

 Effect The rule between the NUMBER column and the column that follows it will be
thicker than the rules between the other columns.

 Restrictions The rule weight value must be greater than or equal to zero. A rule weight of 0
does not make the rule disappear. Instead, it results in the thinnest rule that is pos-
sible on your PostScript output device.

If the rule weight value is too large, the rules will be so thick that they will make
broad bands that overlay the columns. This is usually undesirable. For example,
the statement:

DOWN RULE WEIGHT = 72;

will create broad black bands that are 1 inch wide (1 pt. = 1/72", so 72 points =
1").

Format. 247

EDITOR...(UNIX.Profile.only)

 Windows The Windows version of TPL REPORT is linked to TED, the TPL editor. EDI-
TOR statements have no effect.

 UNIX There are two EDITOR statements. They are used only in profile.tpl and are
initially set at installation time if you have indicated that you would like to have
TPL REPORT linked to your editor. They are described below in case you need to
change or add them after installation.

. Format EDITOR NAME = editor_name;
EDITOR FILE = editor_file;

. Meaning. TPL REPORT has been designed so that you can use the text editor of your choice
to create codebooks, report requests and format requests. Any editor that creates
stand-alone ASCII text files is acceptable.

If you choose to link TPL REPORT to your editor, TPL REPORT will automati-
cally transfer to your editor when a job stops because of an error.

Editor Name
The editor_name should be the name you use to start your editor. For example,
if you start your editor by entering ED, the editor name statement in your profile
should be:

EDITOR NAME = ED;

Path names are allowed but not required.

Editor File
TPL REPORT assumes that you can start your editor with a command that includes
the name of the file to be edited. TPL REPORT uses a file name of TPLTEMP
when it transfers to your editor, so the EDITOR FILE statement is:

EDITOR FILE = TPLTEMP;

Some editors require a special extension such as DOC or TXT for any file to be
edited. If this is the case with your editor, include the required extension in your
EDITOR FILE statement. For example, if the required extension is TXT, use the
statement

EDITOR FILE = TPLTEMP.TXT;

Format. 248

EPS.OUTPUT..(UNIX.only)

. Format EPS OUTPUT = YES or NO or PROMPT;

Normally, when you have created PostScript reports, TPL REPORT will prompt
you at the end of a job to find out if you would like to export the reports to other
formats. To prevent the prompt for EPS, you can use this statement with YES or
NO.

EXTRA.LEADING

. Format EXTRA LEADING = n;

where n is a number. The word IS can be used in place of =. Both are optional
and can be left out altogether.

. Meaning This statement applies in PostScript mode only. It can be used to regulate the
amount of space between lines in reports.

Leading (rhymes with "heading") is the space between lines of text or data. In
PostScript mode, TPL REPORT automatically adjusts this space in proportion to
the font size you have chosen. If this amount is not appropriate for your reports,
you can change the spacing with the EXTRA LEADING statement. Increasing the
leading number will increase the amount of space between lines; decreasing the
leading number will decrease the amount of space between lines.

A value of 0 for EXTRA LEADING will give the PostScript default spacing.
Since the default PostScript spacing is often too close for reports, TPL REPORT
uses an extra leading value of .15 to increase the spacing by a small amount.

The PostScript font sizes include the leading. For each line, most of the vertical
space will be occupied by the printed characters and part will be reserved for the
space between lines. For example, if the font size is 12 (points), each line, includ-
ing the leading, will take 12/72 = 1/6 inch of vertical space. Thus, there will be 6
lines per inch. (A point is 1/72 inch).

In the EXTRA LEADING statement, the extra leading value is multiplied by the
font size to determine the extra amount of spacing. For example, EXTRA LEAD-

Format. 249

ING = .5; will add .5 * font size to line spacing. If the font size is 12, the extra
leading will be .5 * 12 points or 6 points, and each line will take 12 + 6 = 18
points of vertical space. 18 points = 1/4 ", so there will be 4 lines per inch. The
characters will be the standard PostScript character size for a font size of 12, but
there will be much more space between the lines.

If there is more than one font size specification for a line, the extra leading calcula-
tion will be based on the largest font size for the line.

. Level Extra leading can be controlled at the individual report level.

. Default EXTRA LEADING = .15;

. Example FOR REPORT EMP_RPT: EXTRA LEADING = .2;

. Effect For the report named EMP_RPT, line spacing will be increased beyond the stan-
dard PostScript leading by .2 * font size. If the font size for a line is 10, the extra
space will be 2 points.

. Restrictions The EXTRA LEADING value cannot be less than 0.

Format. 250

FONT

Print style and size can be specified with the FONT statement.

. Note The FONT statement is only effective in PostScript mode. It is ignored otherwise.

. Format report-element FONT = fontname fontsize;

where fontname is the TPL REPORT abbreviation for the PostScript font name,
and fontsize is a number.

The word IS can be used in place of =. Both are optional and can be left out alto-
gether. Fontsize is optional for all except the DEFAULT FONT statement.

Individual masks and labels, including titles and page markers, can contain FONT
specifications that will over-ride the FONT statements. For more information, see
the chapters on Masks and Labels.

 Example TITLE FONT = HB 10;

. Effect The title font will be 10 pt Helvetica Bold.

. Level The DEFAULT font applies to the entire request, but fonts for other report ele-
ments can be specified at the report level.

Report Elements
Fonts can be specified for the following report-elements. Note that there is no font
specification that applies to report cells only. To change the mask font only for
observation variables, see the statement REPLACE MASK FONT.

DEFAULT The DEFAULT font applies to the report cells
 and any report elements not otherwise specified.
TITLE
TITLE CONTINUATION
CONDITION LABELS
CONDITION LABELS IN HEADING
VARIABLE LABELS
VARIABLE LABELS IN HEADING

Format. 251

Font Names
You can choose from any of the following fonts. Refer to them by TPL REPORT
abbreviation. For example,

TITLE FONT TBI;

specifies Times-BoldItalic.

Abbreviations. PostScript.font.names

 C Courier
 CB Courier-Bold
 CI Courier-Oblique
 CBI Courier-BoldOblique

 T Times-Roman
 TB Times-Bold
 TI Times-Italic
 TBI Times-BoldItalic

 H Helvetica
 HB Helvetica-Bold
 HI Helvetica-Oblique
 HBI Helvetica-BoldOblique

 N Helvetica-Narrow
 NB Helvetica-Narrow-Bold
 NI Helvetica-Narrow-Oblique
 NBI Helvetica-Narrow-BoldOblique

 A AvantGarde-Book
 AB AvantGarde-Demi
 AI AvantGarde-BookOblique
 ABI AvantGarde-DemiOblique

 B Bookman-Light
 BB Bookman-Demi
 BI Bookman-LightItalic
 BBI Bookman-DemiItalic

 S NewCenturySchlbk-Roman
 SB NewCenturySchlbk-Bold
 SI NewCenturySchlbk-Italic
 SBI NewCenturySchlbk-BoldItalic

 P Palatino-Roman
 PB Palatino-Bold
 PI Palatino-Italic
 PBI Palatino-BoldItalic

Format. 252

 Z ZapfChancery-MediumItalic
 D ZapfDingbats
 Y Symbol

Font Sizes
Font sizes are specified in points. A point is 1/72", so there are 72 points in one
inch. The font size includes the space between the lines.

 Examples If the font size is 12, each line takes 12 points of vertical space or 12/72 = 1/6".
With font size 12, there are 6 lines per inch.

If the font size is 8, each line takes 8 points of vertical space or 8/72 = 1/9".
With font size 8, there are 9 lines per inch.

General Rule To get larger characters in your report, increase the font size; to
get smaller characters, decrease the font size.

A font size must be specified for the DEFAULT FONT. For all other fonts, if no
size is specified, it will be whatever size is already in effect for that report ele-
ment. For example, if the title font is set at H 12 (Helvetica 12) in the profile and
the statement TITLE FONT TBI; (Times-BoldItalic) is included in the format
request, the title will be printed in Times-BoldItalic with a size of 12.

Adding.Underline.to.Fonts

You can add underlining to any of the PostScript fonts by adding a U to the font
specification. In the following example, the default font is set to HU for Helvetica
Underline, the title font is set to HBIU for Helvetica Bold Italic Underline, and the
variable label font is set to the non-underlined Helvetica font H.

Default font = HU 10;
Title font = HBIU 12;
Variable label font = H 10;

Format. 253

Report on the Status of Selected Loans

Row
Loan

Number Classification Balance
Month

Maturing

1 41 1 to 4 Family $2,594 06
2 75 1 to 4 Family $11,135 03
3 106 1 to 4 Family $3,921 00
4 786 1 to 4 Family $4,059 04
5 7112 1 to 4 Family $20,448 08
6 7574 1 to 4 Family $42,323 06
7 9152 1 to 4 Family $28,500 12
8 9210 1 to 4 Family $145,500 06
9 9222 1 to 4 Family $106,693 06
10 9306 1 to 4 Family $33,746 01

To insert horizontal lines between rows, spanning the entire width of the report
rather than underlining only the cell values, see the FORMAT statement RULE
EVERY.

Using.the.Symbol.and.Zapf.Dingbats.Fonts

The character sets for the Symbol and ZapfDingbats fonts are shown in the Appen-
dix. As you will see if you look at these character tables, the Symbol font includes
numbers but the ZapfDingbats font does not. Neither of these fonts can be used to
print alphabetic characters.

Since the Symbol and ZapfDingbats fonts do not contain the usual alphabetic char-
acters, these fonts would not normally be used in FONT statements To use charac-
ters from these fonts in labels, add the FONT specifications to individual labels as
described in the Labels chapter.

Although most of the characters in these special fonts are not on your keyboard,
you can enter them in labels by typing \nnn where nnn is the 3 digit decimal code
for the character. The character set tables in the Appendix show the 3 digit code
for each character.

A good application using the Symbol or ZapfDingbat fonts would be in a RE-
CODE statement to replace certain values with special characters or a combina-
tion of values and special characters. In the following report showing information
about bank loans, we use a special arrow to point out loans that mature in Decem-
ber (month 12). In addition, for loans with missing maturity dates, we replace the
values with a "telephone" character to remind us to call someone and find out why
this information is missing.

Format. 254

. Example RECODE MAT_SYM 'Month Maturing' ON MAT_MO;
FONT D '\037' IF '00';
 IF ' ';
FONT D '\234' FONT RESET VALUE IF 12;
VALUE IF OTHER;

REPORT F2 'Report on the Status of Selected Loans':
 LOAN_NO THEN PL_CLASS THEN BAL THEN MAT_SYM;

Report on the Status of Selected Loans

Row
Loan

Number Classification Balance
Month

Maturing

1 4 Unknown $1,000
2 36 1 to 4 Family $3,144 01
3 43 Unknown $12,900
4 46 Unknown $14,000
5 75 1 to 4 Family $11,135 03
6 93 1 to 4 Family $4,747 12
7 98 1 to 4 Family $4,325 12
8 106 1 to 4 Family $3,921
9 133 1 to 4 Family $4,925 12
10 142 1 to 4 Family $47,770 01

Note that most Symbol and ZapfDingbats characters cannot be printed if you
switch from PostScript to line printer mode. They will print as blanks or other
characters, depending on your printer's character set.

Spaces.in.Proportional.Fonts

With a proportional font, a blank space cannot be the same width as all other
characters, because the character widths vary. In general, a blank is approximately
one half the width of a number in the same font -- or one half the average width
of a letter. Thus, with a proportional font, you will need about twice the number
of blanks to get the same amount of blank space you would get with a non-propor-
tional font.

 Default Font defaults are initially set at installation time. If you install TPL REPORT for
use with a PostScript printer, the following FORMAT statements will be included
in your profile.

Postscript = yes;
Default font = H 10;
Footnote text font = H 8; (currently unused by TPL REPORT)
Footnote symbol font = H 8; (currently unused by TPL REPORT)
Title font = HB 12;

Format. 255

Note that if you have these statements in your profile, you must include FONT
statements in your format requests to override any of the profile fonts that you
wish to change. For example, if you change only the default font in your format
request, you will still get the title font as specified in the profile.

If you usually use fonts that are different from those that were established at instal-
lation time, you will probably want to delete or replace the font statements in the
profile.

If you install TPL REPORT for use with non-PostScript printers, you can change
to PostScript mode by adding the statement

POSTSCRIPT = YES;

in your profile or format request. The default font will then be C 12 (Courier 12)
for all reports unless you also add your own font choices.

 Example Following is a sample format request with font specifications:

postscript = yes;
default font H 10;
title font TB 12;
page width = 8.5 inches;
page length = 11 inches;
right margin = .7 in;
left margin = .7 in;

. Recommendation

Helvetica is a good font for the data part of a report, especially when a small font
(below 10 point) is used. Other fonts can be used effectively for the titles and
other labels. Bold or italics may be used to emphasize certain text or data values.

Format. 256

MARGINS...(LEFT,.RIGHT,.TOP,.BOTTOM)

 Format There are four MARGIN actions.

LEFT MARGIN = amount [unit];
RIGHT MARGIN = amount [unit];
TOP MARGIN = amount [unit];
BOTTOM MARGIN = amount [unit];

where amount is a number and unit is optional. If no unit is specified, characters
are assumed. If a unit is specified, the amount can be a decimal number and unit
can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left out
altogether.

 Meaning Leave a margin of the size indicated by n. One or more of the margins can be
changed for a report. The margins do not have to be the same size. The report is
positioned (centered or aligned left or right) within the space remaining after the
left and right margins sizes are subtracted from the page width. The report begins
on the first line after the top margin and breaks at the bottom margin if it is longer
than one page.

. Level Margins can be controlled at the individual report level. Margins cannot change
within a report.

. Default LEFT MARGIN = 5;
RIGHT MARGIN = 5;
TOP MARGIN = 6;
BOTTOM MARGIN = 6;

. Example TOP MARGIN = 2 cm;
BOTTOM MARGIN = 3 cm;
LEFT MARGIN = 0;
RIGHT MARGIN = 0;

. Effect Set the top margin to 2 cm and the bottom margin to 3 cm. Remove the left and
right margins by setting them to 0.

To remove ALL margins, set all margins to 0. Do not remove margins if you are
working in PostScript mode.

. Restrictions. The page must be wide enough to hold the NUMBER column, if present, + the
margins + the widest column of data.

Format. 257

The default margins will work correctly in PostScript mode. If you want to change
the margins with the MARGIN statement, we recommend that you express margin
sizes in terms of inches, cm or points so that their absolute sizes for printing will
not depend on the font size in effect. If margin sizes are expressed in terms of
characters, the results will sometimes be acceptable, but they will often be some-
thing other than what you intended and, at worst, you will get report output that
looks "buggy". If parts of a report are "lost" at the top or right edges of the paper,
check your margin specifications.

For most laser printers, a margin size of at least .25 inches is required. If you try
to print something that fills the paper to the edges, you may lose part if it.

Format. 258

NUMBER...(LEFT,.RIGHT,.BOTH)

 Format NUMBER LEFT;
NUMBER RIGHT;
NUMBER BOTH;

. Meaning NUMBER refers to a report column that contains the row number for each row of
data in a report. By default, this column is added to the left side of the report.

You can move the location of the NUMBER column to the right side of the report
using the NUMBER RIGHT statement. You can also request that the NUMBER
column be shown on both the left and the right by using the NUMBER BOTH
statement.

For banked tables, the NUMBER column is placed in the same location for each
bank.

If you want to delete the NUMBER column completely, use the statement:

FOR VARIABLE NUMBER: DELETE COLUMN;

. Level The position of the NUMBER column can be specified at the individual report
level.

. Default NUMBER LEFT;

 Example FOR REPORT 1: NUMBER BOTH;

. Effect The first report has the NUMBER column on both sides of the report with the
default label "Row" for each side.

NUMBER column on both sides of the report.

Row Region Commodity Dollars Row

1 15 ASIA 041 WHEAT UNMILLED 6,519,575
2 25 ASIA 044 CORN OR MAIZE UNMILLED 448,407
3 32 MEXICO,CENTRAL AM. &

CARIBBEAN
081 FEEDING-STUFF FOR ANIMALS 239,013

4 43 SOUTH AMERICA 081 FEEDING-STUFF FOR ANIMALS 2,037,000
5 54 EUROPE 081 FEEDING-STUFF FOR ANIMALS 34,603,211
6 64 EUROPE 081 FEEDING-STUFF FOR ANIMALS 3,415,548
7 74 EUROPE 081 FEEDING-STUFF FOR ANIMALS 5,564,700
8 84 EUROPE 081 FEEDING-STUFF FOR ANIMALS 8,991,990
9 95 ASIA 081 FEEDING-STUFF FOR ANIMALS 6,388,668

Format. 259

. Example FOR REPORT 2: NUMBER RIGHT;
FOR REPORT 3: NUMBER BOTH;

. Effect The first report will have the NUMBER column in the default location at the left.
The second report will have the NUMBER column on the right. The third report
will have the NUMBER column on both sides of the report.

PAGE.LENGTH

. Format PAGE LENGTH = amount [unit];

where amount is a number and unit is optional. If no unit is specified, lines are
assumed. If a unit is specified, the amount can be a decimal number and unit can
be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left out
altogether.

. Meaning The report is divided into pages according to the number of lines per page speci-
fied by amount. The number of lines available for the report is determined by
subtracting the top and bottom margins from the page length. For the second and
following pages of a report, the title and heading labels are repeated.

. Level Page length is controlled at the request level. All reports within the same report
request will use the same page length specification.

 Default The system default is set at installation time and stored in the file called profile.tpl.
When the system is installed, profile.tpl is stored in the TPL system directory.

You can change the system default by editing the PAGE LENGTH specification in
profile.tpl and saving the result back in the system directory.

If you want to leave the system default as is but change the default for a set of re-
port requests, you can do so by making a copy of profile.tpl with a different PAGE
LENGTH specification and saving it in the directory where you are running your
report jobs.

. Example PAGE LENGTH = 50;
TOP MARGIN = 3;
BOTTOM MARGIN = 2;

Format. 260

. Effect Reports will be divided into pages of length 50. The top and bottom margins will
use a total of 5 lines, leaving 45 lines per page for the reports.

. Restrictions The page must be long enough to hold 1 row of data plus the margins, report title
and heading labels.

If you are working in PostScript mode, you should express page length in some-
thing other than lines. This is because, with PostScript, you can choose different
character sizes. If page length is expressed in lines, the length of the page will
vary as the character size changes. This result is usually undesirable. Specify page
length in inches, cm or points, or use the PAPER statement to select a page size.

Format. 261

PAGE.LENGTH.AUTOMATIC

. Format PAGE LENGTH = AUTOMATIC;

The word IS can be used in place of =. Both are optional and can be left out alto-
gether. AUTO can be used as an abbreviation for AUTOMATIC.

. Meaning For each report, the page length will be set at the length needed to print the entire
report without page breaks. This statement should not be used with banked re-
ports. If your report is wide, make sure that the page width is large enough to hold
all columns without banking.

PAGE LENGTH AUTOMATIC; is most useful in the following two cases:

1. If you are customizing your report output for use with other software and want
to get an unbroken stream of data rows.

2. If you are reviewing a report on the screen and want to look at it as one long
page, uninterrupted by the extra space, title and heading labels that would oth-
erwise appear at each page break. For this purpose, you may find it convenient
to use PAGE WIDTH = AUTOMATIC; to prevent banking of a wide report.
The combination of automatic page length and automatic page width will allow
you to review reports on the screen without the reports being split into sections
as would be required for printing on a particular size of paper.

. Level Page length is controlled at the request level. All reports within the same report
request use the same page length specification.

 Default Reports break at the end of each page.

. Example PAGE LENGTH = AUTOMATIC;

. Effect Each report will be formatted as one long page.

. Restrictions This statement cannot be used in PostScript mode.

This statement should not be used with banked reports.

Format. 262

PAGE.MARKER

. Format PAGE MARKER = marker specification;
BOTTOM PAGE MARKER = marker specification;

Normally, there can be only one PAGE MARKER for a report. For PostScript re-
ports, if both PAGE MARKER and BOTTOM PAGE MARKER are used, there can
be one marker at the top of the page and another at the bottom.

The marker specification can be one or more of the following:

NUMBER
COUNT
START = n
TOP
BOTTOM
RIGHT
LEFT
RIGHT THEN LEFT
LEFT THEN RIGHT
DATE
TIME
JOB
ODD
EVEN
label segments

The word IS can be used in place of =. Both are optional and can be left out alto-
gether. The specifications can be in any order.

. Meaning PAGE MARKER is used to add identifying information to report pages. The page
marker can contain any combination of page number, date, time, job id and label
segments. Starting page number can also be set.

. Level PAGE MARKER can be specified for each report separately. However, start
number and marker location will carry forward to following reports unless they are
explicitly reset. Further, the start number and marker location are independent of
marker text even though they may appear in the same FORMAT statement.

. Example PAGE MARKER = TOP LEFT NUMBER START 3;
FOR REPORT 2: PAGE MARKER = START 5 "Page " NUMBER;

The result will be that all page markers will be in the top left corner of the page.
Report 1 will just have numbers starting at 3. Report 2 will have "Page " and

Format. 263

numbers starting at 5. Report 3 and following reports will just have numbers, but
the numbers will start where report 2 left off since there is no new START term for
report 2.

 Default Reports do not have page markers. If PAGE MARKER is specified, the default
page start is START = 1 and the default marker location is TOP CENTER. A
BOTTOM PAGE MARKER is always at the bottom of the page with a default
alignment of CENTER.

Page.Numbering

PAGE MARKER = NUMBER; will produce page numbers that are centered
vertically and horizontally within the top margin of a page. PAGE MARKER =
NUMBER START 5; will cause the first report to start numbering at 5. Succeed-
ing reports will continue the numbering unless a new PAGE MARKER = START
n; is specified.

. Example FOR REPORT 1: PAGE MARKER RIGHT 'A' NUMBER;
FOR REPORTS 2 AND 3: PAGE MARKER RIGHT 'B' NUMBER START 1;

. Effect This example uses a combination of a letter and a page number to mark groups of
report pages. Thus, for example, if the first report is to be inserted in Section A
of a document, the page markers can be "A1", "A2", "A3", etc. If the second and
third reports are to be inserted in Section B of the same document, they can have
markers of "B1", "B2", "B3", etc. Since START 1 is included in the marker, the
numbering for the second and third reports will restart at 1 on the first page of the
second report; the numbering will continue on through the third report. All page
markers will be in the top right corner of the page.

ODD and EVEN
When a page marker for a report includes both NUMBER and ODD, the page
numbers for that report will all be odd. For example, if ODD is specified for the
first report, its pages will be numbered 1,3,5,7,...

Use of EVEN will result in even numbered report pages.

If a report would normally begin with an even number but ODD is specified, then
one is added to its starting number so that it will begin with an odd number.

. Example FOR REPORT 2: PAGE MARKER = "PAGE " NUMBER START 7 EVEN;

. Effect Page numbering for report 2 will begin with 8, the first even number after the
specified start number.

Format. 264

ODD and EVEN are useful when a document has reports on every other page or
when wide reports are displayed as facing page pairs. This latter is done in TPL
REPORT by creating two reports with corresponding stubs and the heading split
across the two reports. The first report should have a page marker which includes
EVEN while the second should have the same starting page but should include
ODD in its page marker.

Page.Count

COUNT can be used to get a page count. It specifies the total number of report
pages produced by a job. It is not affected by START or by the presence of mul-
tiple Page Markers in the job. An example of a statement using COUNT is:

. Example PAGE MARKER = "Page " NUMBER " of " COUNT;

If there are 10 pages of report output in the job, the marker for the first page will
be "Page 1 of 10"; the marker for the second page will be "Page 2 of 10"; and so
on to the last page with a marker of "Page 10 of 10".

Marker.Location

The location of page markers can be controlled by using TOP, BOTTOM, LEFT,
RIGHT, or CENTER. CENTER is the default location. If LEFT is specified, the
marker will start on the left page margin. If RIGHT is specified, the marker will
end on the right margin. If TOP is specified, the marker will be placed 1/2 of the
top margin down from top of page. If BOTTOM is specified, the marker will be
placed 1/2 of the bottom margin above the bottom of the page.

If you are using TOP or BOTTOM, you may wish to increase the top or bottom
margin specification beyond the standard 1 inch to keep the markers from appear-
ing too near the top or bottom edge of the paper. This is especially important if
you are using a multiline marker with a laser printer, since laser printers do not
print on the top and bottom 1/4 inches of the paper.

If you want marker locations to alternate between left and right pages, use LEFT
THEN RIGHT or RIGHT THEN LEFT.

As with START number, the marker location will continue across reports unless a
new location is specified. For example, if you begin with RIGHT THEN LEFT for
the first report, the marker location will alternate between right and left pages for
all following reports unless an explicit LEFT, RIGHT, or CENTER is specified in a
FORMAT statement for a later report.

Format. 265

Multiple.Page.Markers

If there are multiple PAGE MARKER statements for a report, each one will
override the preceding one so that there will be only one marker. For PostScript
reports, you can have two markers, one at the top of the report and one at the bot-
tom, by using both a PAGE MARKER and a BOTTOM PAGE MARKER. The
same options are available for both the top and bottom markers.

. Example. PAGE MARKER RIGHT THEN LEFT "Research Bulletin ATN-05";
BOTTOM PAGE MARKER "Page " NUMBER;

. Effect The text "Research Bulletin ATN-05" will be displayed at the top right of the first
page, the top left of the second page, and so on. The first page will also have
"Page 1" centered at the bottom, the second page "Page 2", and so on.

. Notes If you specify BOTTOM in a regular page marker and also have a BOTTOM
PAGE MARKER statement for the same report, both markers will go at the bottom
with one possibly overlaying part of the other.

Alignments.and.Spacing.within.Page.Markers

LEFT, RIGHT, or CENTER can only be used at the beginning of a marker, before
any label segments. This alignment applies to the entire page marker. If you want
more control of spacing within the marker, see SPACE and SPACE TO in the chap-
ter called "Labels".

Other.Options

In addition to or instead of page numbers, a page marker can contain anything
allowed in a label except a footnote. Also there are some built-in special items.
These are DATE, TIME, and JOB.

. Example PAGE MARKER = TOP LEFT THEN RIGHT
"Page " NUMBER " for job " JOB
" run on " DATE " at " TIME;

. Effect If job TPLR873 is run on March 4, 2003 at 11:24 A.M., the output will be:

Page 1 for job TPLR873 run on 3/4/03 at 11:24:00 AM

which will appear in the upper left corner of Page 1. Page 2 will have its marker
in the upper right corner of the page.

Format. 266

Note that the format of date and time will be affected by the COUNTRY state-
ment. The examples in this section are shown in the format for the default country,
COUNTRY = US;.

Since page markers are vertically centered within their margin, use of slashes at the
start of a page marker specification will push the marker text down while slashes at
the end of the page marker specification will raise the marker.

4-Digit.Year

You can choose to have year displayed with 4 digits by editing the file called
country.tpl. This file is installed in the TPL system directory, but you may also
have customized copies in other directories where you run TPL jobs.

The country.tpl file is a simple ascii text file. The following options for date for-
mat are shown near the top of the file:

* date format code
* 0 -> mm/dd/yy
* 1 -> dd/mm/yy
* 2 -> yy/mm/dd
* 3 -> mm/dd/yyyy
* 4 -> dd/mm/yyyy
* 5 -> yyyy/mm/dd

To choose 4-digit year as your standard, edit the entry for your country by chang-
ing the value in the fourth column to the number that matches the date format you
want.

All current dates displayed in your TPL jobs will show the year in four digits.
These include run dates in the output file as well as dates that are specified with
the PAGE MARKER statement.

UNIX Users: Add a COUNTRY statement in your profile.tpl file if you do not
already have one. For example:

COUNTRY = US;

Windows Users: If you make changes to country.tpl, add a COUNTRY state-
ment to your profile, or change a COUNTRY statement in your profile, you need to
restart TPL to activate the changes.

Format. 267

PAGE.WIDTH

. Format PAGE WIDTH = amount [unit];

where amount is a number and unit is optional. If no unit is specified, characters
are assumed. If a unit is specified, the amount can be a decimal number and unit
can be expressed as inches, cm or points.

The word IS can be used in place of =. Both are optional and can be left out
altogether.

. Meaning The report is formatted to fit within a page width of n characters. The report is
aligned within the space remaining after the left and right margins are subtracted.
If the report is too wide for the space, it is divided into as many partitions (called
"banks") as necessary with each partition beginning on a new page. The NUM-
BER column, if present, is repeated in each partition.

. Level Page width is controlled at the request level. All reports within the same report
request will use the same page width specification.

 Default The system default is set at installation time and stored in the file called profile.tpl.
When the system is installed, profile.tpl is stored in the TPL system directory.

You can change the system default by editing the PAGE WIDTH specification in
profile.tpl and saving the result back in the system directory.

If you want to leave the system default as is but change the default for a set of re-
port requests, you can do so by making a copy of profile.tpl with a different PAGE
WIDTH specification and saving it in the directory where you are running your
report jobs.

. Example PAGE WIDTH = 100;
LEFT MARGIN = 2;

. Effect The report will be formatted within a page width of 100 characters. It will be cen-
tered within the 96 character space remaining after the left and right margins are
subtracted from the page width.

. Restrictions If you are working in PostScript mode, you should express page width in some-
thing other than characters. This is because, with PostScript, you can choose
different character sizes. If page width is expressed in characters, the width of the
page will vary as the character size changes. This result is usually undesirable.
Specify page width in inches, cm or points, or use the PAPER statement to select a
page size.

Format. 268

PAGE.WIDTH.AUTOMATIC

. Format PAGE WIDTH = AUTOMATIC;

The word IS can be used in place of =. Both are optional and can be left out alto-
gether. AUTO can be used as an abbreviation for AUTOMATIC.

. Meaning TPL REPORT calculates the page width to be the sum of the widths of all col-
umns, and the left and right margins.

. Level Page width is controlled at the request level. All reports within the same report
request will use the same page width specification.

 Default The system default is set at installation time and stored in the file called profile.tpl.
When the system is installed, profile.tpl is stored in the TPL system directory.

You can change the system default by editing the PAGE WIDTH specification in
profile.tpl and saving the result back in the system directory.

If you want to leave the system default as is but change the default for a set of
reports, you can do so by making a copy of profile.tpl with a different PAGE
WIDTH specification and saving it in the directory where you are running your
report jobs.

 Example (for a report with 6 columns, including the NUMBER column):

PAGE WIDTH = AUTOMATIC;
LEFT MARGIN = 4;
RIGHT MARGIN = 4;
COLUMN WIDTH = 15;

. Effect The report will be formatted for a page width of 98 characters (4 + 4 + 15*6).

Format. 269

PAPER

. Format PAPER = papersize;

The word IS can be used in place of =. Both are optional and can be left out
altogether.

. Meaning PAPER can be used to select one of the standard built-in paper sizes. Options are:

LETTER (8.5 in x 11 in)
LEGAL (8.5 in x 14 in)
A3 (42.0 cm x 29.7 cm)
A4 (21.0 cm x 29.7 cm)
B5 (18.2 cm x 25.7 cm)

You can choose one of these paper sizes at installation time or by adding the PA-
PER statement to your profile or format request.

The PAPER statement is used in place of the combination of PAGE WIDTH and
PAGE LENGTH. For example, the statement

PAPER = LETTER;

gives the same result as the pair of statements

PAGE WIDTH = 8.5 IN;
PAGE LENGTH = 11 IN;

To determine the amount of space available for the report, deduct the margins from
the page size. The reports will begin on the first line after the top margin and will
be aligned within the left and right margins.

. Level Paper size is controlled at the request level. All reports within the same report
request will be formatted for the same page size.

 Default The system default is set at installation time and stored in the file called profile.tpl.
When the system is installed, profile.tpl is stored in the TPL system directory.

You can change the system default paper size after installation by editing profile.
tpl.

. Example PAPER = LETTER;

. Effect All reports will be formatted for letter size paper (8 1/2 in x 11 in).

Format. 270

POSTSCRIPT

. Format POSTSCRIPT = YES; or

POSTSCRIPT = NO;

The word IS can be used in place of =. Both are optional and can be left out
altogether.

. Meaning If you specify

POSTSCRIPT = YES;

report output will be coded in PostScript and all printing done from TPL REPORT
will assume that you are working with a PostScript printer.

If you specify

POSTSCRIPT = NO;

your reports will be formatted in line printer mode and all printing done from TPL
REPORT will assume that you are working with a line printer. FORMAT state-
ments that apply only to PostScript will be ignored.

In PostScript mode, you can choose from any of the PostScript fonts available on
your printer. See the FONT statement for details on font selection. Most of the
fonts are proportional. This means that the character widths vary from character to
character. For example, the letter "i" takes up less space than the letter "m". TPL
REPORT will do all of the format adjustments needed for proper alignment with
proportional fonts.

You can change the overall line spacing with the EXTRA LEADING statement.
Line spacing for a particular line will also be affected by the fonts used for differ-
ent parts of the line. For labels, spacing is determined by the largest font used in
the label. For data rows, if the DEFAULT FONT is larger than any of the label
fonts used for the row, the DEFAULT FONT will determine the line spacing. See
FONT rules for labels and masks for additional details.

You can also print your reports sideways on the page. See the ROTATE statement
for details.

In PostScript mode, all lines dividing sections of a report are drawn as solid lines.

For a complete list of FORMAT statements that are effective with POSTSCRIPT =
YES; see the "PostScript" chapter.

Format. 271

Interaction.of.Size.Specifications.with.PostScript

Following is a list of the size specifications that can be affected by a change to
PostScript mode. If these sizes are expressed in terms of characters or lines, rather
than in centimeters, inches or points, the absolute sizes for printing will depend on
the font size in effect.

PAGE LENGTH = size;
PAGE WIDTH = size;
COLUMN WIDTH = size;
TOP MARGIN = size;
BOTTOM MARGIN = size;
LEFT MARGIN = size;
RIGHT MARGIN = size;

Size can be specified as a number followed by:

inch
inches
in
ins
cm
points
pt
pts

Fractional sizes must be specified as decimal numbers. For example,

COLUMN WIDTH = 2.5 IN;

In general, if you will be switching between line printer and PostScript mode, sizes
other than page and margin size will work well in both modes if they are expressed
in characters. If you are using a proportional font in PostScript, you will often be
able to get more characters within a given width. The most common exception is
when you have a label in upper case letters. Upper case letters are often wider in a
proportional font.

Sizes specified in inches, centimeters or points will work in line printer mode
as well as in PostScript mode. If you are not requesting PostScript output, the
measures will be converted to 12 pt equivalents in characters. With 12 pt type, 1
inch can contain 10 characters in the horizontal direction and 6 lines in the vertical
direction.

Format. 272

Page and Margin Sizes
In PostScript mode, page and margin sizes should be expressed in terms of centi-
meters, inches or points so that their absolute sizes for printing will not depend on
the font size in effect. In the case of page size, you can also use the PAPER state-
ment to pick a standard paper size.

The system default margins will work correctly in PostScript mode. If you want to
change the margins with the MARGIN statement, we recommend that you express
margin sizes in terms of inches, cm or points.

If your report is not positioned properly on the paper or if parts of the report are
"lost" at the top or right edges of the paper, check your page and margin specifica-
tions.

. Level PostScript is controlled at the request level. If PostScript is specified, all reports in
the request will be created in PostScript mode.

 Default The default is set at installation time.

If you are working with a PostScript printer and would like to have PostScript
defaults entered in your system profile, you can set these defaults when you install
TPL REPORT. See Installation Instructions for details. You can change any of
these defaults after installation by editing profile.tpl, or you can override them
with FORMAT statements in your format requests.

. Example POSTSCRIPT = YES;
FOR REPORT 2: ROTATE;

. Effect All reports will be prepared in PostScript format. The second report will be rotated
to print sideways on the page. All other reports will be printed upright.

. Restrictions Most laser printers require a margin. If you try to print something that fills the pa-
per to the edges, you may lose part if it. Therefore, we do not recommend margin
sizes of 0 when using PostScript.

The DATA REPORT and PAGE LENGTH AUTOMATIC statements cannot be
used in PostScript mode.

The statement DELETE LAST RULE is ignored in PostScript mode.

Format. 273

PRINT..(UNIX.only)

Normally, TPL REPORT will prompt you at the end of a job to find out whether
you want to print your output file or your reports. You can use the following
statements to select the print options in advance.

. Format PRINT OUTPUT = YES or NO or PROMPT;
PRINT REPORTS = YES or NO or PROMPT;

Default PRINT statements are included in profile.tpl by the TPL installation pro-
cess. The word REPORTS is a synonym for the word TABLES, but TABLES is
the word used by the installation process. If you have installed TPL TABLES and
TPL REPORT in the same subdirectory, the profile is shared by the two systems.
The PRINT statements apply equally to TPL TABLES and TPL REPORT.

The default for both statements is PROMPT.

Format. 274

PRINT.COMMAND..(UNIX.profile.only)

. Format PRINT COMMAND = ‘command‘ ;

where command is a UNIX print command.

. Meaning TPL REPORT will direct its output to the default printer for your computer. If
you wish to change this, you may modify the PRINT COMMAND statement in the
profile.

. Level The command takes effect for the entire report request.

. Default PRINT COMMAND = ‘lp’;

. Example PRINT COMMAND = ‘lp -dpost’;

where post is the name of your PostScript printer.

. Effect Reports and other output will be directed to the PostScript printer.

. Note Unlike most FORMAT statements, PRINT COMMAND will only work if it is
placed in the profile, not in the FORMAT request. If different people wish to use
different printers, they should create local profiles with different print statements.

REPLACE.COLOR

REPLACE COLOR is useful when pre-viewing color tables on a monochrome
printer, because it lets you replace colors with special fonts. See the FORMAT
statement called COLOR = NO for details.

Format. 275

REPLACE.DIVIDE.CHARACTER

 Note This statement is ignored in PostScript mode.

 Format REPLACE DIVIDE CHARACTER WITH 'char';

 Meaning Replace the column dividers and the side rules, if present, with the character en-
closed in quotes.

The statement takes effect only if down rules are retained and you are operating in
line printer mode. Down rules can be retained with RETAIN DOWN RULES or
RETAIN ALL RULES.

 Level The divide character can be controlled at the individual report level. The divide
character cannot change within a report.

 Default REPLACE DIVIDE CHARACTER WITH '|';

 Example RETAIN DOWN RULES;
REPLACE DIVIDE CHARACTER WITH '*';

 Effect The column dividers will be replaced with vertical lines of the character *.

 Restrictions The divider can be only one character wide and cannot be a null character ''.

Format. 276

REPLACE.LABEL

. Format FOR VARIABLE variable name: REPLACE LABEL WITH label;

. Meaning The label will be replaced for all occurrences of the variable named in the FOR
clause. Report names or numbers may also be referenced in the FOR clause to
restrict the label replacement to one or more specific reports. If no reports are
mentioned, the changes occur for all reports in which the named variables are used.

. Level Variable labels can be controlled at the report level. A particular variable cannot
have more than one label within a report.

 Default The default variable label is determined when the variable is described in the code-
book or defined in the report request.

. Example FOR REPORT 1 VARIABLE Employees:
 REPLACE LABEL WITH 'Workers';
FOR REPORT 2 VARIABLE NUMBER:
 REPLACE LABEL WITH 'Report Row Number';

. Effect In the first report, the label for the variable Employees will be replaced with the
label Workers. In the second report, the label for the built-in variable NUMBER
will be replaced with the label Report Row Number. If the NUMBER column
appears more than once in the report, the replacement label will be used on all
NUMBER columns.

. Note In report cells, values can be replaced by value labels from the codebook or by
entirely new labels with the RECODE statement. See the chapter called RECODE
for details.

Format. 279

REPLACE.MASK

. Format REPLACE MASK WITH mask;

. Meaning Replace the mask for observation variables with a new one. The new mask can be
any valid TPL REPORT mask. If no FOR clause is used, the mask will apply to
all observation variables in all reports, including the built-in NUMBER variable.
You can restrict the application of the mask either by location OR by variable but
not both in the same FORMAT statement.

Alignments specified in masks interact with ALIGN statements such as ALIGN
COLUMN. If both a mask and an ALIGN specification apply to the same column,
the alignment in the last specification wins.

. Default The default mask is established when an observation variable is described in the
codebook or computed in a report request. If no mask is associated with an ob-
servation variable, its cell values are displayed centered and rounded to the nearest
whole integer with no other special symbols except commas.

Replacing.Mask.by.Location

To replace masks for particular report columns, use a FOR clause with the appro-
priate column location.

. Level The location for mask replacement can be specified at the individual column level.

. Example FOR COLUMN 2: REPLACE MASK WITH '$'9,999.99;

. Effect The mask will be replaced to show dollars and cents in the second column of all
reports.

. Example FOR REPORTS 2 AND 3 COLUMNS 3 TO 6:
REPLACE MASK WITH 999.99 RIGHT;

. Effect The values in columns 3 through 6 of reports 2 and 3 will be right-adjusted in the
columns and displayed to show two decimal places.

. Example FOR REPORT B1 COLUMN 2: REPLACE MASK WITH '$'999,999 RIGHT;
FOR REPORT B1 COLUMN 1: REPLACE MASK WITH 'Secret';

. Effect The values in column 2 of report B1 will be right-adjusted and displayed with a $.
The values in column 1 of report B1 will be replaced by the word Secret.

Format. 280

Before

Report on bank loans showing current
balances.

Row
Original

Loan
Loan

Balance Loan ID

1 4,000 1,000 00004
2 16,300 5,743 00008
3 14,000 1,546 00011
4 7,600 3,144 00036
5 16,200 3,065 00040
6 13,000 2,594 00041
7 14,800 3,009 00043
8 27,900 12,900 00043
9 100,000 100,000 00044

10 150,000 15,000 00045

After

Report on bank loans showing current
balances.

Row
Original

Loan
Loan

Balance Loan ID

1 Secret $1,000 00004
2 Secret $5,743 00008
3 Secret $1,546 00011
4 Secret $3,144 00036
5 Secret $3,065 00040
6 Secret $2,594 00041
7 Secret $3,009 00043
8 Secret $12,900 00043
9 Secret $100,000 00044
10 Secret $15,000 00045

Replacing.Mask.by.Variable

To replace the mask for an observation variable, use a FOR clause with the vari-
able name.

. Level Variable masks can be replaced for individual reports.

. Example FOR VARIABLE INCOME: REPLACE MASK WITH '$'999,999.99;

. Effect The mask for the observation variable INCOME will be replaced in any reports
where INCOME is used.

Format. 281

. Example FOR REPORTS 2 AND 3, VARIABLE INCOME:
 REPLACE MASK WITH 9,999.99 RIGHT;

. Effect The INCOME values in reports 2 and 3 will be right-adjusted in the columns and
displayed to show two decimal places. If INCOME is used in any other reports,
the mask will not be replaced for those reports.

Treatment.of.Conflicting.Masks

Mask replacement cannot be specified both by variable and by column location:

1. If the two types of specification are used in the same FOR clause, any location
specification other than report will be ignored and the mask will be replaced
wherever the variable is used.

2. If the same report location would be affected by two different REPLACE
MASK statements, where one is specified by variable and the other is specified
by column, the last statement wins.

. Restrictions Masks cannot be replaced for:

1. Control, CHAR or RECODE variables; (Note however that alignments can be
changed for these variables. See ALIGN CELL and ALIGN COLUMN.)

2. any report cells with special indicators such as (c) for computation error;

3. report cells specified by row rather than column, since rows cannot be refer-
enced in report FORMAT statements.

Format. 282

REPLACE.MASK.COLOR

. Format REPLACE MASK COLOR WITH color-name;
REPLACE MASK COLOR WITH r g b;

where

r, g and b are numbers between 0 and 100 (inclusive) which specify red, green,
and blue components of color;

color-name is the name of a color defined in the color.tpl file.

The word CELL is a synonym for the word MASK.

. Meaning This statement lets you replace the color of a mask without disturbing any other
specifications in the mask and without re-entering the entire mask. Unlike most
MASK statements, this one applies to all types of variables, observation, control
and char.

. Level Mask color can be replaced by column or for individual observation variables.

. Example FOR COLUMN 1: REPLACE MASK COLOR WITH RED;
FOR VARIABLE INCOME: REPLACE MASK COLOR WITH GREEN;

. Effect The mask color for the first column will be red. The columns containing INCOME
values will have a mask color of green.

. Restrictions This statement does not affect the NUMBER column unless you use a statement
that specifically names the NUMBER column. For example:

FOR VARIABLE NUMBER: REPLACE MASK COLOR WITH RED;

Special cell indicators such as (f), for values that do not fit within the column
width, are not affected by the statement. Colors for these indicators are controlled
by SYMBOL COLOR as described for the COLOR Defaults statements.

If you have a REPLACE MASK statement following the REPLACE MASK
COLOR statement, it will override the REPLACE MASK COLOR statement.

Format. 283

REPLACE.MASK.FONT

. Format REPLACE MASK FONT WITH font-name [n];

where

font-name.is a font identifier such as H or TB and

n is a number indicating a font size.

The word CELL is a synonym for the word MASK.

. Meaning This statement lets you replace the font of a mask without disturbing any other
specifications in the mask and without re-entering the entire mask. It applies only
to observation variables. If you replace the mask font for all columns with ob-
servation values, you get the effect of changing the DEFAULT FONT for these
columns without affecting the DEFAULT FONT as applied to any other parts of
the reports.

. Level Fonts can be replaced at the level of individual columns or for observation vari-
ables.

. Example FOR COLUMN 1: REPLACE MASK FONT WITH B 12;
FOR VARIABLE INCOME: REPLACE MASK FONT WITH B;

. Effect The font for the first column will be Bookman 12. The columns containing IN-
COME values will have a mask font of Bookman, and the size will be whatever
font size is already specified for these cells.

. Example DEFAULT FONT = T 12;
REPLACE MASK FONT WITH H 11;

. Effect The font Times 12 will be used for all parts of the reports except the columns con-
taining values for observation variables. The MASK FONT Helvetica 11 will be
used for these columns.

Format. 284

REPLACE.TITLE

. Format REPLACE TITLE WITH label;

. Meaning Replace the report title established in the REPORT statement with a new title. The
title can be any valid TPL REPORT label.

. Level The report title can be controlled at the report level.

 Default The default report title is the one specified in the REPORT statement. If no report
title is specified in the REPORT statement, the report name is used as the default
report title.

. Example REPLACE TITLE WITH CENTER 'Student Records.';

. Effect The report title is replaced by a centered title

Student.Records

Format. 285

REPLACE.TITLE.CONTINUATION

. Format REPLACE TITLE CONTINUATION WITH label;

 CONTINUE and CONTINUED are synonyms for CONTINUATION.

. Meaning Replace the default continuation indicator for the report title with a label. It will
be added to the title on all pages after the first page of the report. The continua-
tion indicator can be any valid TPL REPORT label.

If the title contains the keyword CONTINUATION, the continuation indicator will
be inserted at that point. Otherwise, it will be added at the end of the title.

. Level Title continuation can be controlled at the report level.

 Default The default continuation indicator is ' - Continued'.

. Example REPLACE TITLE CONTINUATION WITH ' (Cont.)';

. Effect The continuation indicator ' (Cont.)' will be added to the report title on pages fol-
lowing the first page. If the report title is:

Employee Records for Pay Period 12.

then the result on the second and following pages will be:

Employee Records for Pay Period 12. (Cont.)

. Example REPLACE TITLE CONTINUATION WITH '';

. Effect The title continuation indicator will be suppressed.

Format. 286

RETAIN

The following statements are defaults. They are described with their corresponding
DELETE statements. See the DELETE statements for details.

RETAIN COLUMNS;
RETAIN HEADING;
RETAIN LEADING ZEROS;
RETAIN REPORTS;
RETAIN TITLE;

Format. 287

RETAIN.ALL.RULES

 Format RETAIN ALL RULES;

 Meaning This statement is equivalent to the combination:

RETAIN DOWN RULES;
RETAIN CROSS RULES;

Horizontal lines called cross rules are displayed above and below the column head
and across the bottom of the report, and vertical lines called down rules are dis-
played between columns.

 Note This statement has no effect on side rules. To retain side rules as well and ef-
fectively "box in" the report except for the title, see the statement RETAIN SIDE
RULES.

 Level Rules can be retained for individual reports.

 Default DELETE ALL RULES;

No rules are displayed unless side rules have been retained by a separate statement.

 Example FOR REPORT 2: RETAIN ALL RULES;

 Effect For the second report, cross rules and down rules will be displayed.

Shipping report.

Row Commodity Short Tons Dollars

1 08 Animal feeds 214,295 34,603,211
2 22 Oil seeds, nuts & kernals 28,985 7,342,841
3 22 Oil seeds, nuts & kernals 63,729 12,122,062
4 28 Metalliferous ores & scrap 19,301 1,358,377
5 32 Coal, cokes, & briquettes 63,176 1,926,413
6 32 Coal, cokes, & briquettes 32,211 616,551
7 32 Coal, cokes, & briquettes 78,825 3,575,442
8 51 Organic chemicals 1,637 1,042,057

Format. 288

 Example RETAIN ALL RULES;
RETAIN SIDE RULES;

 Effect All reports will be displayed with cross rules, down rules and side rules. The side
rules will join with the top and bottom cross rules, so that they form a box around
the report. The report title will be outside and above the box.

Shipping report.

Row Commodity Short Tons Dollars

1 08 Animal feeds 214,295 34,603,211
2 22 Oil seeds, nuts & kernals 28,985 7,342,841
3 22 Oil seeds, nuts & kernals 63,729 12,122,062
4 28 Metalliferous ores & scrap 19,301 1,358,377
5 32 Coal, cokes, & briquettes 63,176 1,926,413
6 32 Coal, cokes, & briquettes 32,211 616,551
7 32 Coal, cokes, & briquettes 78,825 3,575,442
8 51 Organic chemicals 1,637 1,042,057

Format. 289

RETAIN.BLANKS

 Format RETAIN BLANKS;

 Meaning This statement applies only to CHAR variables.

 When CHAR variables are used in reports formatted for printing, leading and
trailing blanks are removed from the values. In DATA REPORTS, the blanks are
retained. You can use RETAIN (or DELETE) blanks to change the default treat-
ment.

 Level Treatment of blanks can be controlled at the column level.

 Default DELETE BLANKS; if formatted for printing;
RETAIN BLANKS; if formatted for a DATA REPORT.

 Example FOR REPORT 2, COLUMN 3: RETAIN BLANKS;

 Effect If the third column in report 2 is a CHAR variable that has leading or trailing
blanks in the values, the blanks will be retained.

 Example FOR REPORT 2, VARIABLE COMPANY_NAME: RETAIN BLANKS;

 Effect If COMPANY_NAME is a CHAR variable that has leading or trailing blanks in
the values, the blanks will be retained.

Format. 290

RETAIN.CROSS.RULES

 Format RETAIN CROSS RULES [WEIGHT = n] [DOUBLE or SINGLE] ;

where n is a number. The word IS can be used in place of =. Both are optional
and can be left out altogether.

 Meaning Horizontal lines called cross rules will be displayed above and below the column
head and across the bottom of the report.

To retain other types of rules in a report, see also, RETAIN DOWN RULES, RE-
TAIN SIDE RULES and RETAIN ALL RULES.

Note that cross rules are also retained with the statement RETAIN ALL RULES.

The optional WEIGHT specification can be used to control the thickness of the
cross rules in PostScript mode. The weight is expressed in points where each point
is 1/72 inches.

If DOUBLE is specified, the cross rules will be double lines.

See also, the statements RULE WEIGHT, DOWN RULE WEIGHT and RETAIN
SIDE RULES for additional ways to control the thickness of rules in reports.

 Level Cross rules can be retained for individual reports.

 Default DELETE CROSS RULES;

No cross rules are displayed.

The default weight for cross rules is .5 unless the weight for all rules has been
changed with the RULE WEIGHT statement.

Format. 291

 Example FOR REPORT 2: RETAIN CROSS RULES;

 Effect For the second report, cross rules will be displayed. No cross rules will be dis-
played in other reports.

Shipping report.

Row Commodity Short Tons Dollars

1 08 Animal feeds 214,295 34,603,211
2 22 Oil seeds, nuts & kernals 28,985 7,342,841
3 22 Oil seeds, nuts & kernals 63,729 12,122,062
4 28 Metalliferous ores & scrap 19,301 1,358,377
5 32 Coal, cokes, & briquettes 63,176 1,926,413
6 32 Coal, cokes, & briquettes 32,211 616,551
7 32 Coal, cokes, & briquettes 78,825 3,575,442
8 51 Organic chemicals 1,637 1,042,057

. Example RULE EVERY 3;
 RETAIN CROSS RULES WEIGHT = 1.5;

 Effect A horizontal rule will be inserted every 3 rows. In addition, cross rules will be
displayed above and below the column head and at the bottom of the report. These
cross rules will be emphasized, because the weight of 1.5 is greater than the default
of .5 that will apply to the rules between rows.

Regional shipping report.

Region Commodity Dollars

5 ASIA 041 WHEAT UNMILLED 6,519,575
5 ASIA 044 CORN OR MAIZE UNMILLED 448,407
2 MEXICO,CENTRAL
AM. & CARIBBEAN

081 FEEDING-STUFF FOR ANIMALS 239,013

3 SOUTH AMERICA 081 FEEDING-STUFF FOR ANIMALS 2,037,000
4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 34,603,211
4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 3,415,548

4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 5,564,700
4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 8,991,990
5 ASIA 081 FEEDING-STUFF FOR ANIMALS 6,388,668

. Restrictions The weight value must be greater than or equal to zero. A weight of 0 does not
make the rules disappear. Instead, it results in the thinnest rules possible on your
PostScript output device.

Format. 292

If the weight value is too large, the rules will be so thick that they will make broad
bands that overlay the rows. This is usually undesirable. For example, the state-
ment:

DOWN RULE WEIGHT = 72;

will create broad black bands that are 1 inch wide (1 pt. = 1/72", so 72 points =
1").

Format. 293

RETAIN.DOWN.RULES

 Format RETAIN DOWN RULES;

 Meaning The report columns will be separated by vertical rules (lines) from top to bottom.
One space of each column is reserved for column separation.

To retain other types of rules in a report, see also, RETAIN CROSS RULES, RE-
TAIN SIDE RULES and RETAIN ALL RULES.

Note that down rules are also retained with the statement RETAIN ALL RULES.

 Level. RETAIN DOWN RULES; can be restricted to specific columns, so you can retain
them selectively. In the FOR clause, columns can be selected by column number
or by variable name. When a column is selected, the rule following the column is
retained. If the last column (right-most on the page) is selected, a down rule will
not be retained for that column, since it is considered to be a "side rule". To retain
side rules, see the statement RETAIN SIDE RULES.

 Note If the NUMBER column is the left-most column (the default position for it), it
does not have a column number. This means that column numbering starts at the
first column following the NUMBER column on the left. In this case, the NUM-
BER column can only be referenced by name: FOR VARIABLE NUMBER.

 Default DELETE DOWN RULES;

No down rules are displayed. The columns are separated by a blank space.

 Example FOR REPORT 3: RETAIN DOWN RULES;

 Effect For the third report, all columns will be separated by a vertical rule. For other
reports, the columns will be separated by a blank space.

Shipping report.

Row Commodity Short Tons Dollars

1 08 Animal feeds 214,295 34,603,211
2 22 Oil seeds, nuts & kernals 28,985 7,342,841
3 22 Oil seeds, nuts & kernals 63,729 12,122,062
4 28 Metalliferous ores & scrap 19,301 1,358,377
5 32 Coal, cokes, & briquettes 63,176 1,926,413
6 32 Coal, cokes, & briquettes 32,211 616,551
7 32 Coal, cokes, & briquettes 78,825 3,575,442
8 51 Organic chemicals 1,637 1,042,057

Format. 294

 Example FOR VARIABLE NUMBER AND COLUMN 1:
 RETAIN DOWN RULES;

 Effect In all reports, down rules will follow the NUMBER column and column 1. Other
columns will be separated by a blank character. Note that if the NUMBER column
is the left-most column in a report (this is the default), it is considered to be col-
umn 0 but cannot be referenced as column 0. As shown in this example, you must
reference the NUMBER column as VARIABLE NUMBER.

Shipping report.

Row Commodity Short Tons Dollars

1 08 Animal feeds 214,295 34,603,211
2 22 Oil seeds, nuts & kernals 28,985 7,342,841
3 22 Oil seeds, nuts & kernals 63,729 12,122,062
4 28 Metalliferous ores & scrap 19,301 1,358,377
5 32 Coal, cokes, & briquettes 63,176 1,926,413
6 32 Coal, cokes, & briquettes 32,211 616,551
7 32 Coal, cokes, & briquettes 78,825 3,575,442
8 51 Organic chemicals 1,637 1,042,057

Format. 295

RETAIN.SIDE.RULES

 Format RETAIN SIDE RULES [WEIGHT = n] [DOUBLE or SINGLE] ;

where n is a number. The word IS can be used in place of =. Both are optional
and can be left out altogether.

 Meaning This statement causes vertical rules (lines) to appear at the left and right edges of
each bank of a report. Normally, one space of each column is reserved for column
separation. When RETAIN SIDE RULES; is specified, one additional space must
be reserved from each bank. This space is taken from the NUMBER column if it
is present. Otherwise, it is taken from the first column of each bank.

To retain other types of rules in a report, see also, RETAIN DOWN RULES, RE-
TAIN CROSS RULES and RETAIN ALL RULES.

Note that the statement RETAIN ALL RULES; has no effect on side rules.

The optional WEIGHT specification can be used to control the thickness of the
side rules in PostScript mode. The weight is expressed in points where each point
is 1/72 inches.

See also, the statements RULE WEIGHT, DOWN RULE WEIGHT and RETAIN
CROSS RULES for additional ways to control the thickness of rules in reports.

 Level Side rules can be retained for individual reports.

 Default DELETE SIDE RULES;

No side rules are displayed.

The default weight for side rules is .5 unless the weight for all rules has been
changed with the RULE WEIGHT statement.

Format. 296

 Example FOR REPORT 2: RETAIN SIDE RULES;

 Effect For the second report, vertical rules will be displayed on both sides of the report.

Shipping report.

Row Commodity Short Tons Dollars

1 08 Animal feeds 214,295 34,603,211
2 22 Oil seeds, nuts & kernals 28,985 7,342,841
3 22 Oil seeds, nuts & kernals 63,729 12,122,062
4 28 Metalliferous ores & scrap 19,301 1,358,377
5 32 Coal, cokes, & briquettes 63,176 1,926,413
6 32 Coal, cokes, & briquettes 32,211 616,551
7 32 Coal, cokes, & briquettes 78,825 3,575,442
8 51 Organic chemicals 1,637 1,042,057

 Example RETAIN ALL RULES;
RETAIN SIDE RULES WEIGHT = 2;

 Effect For all reports, cross rules, down rules and side rules will be retained. The side
rules will be thicker than the other rules.

 Restrictions The weight value must be greater than or equal to zero. A weight of 0 does not
make the rules disappear. Instead, it results in the thinnest rules possible on your
PostScript output device.

If the weight value is too large, the rules will be so thick that they will make broad
bands that overlay the columns. This is usually undesirable. For example, the
statement:

DOWN RULE WEIGHT = 72;

will create broad black bands that are 1 inch wide (1 pt. = 1/72", so 72 points =
1").

Format. 297

ROTATE

. Note ROTATE is only effective in PostScript mode. It is ignored otherwise.

. Format ROTATE;

. Meaning The reports are formatted to print sideways on the page. This format is sometimes
called "Landscape". Report margins are rotated along with the reports, so that
the terms, top, bottom, left and right, are relative to the orientation of the report
rather than the page.

If you have a report with many columns, you may be able to get all the columns
on one page by using the ROTATE statement to turn the report sideways.

. Level Rotation can be specified at the individual report level.

 Default Reports are printed upright.

. Example FOR REPORT 2: ROTATE;

. Effect Report 2 will be rotated to print sideways. All other reports will print upright.

ONE

Row COUNTRY Dollars Short Tons

1 542 6,519,575 54,710
2 588 448,407 3,662
3 225 239,013 1,143
4 307 2,037,000 9,700
5 421 34,603,211 214,295
6 428 3,415,548 22,214
7 470 5,564,700 28,495

 T
W

O R
ow

C
O

U
N

T
R

Y
D

ol
la

rs
S

ho
rt

 T
on

s

1
54

2
 6

,5
19

,5
75

54
,7

10
2

58
8

 4
48

,4
07

3,
66

2
3

22
5

 2
39

,0
13

1,
14

3
4

30
7

 2
,0

37
,0

00
9,

70
0

5
42

1
 3

4,
60

3,
21

1
21

4,
29

5
6

42
8

 3
,4

15
,5

48
22

,2
14

7
47

0
 5

,5
64

,7
00

28
,4

95

Format. 298

RULE.EVERY

 Format RULE EVERY n;
or
RULE EACH n;

where n is a number. EVERY and EACH are synonyms.

 Meaning Insert a horizontal rule (line) every n rows. A row is defined as a data row in the
report. If a row has any entries that take more than one line, it still counts as one
row, so the rule will follow the bottom line for the row.

The rules are applied on a page by page basis. In other words, the row count starts
over at the top of each page.

 Level RULE EVERY n; can be specified for individual reports.

 Default Reports are formatted without extra rules.

 Example FOR REPORT ONE: RULE EACH 1;

 Effect For Report One, horizontal rules are inserted between data rows.

Report One: Rule every row.

sralloDytidommoCnoigeR

5 ASIA 041 WHEAT UNMILLED 6,519,575

5 ASIA 044 CORN OR MAIZE UNMILLED 448,407

2 MEXICO,CENTRAL
AM. & CARIBBEAN

081 FEEDING-STUFF FOR ANIMALS 239,013

3 SOUTH AMERICA 081 FEEDING-STUFF FOR ANIMALS 2,037,000

4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 34,603,211

4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 3,415,548

4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 5,564,700

4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 8,991,990

5 ASIA 081 FEEDING-STUFF FOR ANIMALS 6,388,668

 Example FOR REPORT TWO: RULE EVERY 3;
 RETAIN CROSS RULES;

Format. 299

 Effect For Report Two, horizontal rules are inserted every three data rows. Cross rules
are also retained, so horizontal rules are included above and below the column
headings and at the bottom of the report.

Report Two: Rule every third row.

Region Commodity Dollars

5 ASIA 041 WHEAT UNMILLED 6,519,575
5 ASIA 044 CORN OR MAIZE UNMILLED 448,407
2 MEXICO,CENTRAL
AM. & CARIBBEAN

081 FEEDING-STUFF FOR ANIMALS 239,013

3 SOUTH AMERICA 081 FEEDING-STUFF FOR ANIMALS 2,037,000
4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 34,603,211
4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 3,415,548

4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 5,564,700
4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 8,991,990
5 ASIA 081 FEEDING-STUFF FOR ANIMALS 6,388,668

Format. 300

RULE.WEIGHT

. Format RULE WEIGHT = n;

where n is a number. The word IS can be used in place of =. Both are optional
and can be left out altogether. The word LINE can be used in place of the word
RULE.

. Meaning This statement applies in PostScript mode only and only if you have used other
FORMAT statements to put rules (lines) in your reports. RULE WEIGHT lets you
adjust the thickness of the rules. The rule weight is expressed in points where each
point is 1/72 inches.

The thickness of the rules will increase or decrease according to the rule weight
number specified. Note that the appearance for a particular rule weight on the
printed page will vary from printer to printer. This is especially true with printers
of different dpi (dots per inch).

See also DOWN RULE WEIGHT and the WEIGHT options of RETAIN CROSS
RULES and RETAIN SIDE RULES for adjusting the thickness of specific types of
rules.

. Level Rule weight can be specified for individual reports.

. Default RULE WEIGHT = .5;

. Example RULE WEIGHT = .4;

. Effect All rules in the reports will have the same weight and will be slightly thinner than
the default rule weight of .5;

. Restrictions The rule weight value must be greater than or equal to zero. A rule weight of 0
does not make the rule disappear. Instead, it results in the thinnest rule that is pos-
sible on your PostScript output device.

If the rule weight value is too large, the rules will be so thick that they will make
broad bands that overlay other parts of the reports. This is usually undesirable.
For example, the statement:

RULE WEIGHT = 72;

will create broad black bands that are 1 inch wide (1 pt. = 1/72", so 72 points =
1").

Format. 301

SKIP.AFTER.BANKS

 Format SKIP n LINES AFTER BANK;

where n is a number.

. Meaning If a report is too wide to fit on a page, it is automatically broken into sections
called banks. Banking can also be requested explicitly with the BANK AFTER
COLUMN; statement. By default, each bank begins on a new page. SKIP
AFTER BANKS can be used to request a different spacing between banks so that
more than one bank can be printed on a page.

If SKIP AFTER BANKS is specified by itself, TPL REPORT assumes that there
should be two banks per page. The related statement BANKS PER PAGE can be
used to request more than two banks per page.

All banks of a report are aligned the same way, but each bank is aligned indepen-
dently. This means that if the default report alignment of CENTER is in effect,
each bank will be centered on the page without regard to the placement of any
other bank on the page. If, for example, you have specified ALIGN REPORTS
LEFT, each bank will be aligned at the left margin of the page.

The report title will appear only once on a page regardless of the number of banks.
It will be aligned relative to the first bank on the page and formatted according to
the width of the first bank.

. Note All banks on a given page will take up the same amount of vertical space. If a
long data value requires more than one line, the corresponding row in other banks
will take the same number of lines with blank lines inserted where necessary to
keep the rows even between banks. In addition, if one bank has a very long head-
ing label that must be broken into several lines, the space requirement for that label
will apply to all of the banks. Each bank may then take more vertical space than
you expect.

. Level SKIP n LINES AFTER BANK can be specified for individual reports.

. Default Each bank begins on a new page. If the BANKS PER PAGE statement is used
without SKIP AFTER BANKS, the default is SKIP 1 LINE AFTER BANKS;

. Example BANKS PER PAGE = 3;
SKIP 2 LINES AFTER BANK;

Format. 302

. Effect Each page of the report will contain 3 banks with 2 blank lines between the banks.
If the number of report banks is not a multiple of 3, then the last page will contain
fewer than 3 banks.

. Restrictions There must be enough vertical space on the page for each bank to contain at least
one row of data.

The number of lines between banks must be greater than 0.

Format. 303

SKIP.LINE.EVERY

 Format SKIP LINE EVERY n;
 or
SKIP LINE EACH n;

where n is a number. EVERY and EACH are synonyms.

 Meaning Insert a blank line every n rows. A row is defined as a data row in the report. If a
row has any entries that that take more than one line, it still counts as one row, so
the blank line will follow the bottom line for the row.

The blank lines are applied on a page by page basis. In other words, the row count
starts over at the top of each page.

 Level SKIP EVERY n; can be specified for individual reports.

 Default Reports are formatted without blank lines.

 Example FOR REPORT ONE: SKIP LINE EACH 1;

 Effect For Report One, blank lines are inserted between data rows.

Report One: Skip line every row.

sralloDytidommoCnoigeR

5 ASIA 041 WHEAT UNMILLED 6,519,575

5 ASIA 044 CORN OR MAIZE UNMILLED 448,407

2 MEXICO,CENTRAL
AM. & CARIBBEAN

081 FEEDING-STUFF FOR ANIMALS 239,013

3 SOUTH AMERICA 081 FEEDING-STUFF FOR ANIMALS 2,037,000

4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 34,603,211

4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 3,415,548

4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 5,564,700

4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 8,991,990

5 ASIA 081 FEEDING-STUFF FOR ANIMALS 6,388,668

 Example FOR REPORT TWO: SKIP LINE EVERY 3;

Format. 304

 RETAIN CROSS RULES;

 Effect For Report Two, blank lines are inserted every three data rows. Cross rules are
also retained, so horizontal rules are included above and below the column head-
ings and at the bottom of the report.

Report Two: Skip line every third row.

Region Commodity Dollars

5 ASIA 041 WHEAT UNMILLED 6,519,575
5 ASIA 044 CORN OR MAIZE UNMILLED 448,407
2 MEXICO,CENTRAL
AM. & CARIBBEAN

081 FEEDING-STUFF FOR ANIMALS 239,013

3 SOUTH AMERICA 081 FEEDING-STUFF FOR ANIMALS 2,037,000
4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 34,603,211
4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 3,415,548

4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 5,564,700
4 EUROPE 081 FEEDING-STUFF FOR ANIMALS 8,991,990
5 ASIA 081 FEEDING-STUFF FOR ANIMALS 6,388,668

Format. 305

USE.CONDITION.LABEL,.NAME,.VALUE

. Format. USE CONDITION LABELS;
USE CONDITION NAMES;
USE CONDITION VALUES;

REPLACE LABEL WITH 'label';

 You can use either singular or plural words for LABELS, NAMES and VALUES.
The word CONDITION is optional.

 Meaning For control variables, you can specify USE CONDITION to replace the values
in a report with the condition labels or names from the codebook. The results are
similar to what you would get in the report request if you used a RECODE state-
ment to create a new variable with the condition labels or names of the old variable
as values for the new variable. See the "Recode" chapters for details.

You must use a FOR clause that references one or more variables. Otherwise,
you will get an error message. The statement is ignored for variables that are not
control variables.

USE CONDITION NAMES is only effective if there are condition names in the
codebook. USE CONDITION LABELS will choose the condition labels if present.
If no labels are present, the condition names will be used. If no labels or names
are present, a generated label will be created from the value.

The related statement, FOR CONDITION VARIABLE(n): REPLACE LABEL
WITH 'label'; can be used in conjunction with USE CONDITION LABELS to
override specific values with labels of your choice. If the REPLACE LABEL
statement is used alone or without a FOR clause to specify a condition, it will be
ignored. If you have many values to replace, you may find it more convenient to
use a RECODE statement.

 Level This statement can be specified for individual control variables at the report level.

 Default USE CONDITION VALUES;

Reports are formatted using condition values.

 Example FOR REPORT 1 VARIABLE SEX: USE CONDITION LABELS;

Format. 306

 Effect For the first report, the values in the SEX column will be replaced with the condi-
tion labels for SEX in the codebook.

. Example FOR REPORT 1 VARIABLE STATE: USE CONDITION LABELS;
FOR REPORT 1 CONDITION STATE(1): REPLACE LABEL WITH 'Montana';
FOR REPORT 1 CONDITION STATE(6): REPLACE LABEL WITH 'Alabama';

 Effect For the first report, the values in the STATE column will be replaced with the con-
dition labels for STATE in the codebook. For all cells in the STATE column that
have either the 1st condition value or the 6th condition value, the cell contents will
be replaced by the labels 'Montana' and 'Alabama' respectively.

Format. 307

USE.VARIABLE.NAME

 Format USE VARIABLE NAME;
USE VARIABLE LABEL;

 You can use the plural words NAMES and LABELS in place of NAME and LA-
BEL.

 Meaning If you have labels associated with variables that are used in a report, the labels will
be printed at the top of the column by default. These labels generally look bet-
ter than the simple variable names, but there may be times when you want a more
utilitarian type of report that shows the variable names instead of the variable la-
bels. You can get this type of report with the USE VARIABLE NAME statement.
Wherever it is applied, the columns will headed by variable names.

 Level USE VARIABLE NAME can be specified for individual variables or columns at
the report level.

 Default USE VARIABLE LABELS;

Reports are formatted using variable labels.

 Example FOR REPORT ONE: USE VARIABLE NAMES;

 Effect For Report One, all columns are headed by variable names rather than labels.

Appendix.A:..Installation.(Windows). 308

a p p e n d i x a

Installation.(Windows)

hOW tO instaLL tPL REPORt undER
WindOWs

Note.to.TPL.TABLES.Users

Installation of TPL REPORT is similar to installation of TPL TABLES. If you
have both TPL TABLES and TPL REPORT, and they have the same version num-
bers, they can be installed in the same system directory.

If you have TPL TABLES and TPL REPORT on the same CD, TPL REPORT will
automatically be installed in the same directory as TPL TABLES.

Shared.profile.tpl

If TPL REPORT and TPL TABLES are installed in the same directory, the two
applications will be sharing the same profile.tpl. In this case, you should be aware
of the fact that statements entered in the profile will be shared by the two applica-
tions. In addition, the words TABLE and REPORT are equivalent. For example,
the FORMAT statement ALIGN TABLES LEFT; will align reports to the left as
well.

Any FORMAT statement that applies only to TPL REPORT will be ignored by
TPL TABLES. The reverse is also true, so there is no problem with statements
that apply to only one of the applications.

There is a small possibility that you could put a FORMAT statement in the system
profile that is meaningful in both applications but has different results. Or, you
might wish to set a default for one application that is inappropriate for the other.
In the unlikely event that this occurs, we recommend that you make a new copy of
the profile in the directory where you are running your report job(s).

Appendix.A:..Installation.(Windows). 309

Installing.from.the.CD

If you are replacing an earlier version, please review the next section before install-
ing the new version.

To install, insert the CD in the CD drive. After a pause, the installation process
may begin automatically. If it does not start automatically, go to Start then Run.
Select the file setup.exe on the CD and click on "OK".

Respond to the prompts.

If.You.Have.an.Earlier.Version.of.TPL.REPORT

.tpl.Files

During installation, new profile.tpl, color.tpl and country.tpl files will be
placed in the TPL system directory. If you are installing this version on top of a
previous one and have previously edited these files to establish your own set of
system defaults, you will probably want to save them in another place and copy
them into the system directory after doing the new installation.

Replacing.a.Previous.Version

If you do not want to retain your previous version and you want to install the new
version in the same place as the old, we recommend that you uninstall the old ver-
sion before installing the new one.

Using.More.than.One.Version.of.TPL.REPORT

A new version of TPL REPORT can be installed without removing earlier versions.
The different versions will not interfere with each other provided that they are
installed in different directories and run against codebooks processed by the correct
version. The tpl.ini file, described below, can contain path information for mul-
tiple versions of TPL REPORT. Preference settings will be shared by the versions.

tpl.ini

For Version 6, a file named tpl.ini was installed in the Windows system directory
(e.g. c:\winnt or c:\windows). tpl.ini is a text file that contains information about
your TPL preferences and also path information for TPL modules. Each time you
use TPL, the current preference settings will be saved in tpl.ini. You should not
directly modify this file. Instead use the various preferences menus in the TPL
system to set these values. For Version 7, the tpl.ini file has been moved to a loca-
tion specified by the environment variable TPL_INI. This environment variable

Appendix.A:..Installation.(Windows). 310

is set during installation. Version 6 will continue to use the copy of tpl.ini in the
Windows system directory. So if you have both Version 6 and Version 7 installed,
they will not necessarily have the same preferences.

Network.Installation

In a network installation, it is desirable to have the TPL programs in a common
location on a server but make preferences user specific. Version 7 supports this
goal in such a way that it does not compromise restricted directories. TPL Version
7 uses two environment variables, TPLPATH7.0 and TPL_INI. On each machine
using TPL, set TPLPATH7.0 to the common server location where the modules are
installed. Set TPL_INI to a location on the user's machine that he has read and
write access to.

It is also desirable to add a directory structure to the user's start menu with entries
for each of the programs, documentation, and help files included in a standard in-
stall. Adding a desktop shortcut which points to this directory structure in the start
menu completes a full network install.

Compatibility

"Source" Files
"Source" files, including codebook sources, report requests, and format requests,
that run with earlier versions of TPL REPORT should run without change. The
only exception is if you have a name that has been added to the list of Keywords.
In the unlikely event that this happens, you will get an message and will need to
change the name.

Codebooks and TPLR Subdirectories
Codebook objects (processed codebooks) created by earlier versions are not com-
patible with Version 7.0. Before running report jobs, you will need to reprocess
the codebooks.

TPLR subdirectories created by earlier versions of TPL REPORT are not compat-
ible with Version 7.0. You cannot do a rerun process using an old TPLR subdirec-
tory with this version of the system.

Default.Settings.in.Profile.tpl

After you have installed TPL REPORT, there will be a file called profile.tpl in the
directory where you installed the system. It contains a set of text statements that
determine defaults for basic activities. A sample profile after installation is:

Appendix.A:..Installation.(Windows). 311

Postscript = yes ;
Default font = H 8;
Footnote text font = T 8;
Footnote symbol font = H 8;
Title font = HB 10;
paper = LETTER;

All statements entered in the profile during installation are described in detail in
the FORMAT Language chapter of the manual.

If you wish, you can change the values in the profile after installation and also
have different profiles for different sets of jobs. The initial settings assume that
you will want to work in PostScript mode and set default fonts. PostScript pro-
vides the best display formats. You can view PostScript reports in Ted, the TPL
Editor, and you can print them from Ted, regardless of whether or not you have a
PostScript printer.

If you do not want to be in Postscript mode, you can delete the Postscript line or
change "yes" to "no". The font statements are ignored in non-PostScript mode.

Networks

Licensing.Note

If you are accessing a copy of TPL REPORT installed on a network server, you
must have a license to use TPL REPORT on your PC.

Appendix.B:..Run.Instructions.(Windows). 312

a p p e n d i x B

Run.Instructions.(Windows)

instRuCtiOns fOR Running tPL REPORt
undER WindOWs

Introduction

TPL REPORT can be run using interactive menus, or it can be run as a batch
process using scripts. Scripts are described in a separate appendix as well as in
TPL Help. This appendix describes the basic information needed to run jobs from
menus and the various input and output files for different types of jobs. See also
TPL Help for additional details about the drop-down menu options in the interac-
tive menus for running jobs.

TED.and.Other.Editors

TPL REPORT is designed to allow you to use the editor (word processing pro-
gram) of your choice to create codebooks, report requests and format requests.
Any editor that creates stand-alone ASCII text files is acceptable.

You can also use TED, the TPL Editor. TED lets you edit, view, and print charac-
ter files. It also allows you to view and print Postscipt reports produced by TPL
REPORT. You can use it to print Postscript reports on any Windows compatible
printer even if the printer does not support Postscript. Finally TED allows you to
export reports in formats usable by other software.

If you are running a job that stops because of errors, TPL REPORT will transfer to
TED to allow you to view the error messages and make corrections. When you are
finished, you can return to TPL REPORT to resume processing.

TED is an integral part of TPL REPORT, but you can also use it without starting
TPL REPORT. See TED Help for complete details.

Appendix.B:..Run.Instructions.(Windows). 313

Description.of.Jobs.and.Files

Getting.Started

You can start TPL by clicking on the TPL icon or by going to Start then Pro-
grams then QQQ Software then TPL.

You can run as many jobs as you wish without leaving TPL.

Selecting.the.Job.Directory

The Job Directory is the directory in which your TPL jobs will run. You will
probably find it most convenient to set the Job Directory to the directory where
your codebook, data and request files are stored, but you can choose a different
directory if you wish.

Outputs are stored in the Job Directory. These outputs include the processed co-
debooks and TPL subdirectories described in this appendix. For this reason, it is
important to know what Job Directory you are in. If an output is not found in the
expected place, the likely reason is that the Job Directory was set to a place other
than the intended one.

To see what the current Job Directory is or to change to a different Job Directory,
go to File then Job Directory.

Creating.and.Processing.Codebooks

Codebooks can be created either with an editor or interactively with Codebook
Builder. To create a codebook interactively, go to File then Build Codebook in
the main TPL screen. Instructions for creating codebooks interactively can be
found in Codebook Builder Help.

After you have created the codebook, you can save it into a file with a name of
your choice. Usually the codebook is saved into a file with the same name used
at the beginning of the codebook. For example, if you name the codebook Survey
with the codebook entry Begin Survey Codebook, save it with the name Survey.
cbk. The codebook file you have created is called the codebook source.

Run the codebook processor, giving it the name of the codebook source. In the
main TPL screen, go to Run then Codebook. When prompted, enter the name of
your codebook source file, for example Survey.CBK.

Appendix.B:..Run.Instructions.(Windows). 314

If any errors are found in your codebook, you will be transferred to TED where
you will see two windows open, one containing your codebook source and another
showing the source with error messages. Edit the codebook source to correct the
errors. When you are finished, Go to Return to TPL then Save changes and try
again. Your corrected codebook source will automatically be saved before process-
ing continues.

Note In some cases, you may not wish to resume processing. For example, if you have
accidentally entered in the menu the name of a file that is not a codebook source
file, you will need to go back to the menu to correct it. In this case, go to Return
to TPL then Cancel.

As the codebook is being processed, the source and any error messages are saved
in a file with the same name as the codebook and a .O extension. For example, if
your codebook is named Survey, the file is called Survey.O.

When your codebook has been processed successfully with no errors, the .O file
will be deleted and the .L codebook abstract file will take its place. You can view
and/or print the abstract in TED by clicking on the Review/Print button when your
job is completed. When you are finished, you can close TED or go to Return to
TPL then Resume.

Codebook Abstract
The abstract includes the name of the codebook source file, the date and time of
processing, and the TPL version number. In addition, it contains a list of the co-
debook variables in alphabetical order along with each variable's size and location
within a record. This information is particularly useful if you have an alignment
problem between your codebook and your data file. You may also find the abstract
useful as a quick reference when preparing your report specifications. If you are
creating a codebook describing a CSV or other type of delimited file or a database,
the information in the abstract will differ slightly.

For each control variable, there is a count of the number of condition values.

Note If your data file is an ASCII file, it will have carriage return/line feed characters at
the end of each record. These will not be included in the record sizes listed in the
abstract. ASCII is the default file type.

Codebook Object
The processed codebook is called the codebook object. When you have success-
fully run the codebook processor, your codebook object will be stored with .K ap-
pended to the name. Thus, for a codebook named Survey, the codebook object will
be given the name Survey.K.

Appendix.B:..Run.Instructions.(Windows). 315

Once your codebook is successfully processed, you can run any number of report
jobs using the same codebook object.

Note The name of your codebook object will always be derived from the name you have
used in the BEGIN codebookname entry in the codebook, regardless of the
name you give to your codebook source file.

Database.Codebook.Source

The following applies if you have the TPL-SQL database interface. When a
database codebook is processed, there is another file generated in addition to the
.K and .L files. This is the .S file. When a you create a codebook source for a
database, you omit some items such as field widths and control variable condition
values. These are filled in by gathering data from the database. The .S file is a
new codebook source with the additional data filled in. See the TPL-SQL manual
and/or TPL Help for more details.

Producing.Reports

Report requests can be created with Ted or another editor of your choice.

In the USE statement at the beginning of a report request, you can refer to the
codebook using the same name you used in the BEGIN codebookname CO-
DEBOOK statement. Using the name Survey shown in the example above, you
would say USE Survey CODEBOOK; at the beginning of your report request.
TPL REPORT will know to look for a codebook object file called Survey.K for
descriptive information about your data file.

If your codebook is in a subdirectory other than the one in which you are running
your report job, you can give the complete name for the codebook in the USE
statement.

Save your report request with any valid Windows file name, for example, Survey.
REQ.

You may also have an optional format request giving detailed specifications for for-
matting your reports. The format request can have any valid Windows file name,
for example, Survey.FMT.

Appendix.B:..Run.Instructions.(Windows). 316

To produce reports, you need to enter the names of the report request file, the
data file and (optionally) the format request. In the main TPL screen, go to
Run then Report Request. When prompted, enter the name of your report re-
quest, your data file, and (optionally) the format request. If your data is contained
in more than one file, see the Data chapter for instructions on multi-file input.

If any errors are found in your report or format requests, you will be transferred
to TED where you will see two windows open, one containing your report request
or format request and another showing the output with error messages. Edit the
request to correct the errors. When you are finished, go to Return to TPL then
Save changes and try again. Your corrected request will automatically be saved
before processing continues.

Note In some cases, you may not wish to resume processing. For example, if you have
entered an incorrect data file name in the menu, you will need to go back to the
menu to correct it. In this case, go to Return to TPL then Cancel.

When TPL REPORT has finished processing your data and creating your reports,
you can review the reports and other output on the screen, print them, or export
the reports into files of different types such as Encapsulated PostScript. To do this,
transfer to TED by clicking on the Edit/Print button. Your outputs will be opened
in TED. When you are finished, you can close TED or go to Return to TPL
then Resume.

The.TPLR.Subdirectory

Each time you run a report job, a subdirectory is created to contain the files needed
to create your reports. The subdirectory has the name TPLRnnnn where nnnn is
a randomly generated number with 1 to 4 digits. You can override this number by
entering the number of your choice in the Report Request screen where you enter
the file names to be used for your report job.

See also the Script arguments -O and -N for selecting subdirectory numbers in TPL
scripts.

Some of the files in the TPLR subdirectory are illegible from your point of view.
The important files are those that contain the completed reports and the file named
OUTPUT.

Appendix.B:..Run.Instructions.(Windows). 317

The Report Files
Multiple REPORT statements can be included in the same job. A separate report
file is created for each REPORT statement. A report file name begins with the
report-name assigned in the REPORT statement and ends with the suffix .rep .
For example, if the report-name is IND_REPT, the report is saved in a file called
ind_rept.rep

If Postscript.=.yes; is specified, the suffix for the report files is .ps, for ex-
ample ind_rept.ps .

The OUTPUT File
The OUTPUT file contains your request files, the names of your data and request
files, the date and time of execution for each part of the job, the TPL version num-
ber and, at the end, the number of rows in each report.

Subdirectory Maintenance
If you go to Run then Remove Directories in the main TPL screen, you can get a
list of TPLR subdirectories. In addition to removing all or selected directories, you
can add notes to the directories. If you click on a subdirectory on the list, you will
get the date and time that the subdirectory was created and a display of any notes
that have been added.

The subdirectories on the list are those contained in the current Job Directory. The
Change button lets you change to a different Job Directory.

Note If you have run TPL TABLES jobs in the selected Job Directory, the TPL subdirec-
tories for the tables jobs will also be listed.

Customizing.with.PROFILE.TPL

The TPL software installation process creates a file called PROFILE.TPL and
puts it in the TPL system directory. PROFILE.TPL is a text file that you can edit.
It contains FORMAT statements that become defaults for such things as PostScript
fonts and paper size. You can change these defaults and also add other FORMAT
statements to set additional defaults. For example, if you always want your reports
left-adjusted on the page, you can make it the default by including the FORMAT
statement ALIGN REPORTS LEFT; in PROFILE.TPL.

If you want to leave the system profile unchanged, but use a different profile for
a particular set of jobs, you can make a copy of PROFILE.TPL in the directory
where you are working and change that copy to fit the reports you are preparing.
The profile in the directory where you are working will override the one in the
TPL system directory.

Appendix.B:..Run.Instructions.(Windows). 318

Shared profile.tpl
If TPL REPORT and TPL TABLES are installed in the same directory, the two
applications will be sharing the same profile.tpl. In this case, you should be aware
of the fact that statements entered in the profile will be shared by the two applica-
tions. In addition, the words TABLE and REPORT are equivalent. For example,
the FORMAT statement ALIGN TABLES LEFT; will align reports to the left as
well.

Any FORMAT statement that applies only to TPL REPORT will be ignored by
TPL TABLES. The reverse is also true, so there is no problem with statements
that apply to only one of the applications.

There is a small possibility that you could put a FORMAT statement in the system
profile that is meaningful in both applications but has different results. Or, you
might wish to set a default for one application that is inappropriate for the other.
In the unlikely event that this occurs, we recommend that you make a new copy of
the profile in the directory where you are running your report job(s).

Encapsulated.PostScript.(EPS)

Most desktop publishing software that allows you to add PostScript files to a docu-
ment requires that these files follow certain conventions. Files that follow these
conventions are called Encapsulated PostScript (EPS) files. The EPS files created
by TPL REPORT can be incorporated into your document according to your desk-
top publishing software's rules for bringing in Encapsulated PostScript files. EPS
files have the file extension .eps.

There are three ways of converting PostScript reports to EPS.

 1. If a PostScript report is open in TED, you can export EPS interactively.
There will be one .eps file for each page of report output. The files will be
named with the report name and the page number. For example, if a report
has 6 pages and the PostScript file is named ind_rpt.ps, the .eps files will be
named ind_rpt1.eps, ind_rpt2.eps,, ind_rpt6.eps.

 2. EPS files can be exported using TED arguments in scripts as described both
in the Scripts appendix.

 3. The ENCAPS program provides a third way.

Appendix.B:..Run.Instructions.(Windows). 319

ENCAPS
ENCAPS is a stand-alone command line program that is installed in the TPL
system directory. To run it, change into the TPL subdirectory that contains the .ps
file you wish to convert. Assuming that TPL REPORT in installed in C:\QQQ\RE-
PORT, give the command:

C:\QQQ\REPORT\WTPL\ENCAPS . 0 report-name.ps <Enter>

The report will then be divided into pages and an EPS file will be created for each
page. These files will be saved in the TPL subdirectory and will be named accord-
ing to the page number. For example, if you have a three page report, it will be
divided into three files with the following names:

P1R1.EPS
P2R1.EPS
P3R1.EPS

ENCAPS will report the names of the EPS files as they are created.

Other options are available, such as naming the directory for the output instead
of specifying '.' for the current directory and running silently with no reporting (1
instead of 0). The current options will be displayed on the screen if you type:

C:\QQQ\REPORT\WTPL\ENCAPS <Enter>

Exporting.CSV.(delimited).files

You can also create CSV files from PostScript reports. CSV files have the exten-
sion .csv.

There are two ways of doing this.

 1. You can export the files interactively from TED after doing a report run us-
ing the Run menus. See TED Help for details.

 2. You can export the files using TED arguments in scripts as described both
in TPL Help and in the Scripts appendix.

Common.Error.Messages

Error messages are intended to be self-explanatory. However, two common errors
deserve special note.

Appendix.B:..Run.Instructions.(Windows). 320

Common error message 1

 *** ERROR: A syntax error was discovered while processing 'element'.
 Look for the error at or before that point.

This message appears whenever there is a syntax error in a codebook, report re-
quest, format request or profile. Examples of syntax errors are misspelled key-
words or punctuation errors such as a missing colon (:) or semicolon (;). The
point at which TPL REPORT discovered the error is indicated by the element in
quotes.

Example The following sequence in a report request will produce the message shown below.

REPORT ONE 'Dispatch Report, Sorted by Date and Service Type'
 DISPATCHES THEN MONTH THEN DAY THEN CASE_NO
 THEN SERV THEN DISP THEN SQUAD;

*** ERROR: A syntax error was discovered while processing
'DISPATCHES'. Look for the error at or before that point.

Since the error was found when the name DISPATCHES was encountered, we
can assume that there is something wrong with the word DISPATCHES, or that
an error preceded the word DISPATCHES. In this example, a colon (:) is missing
following the report title. TPL REPORT is looking for the colon when it finds the
word DISPATCHES.

Common error message 2

*** ERROR: The variable 'variable name' is undefined.

A frequent cause of this error is a misspelled name. Another cause is a reference
to a variable that has not yet been defined. For example, if a variable is computed
in a COMPUTE statement and used in a REPORT statement that precedes the
COMPUTE statement, the computed variable is unknown to TPL REPORT when it
finds it in the REPORT statement.

Example Misspelling of the variable name INCOME as INCOM produces the message
shown below.

SELECT IF INCOM > 50000;

*** ERROR: The variable 'INCOM' is undefined.

Appendix.B:..Run.Instructions.(Windows). 321

Networks

Licensing.Note

If you are accessing TPL REPORT on a PC connected to a network, you must
have a license to use TPL REPORT on your PC.

Appendix.C:..Scripts..(Windows). 322

a p p e n d i x C

Scripts.(Windows)

Running batCh JObs With tPL sCRiPts

Introduction

TPL jobs can be run from the character mode command line, the Run command
found in Start, or a batch file. It is also possible to create a script which allows
multiple TPL and non-TPL jobs to run without your intervention. To start TPL in
one of these ways, run the program WTPL.

To run an individual job, you just type the command with all required command-
line arguments. If a required argument is missing, menus will open prompting you
for the missing data. At the end of the job, all menus will close and the job will
terminate. For example, assuming that TPL REPORT is installed in c:\qqq\table,
suppose you type in the Run menu:

c:\qqq\table\wtpl codebook -p c:\qqq\table\examples -c cps.cbk

WTPL will process the cps.cbk source found in the examples directory. If you
omitted the -c cps.cbk, a menu would prompt you for the name of the codebook to
be processed.

If you wish to run a collection of jobs, you can start WTPL with a file name
containing a script consisting of a list of the commands you wish to execute. The
scripts may include substitution arguments. The values of these are placed on the
command line. Again if you omit required arguments and the job is run in fore-
ground, the system will prompt you. When one command has completed, the next
in the script will execute without calling TED or prompting for TED. This will
continue until the script is exhausted.

Appendix.C:..Scripts..(Windows). 323

Notes The command arguments are case-sensitive.

 Exactly one command and its arguments can appear on each line of a script.
There is no way to continue a line and you cannot put multiple commands on a
line.

 A line that is completely blank will terminate the script so that nothing follow-
ing the blank line will be executed.

 There is no facility for conditional execution.

 If a job is run in foreground, an error in a request will put you in TED. When
you have corrected the error the script processing will resume. An error in the
script itself will usually result in that portion of the script being skipped. If you
just omit an argument or enter an incorrect one, you will usually be put in a
menu to fill in the missing information.

 Paths and arguments including blanks are supported but such items must be in
quotes. They must be double, not single, quotes. For example using the Run
command described below you might have:

RUN "my programs\program.exe" 1 xxx "new arg"

WTPL has a startup directory which may be changed from within the program us-
ing the Job Directory option under File and saved using the Save Job Directory
option under Preferences. However, if you do not run all of your TPL jobs from
the same directory, it is easier to include a CHDIR command as the first entry in
each of your scripts. This will make it unnecessary to include full path names for
all files referenced in your scripts.

Files and directories may use absolute (full) paths or relative paths. Paths are rela-
tive to the most recent CHDIR command. For example:

CHDIR c:\qqq\table\examples
TED -Pp tplr1\rep_one.ps

will print the same file as

TED -Pp c:\qqq\table\examples\tplr1\rep_one.ps

Appendix.C:..Scripts..(Windows). 324

Job.Script.Example

The following sample script runs several jobs, re-using the TPL1 subdirectory after
copying the PostScript .ps report output to another location. Note that all of the
job files are in the same directory. Starting the script with a chdir to that location
means that full path names are not required for job files. The TPL system is as-
sumed to be located in c:\qqq\table.

Start the script from the command line or using the Run option of Start by enter-
ing:

c:\qqq\table\wtpl -A c:\qqq\table\examples\sample.lst

The sample.lst file is:

chdir c:\qqq\table\examples
mkdir myreports
codebook -c cps.cbk
report -r cps1.rep -d cps.dat -f cps1.fmt -O tplr1
copy tplr1\cps1.ps myreports\cps1.ps
report -r cps2.rep -d cps.dat -f cps2.fmt -O tplr1
copy tplr1\cps2.ps myreports\cps2.ps
report -r cps3.rep -d cps.dat -f cps3.fmt -O tplr1
copy tplr1\cps3.ps myreports\cps3.ps
codebook -c police.cbk
report -r police.rep -d police.dat -f police.fmt -O tplr1
copy tplr1\police.ps myreports\police.ps

Wild.Cards.(*.and.?).in.TED,.COPY,..and.DELETE.
Commands

File name arguments in TED, COPY, and DELETE can include the * and ? wild
cards.

The * wild card can take the place of 0 or more characters. For example, if Post-
Script reports have been collected in a single directory with different names fol-
lowed by the extension .ps, they can all be printed by the following Ted command.

TED -pP *.ps

Appendix.C:..Scripts..(Windows). 325

The ? wild card can take the place of exactly one character. For example, if a
report has been converted to multiple EPS report files, one for each page, the com-
mand:

TED -pP P?R1.eps

will print the files P1R1.eps, P2R1.eps, P9R1.eps. It will not however print
files with names such as P10R1.eps or P25R1.eps, because a match would require
more than one character.

The same wild cards can be used to copy files to another directory and to delete
files. In the following example, all .eps files are copied from the current directory
to the directory e:\my_eps_files. Then the .eps files are deleted from the current
directory.

COPY *.eps e:\my_eps_files
DELETE *.eps

Running.a.Script.in.Foreground.or.Background

If the line invoking a script begins with -A the script is run in foreground. If the
line begins with -B, the script is run in background.

A script run in foreground shows the progress of the steps of the script. For
example, as the data is read, the hourglass shows its progress. If a required argu-
ment is omitted or is incorrect, the system displays a prompt for the argument and
processing is stopped until the argument is provided. If a request error is detected,
you are put into Ted for editing just as if your were running the job interactively.

A script run in background behaves quite differently. There is no activity shown
on the screen except for an icon at the bottom. The icon changes to reflect the
approximate percent of the script completed. If any error occurs, the script is ter-
minated. It is recommended that you use a Script Log for background scripts.

Script.Log

A Script log is a brief listing of the results of the steps of a script. It is created
when it is specified on the command line for the script. The script log specifica-
tion is an optional parameter -G followed by the name you choose for the Script
log file. If it appears, it must follow the -B script-name or -A script-name and
must precede any substitution arguments.

The resulting log has 1 line for each Report, Codebook, TED, Table, or Rerun step
in a script. The first word in each line is one of the following:

Appendix.C:..Scripts..(Windows). 326

SUCCESS:
FAIL:
WARNING:
ERROR:

The line will also contain the name of the program being run and the script line
number. If the line of the script fails, the log will contain either an error message
or the comment to look in the output file for more details.

The script log is useful for debugging scripts. It is also useful for programs which
include TPL scripts. You can check the success of a job by reading the first char-
acter of each line of the script. If all lines begin with S or W, then the TPL jobs
in the script executed successfully.

A WARNING line can appear when a format request has warnings. These can
usually be ignored. The output file messages associated with these format request
warnings are preceded by *** NOTE.

Some other things that can cause a WARNING are: data errors are found when
the data is being read; or the job runs successfully, but there is no data for the
report(s), for example because a Select statement caused no data to be selected for
the report(s).

Example c:\qqq\table\wtpl.exe -B c:\myfiles\myscript.lst -G c:\myfiles\mylogfile

Substitutions.in.Scripts

A list of one or more substitution arguments may be added to the -A or -B com-
mand line following the script name. These replace the items in the script refer-
enced by %1, %2, etc. For example, if the command line is:

wtpl -A sample.lst T1 F1

and the first line of sample.lst is:

report -r %1.req -d cps.dat -f %2.fmt -O tplr1

The result is:

report -r T1.req -d cps.dat -f F1.fmt -O tplr1

Appendix.C:..Scripts..(Windows). 327

Example Using Substitution Arguments
The script in the earlier example can be modified to use substitution arguments.
The new command line is:

c:\qqq\table\wtpl -A c:\qqq\table\examples\sample.lst cps1 cps2 cps3

The substitution arguments follow the script name and are referenced in order as
%1, %2, etc.

The new script is:

chdir c:\qqq\table\examples
mkdir myreports
codebook -c cps.cbk
report -r %1.rep -d cps.dat -f %1.fmt -O tplr1
copy tplr1\%1.ps myreports\%1.ps
report -r %2.rep -d cps.dat -f %2.fmt -O tplr1
copy tplr1\%2.ps myreports\%2.ps
report -r %3.rep -d cps.dat -f %3.fmt -O tplr1
copy tplr1\%3.ps myreports\%3.ps
codebook -c police.cbk
report -r police.rep -d police.dat -f police.fmt -O tplr1
copy tplr1\police.ps myreports\police.ps

Commands.and.Arguments

WTPL.Arguments.for.Starting.Scripts
-A script-name [run script in foreground]
-A script-name substitution-argument-1 substitution-argument-2...
-A script-name -G log-file substitution-argument-1 substitution-argument-2...
-B script-name [run script in background (as icon)]
-B script-name substitution-argument-1 substitution-argument-2 ...
-B script-name -G logfile substitution-argument-1 substitution-argument-2 ...

Appendix.C:..Scripts..(Windows). 328

Script.Commands.and.Arguments
REPORT (or report)
 -p working-directory

working-directory is either the path to the directory where you want the
job to run or the word DEFAULT to indicate the current job directory. A
period (.) can be used in place of the word DEFAULT. -p is most useful
for submitting a request for a single job on the command line. For a com-
mand in a script, chdir is more convenient.

 -r request [REQUIRED]
 -d data-file [REQUIRED except as noted below]

Instead of using the -d.argument to specify a data file, you may use -l.
with the name of a file whose contents is a list of data files or you may
use ODBC Database arguments.

 -l file-list
 Note: File lists are described in the "Data" chapter.
 -f format-request
 -O old-run-directory
 Use subdirectory nnnn and overlay its contents if it already exists.
 -N new-run-directory

Create a new sudirectory with the number nnnn only if there is not al-
ready a subdirectory in your current directory with the name TPLRnnnn.
If such a subdirectory already exists, TPL REPORT will not use it but will
instead create a new subdirectory with a random number.

Note TPLR can precede the number in the -O and -N arguments. An example is -O
TPLR25. If you do not precede the number with TPLR, TPL will be used in
the subdirectory name. For example, with an argument of -O 25, the subdirectory
TPL25 will be created.

 ODBC.Database.Arguments
If you have the TPL-SQL interface for ODBC, you can use the following
arguments with the TPL commands: REPORT, CODEBOOK, RERUN, and
RMTPL. Normally they would only be used with REPORT or CODEBOOK.
For more information, see the section on Arguments for ODBC.

 -q [Use -q or -Q instead of -d when using an ODBC Data Source.
 If -q is used, TPL REPORT may prompt for the ODBC Data Source.]
 -Q ODBC-datasource-name
 -U database-user
 -P database-password

Appendix.C:..Scripts..(Windows). 329

CODEBOOK (or codebook)
 -p working-directory

working-directory is either the path to the directory where you want the
job to run or the word DEFAULT to indicate the current job directory. A
period (.) can be used in place of the word DEFAULT. -p is most useful
for submitting a request for a single job on the command line. For a com-
mand in a script, chdir is more convenient.

 -c codebook-source [REQUIRED]
 codebook-source is the name of the codebook source file.

CBUILDER (or cbuilder) - ODBC Databases only
This command lets you call Codebook Builder from a script to update condi-
tion value lists if your database has changed since you last created the code-
book. New values are added at the ends of the condition value lists.

 -u [REQUIRED]
 -K codebook-object.K [REQUIRED]
 Provide the complete name of the codebook object ("old" processed
 codebook) to be used as input. The .K extension must be included in
 the name.
 -c updated-codebook-source [REQUIRED]
 -Q ODBC-datasource-name [REQUIRED]

If you need a user name and password to access your database, you can add the
following arguments to avoid being prompted for the information.

-U database-user
-P database-password

CBUILDER does not have an argument for working-directory. Thus, if you are us-
ing this command as a stand-alone, you may need to include full path information
for the codebook names. If you are using the command in a script, you can pre-
cede it with a CHDIR command to get to the directory where you want to update
the codebook.

Example CHDIR f:\myjobs
CBUILDER -u -K survey.K -c survey_new.cbk -Q "Survey Data"

RMTPL (or rmtpl)
 -p working-directory
 -X jobs-to-delete [nnnn or TPLRnnnn or TPLnnnnn or full path
 [REQUIRED]
 -X ALL (may be used instead of the above)

Appendix.C:..Scripts..(Windows). 330

RUN command-and-args
RUN can take any executable and its arguments but not "built-ins" such as dir
or copy. It also cannot take > or <.

CALL command-and-args
CALL can take any executable that RUN can take and also supports "built-
ins" such as dir and copy. It supports redirections > | and <. Unfortunately,
in some Windows operating systems, one CALL command may execute be-
fore the previous one completes. So be careful using this command.

CHDIR path
CHDIR supports changing to any existing path including ones on different
drives. If most of your job files are in the same directory, you will probably
want to include a CHDIR command as the first entry in your script so that
you do not have to provide full path names for all files referenced in the
script.

MKDIR path
In TPL scripts MKDIR can make a path more than 1 segment at a time.

MOVE old-name new-name
MOVE allows you to move a file from one directory to another.

REM any-text [no action performed]
REM can be used to add comment lines to a script.

COPY
COPY from-file to-file
COPY from-file(s) to-directory

In COPY file(s) to directory, the from-file(s) argument can include the *
and ? wild cards. Wild cards are explained elsewhere in this appendix.

DELETE file(s)
DELETE arguments can include the * and ? wild cards. Wild cards are explained
elsewhere in this appendix.

TPLDIR reference-name
TPLDIR is described in the TPLDIR section of this appendix.

Appendix.C:..Scripts..(Windows). 331

TED
TED arguments can include the * and ? wild cards. Wild cards are explained
elsewhere in this appendix.
 -e ascii-file-to-review
 -p Postscript-file-to-review
 -eP ascii-file-to-print
 -pP Postscript-file-to-print
 -pE Postscript-file-to-convert-to-eps
 -pF Postscript-file-to-convert-to-PDF

The entire file is converted and placed in the same directory as the
source with the same name except ps is changed to pdf.

 -pV Postscript-file-to-convert-to-CSV
-pV can be followed by a divider character to be used in place of
comma to separate the values in the exported file(s). If you want
to use a blank, enclose the entire argument in quotes: "-pV ". Note:
Tab cannot be specified in a script. If you are exporting interactively
from TED, you can select Tab as the divider. You can also use the
CSV DIVIDE format statement to specify the divide character that
will be used for Unix or Windows.

 -D Export-directory
The TED Export-directory is described in another section of this ap-
pendix.

 -N Export-core-name
The TED Export-core-name is described in another section of this
appendix.

The -e and -p arguments will stop the processing stream to enable you to review
the reports and output file. You may run several TPL REPORT jobs and then
review all of the reports and output at once using TED with multiple -e and -p
arguments. If you use -eP or -pP, TED will be invoked, the files will be printed,
and TED will close without any human action. -pE will also do its task without
stopping the processing.

Notes on Export to CSV
When TED converts a PostScript file to CSV, the PostScript file must be in the
TPLnnnn subdirectory where it was created. TED uses other files in the subdirec-
tory to do the conversion and will not be able to find them if the PostScript file has
been moved to a different location.

Setting.the.TED.Export.Directory.in.Scripts

By default, exported files are placed in the same directory as the source .ps file.
When you export interactively in TED, you can change this destination. The -D
argument allows you to change the export directory in a TPL script.

Appendix.C:..Scripts..(Windows). 332

To specify an export directory, place -D export-directory on a TED line before the
-p export argument. The new export directory remains in effect until the end of
the script or until there is another -D argument. To return to the default behavior
specify -D DEFAULT.

Export.Core.Name.in.Scripts

When PostScript files are exported, they are divided into a number of files equal to
the number of report pages. The file names for the exported files consist of three
parts: an export directory, a core name, and an extension. For Encapsulated
PostScript, the extension is .eps and for bit mapped graphics it is .bmp.

When files are exported from TED interactively, the default core name is always
report-namen where n is the page number.

Encapsulated PostScript can also be exported by TED script commands. When
files are exported with a script command, the default core name varies depending
on the export type. For Encapsulated PostScript, the default core name is PnTm
where n is the page number and m is the report number.

To specify a different export core name, place -N core-name on a TED line before
the -p export argument. The new export core name remains in effect until the end
of the script or until there is another -N argument. To return to the default behav-
ior specify -N DEFAULT.

Example For a report request with 5 report pages and a one.ps file in TPLR2, the follow-
ing script will export .eps files with a core name of salary. The .eps files will be
named salary1.eps, salary2.eps,, salary5.eps.

CHDIR TPLR2
TED -N salary -pE one.ps

Example For a report request with 5 report pages and a one.ps file in TPLR2, the follow-
ing script will export .eps files with a core name of Report. The .eps files will be
named Report1.eps, Report2.eps,, Report5.eps.

CHDIR TPLR2
TED -N Report -pE one.ps

Note You can also create Encapsulated Postscript using the ENCAPS command line
program described elsewhere in this manual. The ENCAPS program uses the core
name PnRm.

Note If you have more than one report on a page, they will all be contained in the same
.eps file.

Appendix.C:..Scripts..(Windows). 333

TPLDIR.Script.Command

When a report job is run, a TPLRnnnn (or TPLnnnnn) directory is created. This
directory contains the finished reports and the output file. When operating interac-
tively, you may select a specific TPLRnnnn directory or allow the system to select
a unique name. In a script, if you use a specific name, you run the risk that some
other job might have used that directory name. If you let the system select the
name, you have no way of doing additional things with the directory. For example
you can't use TED to print the reports or convert them into EPS since you don't
know what the directory name is.

The TPLDIR command solves this problem. TPLDIR creates a unique TPLnnnnn
subdirectory in the currently active directory and associates it with a user-selected
reference-name. The script can then reference the directory by using %reference-
name.

Note When TPLDIR is used, the assigned directory name will begin with TPL, not
TPLR.

Example CHDIR c:\test
TPLDIR cpsjob
TPLDIR dispatchjob
REPORT -r cps.rep -d cps.dat -f cps.fmt -O %cpsjob
REPORT -r dispatch.rep -d dispatch.dat -f dispatch.fmt -O %dispatchjob
TED -pP c:\test\%cpsjob\cps.ps
TED -pE c:\test\%dispatchjob\dispatch.ps

This script will run the cps and dispatch report requests. It will print the reports
produced by the cps job and convert the dispatch reports into EPS.

Note that in the report jobs, we used -O for old directory rather than -N for new
directory since the directories were actually created by the TPLDIR command.
Also note that the CHDIR command occurs before the TPLDIR commands. Other-
wise the directories created by TPLDIR might be in the wrong place.

Arguments.for.ODBC

If you have the TPL-SQL interface for ODBC, you can use the following argu-
ments to access ODBC Data Sources from scripts.

-q [If -q is used, TPL REPORT prompts for the ODBC Data Source.]
-Q ODBC-datasource-name
-U database-user
-P database-password

Appendix.C:..Scripts..(Windows). 334

Arguments which have blanks or special characters must be put in quotes. They
must be double, not single, quotes.

Depending on your environment, you may or may not be required to provide a user
name and password to access the Data Source. If you do not wish to include a da-
tabase user name and password in your script, you may use substitution arguments
for these parameters and then provide the user name and password when you run
the script.

If you provide all required arguments, you can run your request without being
prompted for any information about your ODBC Data Source.

The -q argument can be used if you wish to continue with the same database. You
can enter a new -Q and other arguments if you wish to change databases.

Example In the following sample script, a codebook will be processed for the ODBC Data
Source named "My datasource", a report request will be run using the data from
the same Data Source, and a second report request will be run using data from a
different Data Source. No prompts will be needed for Data Source.

CODEBOOK -c my_db.cbk -Q "My datasource" -P xxx -U "John Doe"
REPORT -q -r sample.req
REPORT -Q "my other datasource" -P yyy -U sew -r another.req

Notes For codebook processing, ODBC Data Source arguments are only required if the
codebook needs information from the database. For example, if an ODBC code-
book is created interactively in Codebook Builder, all required database information
will already be included in the codebook source.

 Appendix.D:..Installation.(UNIX). 335

a p p e n d i x d

Installation.(UNIX)

hOW tO instaLL tPL REPORt undER
uniX

How.to.Stop

You can stop the setup procedure by entering <Ctrl>C.

Before.You.Start

The TPL REPORT installation process copies TPL REPORT to your hard disk. It
also asks you about certain characteristics of your operating environment, such as
printer, so that it can set defaults for system operation. We recommend that you
scan through the following instructions before you start, so that you will know in
advance how you want to answer the installation questions.

If you wish to move the TPL REPORT system to another location in your file sys-
tem after it is installed, you must remove it from the original location and reinstall
it. Merely copying the files will not work correctly. If you have customized your
TPL REPORT profile.tpl, color.tpl or country.tpl files, you may wish to save
them for use in the new location before removing TPL REPORT from the previous
location.

Note.to.TPL.TABLES.Users

Installation of TPL REPORT is similar to installation of TPL TABLES. The instal-
lation program, called setup, gives you the option of installing TPL TABLES, TPL
REPORT, or both at the same time.

If you have both TPL TABLES and TPL REPORT, and they have the same version
numbers, they can be installed in the same system directory. The setup program
will ask you if you wish to do this and will check to insure compatibility of the
versions if you request installation in the same directory.

 Appendix.D:..Installation.(UNIX). 336

Shared profile.tpl
If you install TPL REPORT and TPL TABLES in the same directory, the two ap-
plications will be sharing the same profile.tpl. In this case, you should be aware
of the fact that statements entered in the profile will be shared by the two applica-
tions. In addition, the words TABLE and REPORT are equivalent. For example,
the FORMAT statement ALIGN TABLES LEFT; will align reports to the left as
well.

Any FORMAT statement that applies only to TPL REPORT will be ignored by
TPL TABLES. The reverse is also true, so there is no problem with statements
that apply to only one of the applications.

There is a small possibility that you could put a FORMAT statement in the system
profile that is meaningful in both applications but has different results. Or, you
might wish to set a default for one application that is inappropriate for the other.
In the unlikely event that this occurs, we recommend one of the following. You
can install TPL REPORT in a separate directory, or you can make a new copy of
the profile in the directory where you are running your report job(s).

Installation.Steps

The exact installation procedure depends upon the platform on which you are
installing TPL. Specific directions can be found on the CD jewel case that comes
with your software.

So that users do not have to start tpl using full paths or modify their .profile PATH
statements, you may wish to use the ln command to link some TPL programs into
directories that are already in their paths; e.g. /usr/bin. The programs that should
be linked are:

tpl
rerun
codebook
encaps
psp
report

 Appendix.D:..Installation.(UNIX). 337

Detailed.Description.of.Setup.Prompts

When you begin the setup program, it displays some introductory information on
your screen and begins asking questions about the installation. Always remember
to press the <Enter> key following your response.

Where.Do.You.Want.the.System.Installed?

Prompt:
Please specify the full path of the directory which is to RECEIVE the TPL sys-
tem:

Response:

You must specify the full path. Relative paths will be rejected.

Printer

Prompt:
Do you standardly use a PostScript printer?

Response:

If you will be working with a line printer, respond with N for no.

If you will be working with a PostScript printer, respond with Y for yes. If you
choose PostScript as the default output option, the FORMAT statement

POSTSCRIPT = YES;

will be included in the system profile along with some default PostScript font
specifications. You can change any of these defaults after installation by editing
profile.tpl, or you can override them with FORMAT statements in your format
requests.

Note that the POSTSCRIPT statement must be set to YES for correct printing of
reports on a PostScript printer. Likewise, if you are using a line printer, your re-
ports cannot be printed correctly if POSTSCRIPT is set to YES.

Page.Size

TPL REPORT will automatically format your reports according to the page size
you specify in answer to the next prompts. Your answers will depend on the type
of printer, size of paper and the type style you wish to use.

 Appendix.D:..Installation.(UNIX). 338

For Line Printers (non-PostScript)

Prompt:
Please specify the default page width for your printer.

The most common values are 80, 96, 132, and 160.

Response:

For 8 1/2 by 11 inch paper, the usual response is 80.

Prompt:
Please specify the default page length for your printer.

The most common values are 66 and 88.

Response:

For 8 1/2 by 11 inch paper, the usual response is 66.

For PostScript Printers
You can pick among several standard page types, or you can specify page size in
inches, centimeters, points or characters. Fractions should be expressed as deci-
mal numbers. For example, a page width of 8 1/2 inches should be entered as 8.5
inches.

When using PostScript, it is best to express page size in something other than char-
acters. This is because, with PostScript, you can choose different character sizes.
If page size is expressed in characters, the size of the page will vary as the charac-
ter size changes. This result is usually undesirable.

Editor

TPL REPORT has been designed so that you can use the text editor of your choice
to create codebooks, report requests, and format requests. Any editor that creates
standalone (ASCII text) files is acceptable. In the next part of the installation pro-
cess, you will link TPL REPORT to your editor.

 Appendix.D:..Installation.(UNIX). 339

Prompt:
If a TPL job fails because of a request error, the job will be put into the select-
ed editor. When editing is completed and the editor terminated, TPL process-
ing will resume. The default editor is the UNIX editor, vi.

Please type

<ENTER> if you wish to use the currently selected or default
editor,

none <ENTER> if you do not wish to use an editor.
editor-name <ENTER> if you wish to select an editor.

Response:

If you have an editor other than vi on your system, you may wish to enter its
name. However do not use a word processor which inserts formatting information
into your file unless there is an option to save the file in "text only" mode.

If.You.Change.Your.Mind

You are now given the option to change any of your answers to the questions you
have been asked. Even if you respond with no to this prompt you will still be able
to change the effect of your responses by editing profile.tpl after installation is
complete.

If.You.Have.Multiple.Printers.Connected.to.Your.Computer

TPL REPORT will direct its output to the default printer for your computer. If you
wish to change this, you may modify the profile statement

Print Command = 'lp';

For example you might replace the command with

Print Command = "lp -dpost";

where post is the name of your PostScript printer. Note that if different people
wish to use different printers they should create local profiles with different print
commands.

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 340

a p p e n d i x e

Run.Instructions.(UNIX/Linux)

instRuCtiOns fOR Running tPL REPORt
undER uniX

General.Information

Editor

TPL REPORT is designed to allow you to use vi or another editor of your choice
to create codebooks, report requests and format requests. Any editor that creates
standalone UNIX files is acceptable.

If you have installed TPL REPORT so that it can access your editor and you are
running a job that stops because of errors, TPL REPORT will prompt you to find
out if you want to transfer to the editor. If you are transferred to the editor, TPL
REPORT will automatically resume processing when you are finished with your
editing.

Where.to.Run.Jobs:..Paths.and.Files

We do not recommend that you mix your files with system files by putting your
own TPL-related files in the TPL system directory. Instead, put your own files
in one or more other directories and run your jobs from those directories. This
will work best if you put the path to TPL REPORT or TPL TABLES in your path
command in .profile though it is not required. If you do not, you can start a TPL
REPORT job by including the path information in your command.

It is a good idea to run your TPL REPORT jobs in the directory where your TPL-
related files are stored, because then you can simply provide the file names with-
out including path information. For any of your files that are not in the directory
where you are running a job, you may include the path information.

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 341

How.to.Stop

The easiest way to stop a TPL job in the middle of processing is to type:

<Ctrl>C

If this doesn’t work, open a new window and type:

ps -A

Then type:

kill -9 pid

where pid is the process id associated with the TPL process.

Note.on.Running.in.Background

All processes can be run in background, with the exception of rmtpl. The prompt
for background processing and the -b argument are described under How to Run a
Report Request.

Codebook.Processing

Prepare your codebook (data description) file using your editor. We recommend
that you save it with the same name you use at the beginning of the codebook. For
example, if you name the codebook survey with the codebook statement begin.
survey.codebook, save your codebook file as survey.cbk. The codebook file
you have prepared will be referred to as the codebook source.

Note If you have a partial codebook source that needs to be completed with information
from the data or if your data has changed such that new condition values need to
be added for control variables, run TPL conditions first to create a complete or
updated codebook source.

How.to.Run.codebook.

To run the codebook processor, type:

tpl codebook <Enter>

The codebook processor will display the prompt:

Please type the name of your codebook request and <Enter>

==>

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 342

If you have a codebook source named survey.cbk, as in the example above, you
would type:

survey.cbk <Enter>

Codebook.Command.Line.Arguments

You can bypass the prompt for the codebook source name by entering your code-
book command as:

tpl codebook -c cbsource <Enter>

where cbsource is the name of your codebook source.

Error.Handling

As the codebook processor runs, it will display your codebook on the screen along
with messages about any errors it finds. All information displayed on the screen
during processing will be stored with the same name as the codebook except
that it will be capitalized and .O will be appended to the name. If your code-
book is named survey, the processing information will be stored in a file called
SURVEY.O.

If the codebook processor finds errors in your codebook, you will need to correct
them with your editor and process the codebook again. If any syntax errors are
found in the codebook, processing will stop. For most other types of errors, pro-
cessing will continue to the end of the codebook. In that case, you will probably
want to look for the error messages in the file containing processing information
(e.g. SURVEY.O).

When your codebook has been processed successfully with no errors, the .O file
will be deleted and the .L codebook abstract file will take its place.

Codebook.Abstract

The codebook abstract name ends with .L (e.g. SURVEY.L). The abstract includes
the name of the codebook source file, the date and time of processing, and the TPL
version number. In addition, it contains a list of the codebook variables in alpha-
betical order along with each variable’s size and location within a record. This
information is particularly useful if you have an alignment problem between your
codebook and your data file. You may also find the abstract useful as a quick ref-
erence when preparing your report specifications. If you are creating a codebook
describing a CSV or other type of delimited file or a database, the information in
the abstract will differ slightly.

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 343

Producing.A.Codebook.Source.with.the.conditions.Proce-
dure

If you do not already have a codebook source, TPL conditions can be used to
create a full codebook source from a partial one. It can also be used to update a
codebook source if the data has changed such that new condition values need to be
added for control variables.

Prepare your partial codebook with your editor as described in the Appendix called
"TPL Conditions".

How.to.Run.a.conditions.Request

To run a conditions job, type:

tpl conditions <enter>

The program will prompt you for your partial codebook source (with missing con-
ditions).

It will then prompt you for your data file or database name. If the program cannot
find the name it will ask whether the name is a SQL database name. Answer y or
n as appropriate. If you answer n, you will be re-prompted for the data file name.

Finally you will be asked for the name of the completed codebook source you wish
to create. You can use the same file name for your original source and your com-
pleted source. If you do, the completed source will be placed on top of the origi-
nal source. The original source will be saved, along with a few extra statements, in
the .O output file until the completed source has been created successfully. Thus,
if there are any errors or problems that interrupt the creation of the completed
source, you do not risk losing your original source. It will still be available in the
.O file.

You will then be asked if you want to run the job in background.

If your codebook describes a database, you will be prompted for database user
name, password, database server, etc.

The resulting complete codebook source file can be passed directly into a TPL
codebook run or it can be edited to improve condition labels before codebook
processing.

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 344

Command.Line.arguments.for.conditions.
-c incomplete-codebook-source
-s complete-codebook-source
-d data-file (if your data is fixed format or delimited, e.g. csv)
-q database (if your data is in an SQL database)
-U user (SQL only)
-S database-server (SQL only)
-P database-password (SQL only - password may need quotes)
-b to run job in background

Error.Handling

During the first part of TPL conditions, error handling is identical to codebook
error handling as described above. After the original, incomplete codebook has
been found to be valid, the program moves to the data reading step to get the infor-
mation it needs to complete the codebook. Data errors such as incorrect characters
in observation fields are added to the .O file. Data errors will not stop processing
and will not put you into an editor.

Producing.Reports.with.the.report.Procedure.

Prepare your TPL report request with your editor. In the USE statement at the
beginning of a report request, you can refer to the codebook using the same name
you used in the begin.codebookname.codebook statement. Using the name
survey shown in the example above, you would say use.survey.codebook; at
the beginning of your TPL report request. TPL REPORT will know to look for a
codebook object file called SURVEY.K for descriptive information about your data
file. Path names are allowed in the USE statement.

Store your report request with any valid UNIX file name, for example, survey.
req. You may also have an optional format request giving detailed specifications
for formatting your reports. The format request can have any valid UNIX file
name, for example, survey.fmt.

How.to.Run.a.Report.Request

To run TPL REPORT, type

tpl report <Enter>

TPL REPORT will display the prompt

Please type the name of your TPL Report request and <Enter>:

==>

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 345

Using the name from the example above, you would type:

survey.req <Enter>

TPL REPORT will display the prompt

Please type the name of your data file and <Enter>

==>

Your data file can have any valid UNIX file name. To continue the “survey” ex-
ample, we will assume that your data is called survey.dat. You would type:

survey.dat <Enter>

If you are running against a database rather than a file, you should enter the data-
base name. If you have entered a database name or an incorrect file name you will
be asked if the name is a SQL database name. If it is, answer y and processing
will continue with questions about your database user name, password, and server.
If you answer n and you will be re-prompted for your data file.

TPL REPORT will display the prompt

Please type the name of your format request and <Enter>
or just type <Enter> if you do not wish to provide a format
request file:

==>

Often you will not have a format request. In this case, simply press the <Enter>
key to continue. Otherwise, type the name of your format request. For example:

survey.fmt <Enter>

Do you wish to run this request in background?

y or n ==>

Answering y to this prompt is the proper way to run TPL REPORT as a back-
ground process. Don’t just use &. When the job is put in background, all output
except the reports goes to the output file. Nothing is displayed on the screen and
you are not put into your editor when errors are found in your request.

Do you wish to be notified when the request completes?

y or n =>

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 346

If you answer y to this prompt, when the job completes a message will appear on
the screen telling whether the job has completed successfully or whether errors
were detected in the request. In any case you should examine the output file in
the TPLR subdirectory. The TPLR subdirectory is explained later.

Report.Command.Line.Arguments

If you wish, you can bypass some or all of the prompts by entering your report
command with any of the following parameters. Note that -e, -E, -N, and -O will
be explained more fully later

-r requestfile where requestfile is the name of your report request file
-f formatfile where formatfile is the name of your format request file
-d datafile where datafile is the name of your data file
-b to run job in background
-n to notify when job has completed
-E to request only a partial display of output on the screen when

running in foreground. For details, see the section on control-
ling screen display.

-e if PostScript is set, convert reports into Encapsulated Post-
Script.

-V if PostScript is set, convert reports to CSV (delimited) format.
-N nnnn use TPLRnnnn as TPLR subdirectory where nnnn is a user

selected number of one to four digits. If there is already a
directory of that name, create a new number.

-O nnnn use TPLRnnnn as a new TPL REPORT subdirectory
 overwriting any existing subdirectory of that name.
-i includepath where includepath is the path to the directory where
 %include files are located. Use if you have include files
 in a directory other than the run directory. For details, see
 the section "Path for INCLUDE files".
-U database-user-name (SQL only)
-P database-password (SQL only - password may need quotes)
-S database-server (SQL only)
-q database-base (SQL only)

Example tpl report -r survey.req -d survey.dat <Enter>

Report.Request.Processing

As TPL REPORT processes your request, it will display the request on the screen
along with messages about any errors and other information to show you the status
of the job. If there are any errors in the report or format requests, you will be
asked:

If you wish to edit your request and continue

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 347

respond with ‘y’ to the prompt. You will then be
put in your editor. Upon termination of your editing
session you will be returned to TPL and processing
will continue. A response of ‘n’ will terminate the
TPL session

If you answer y, you will be allowed to correct your errors and processing will
continue. If you can’t figure out your errors from what is displayed on the screen,
you should answer n to the prompt and examine the error messages in your out-
put file (described later). When you have fixed your errors you should start your
report request again. Processing will stop immediately if a syntax error is encoun-
tered. For most other errors, processing will continue to the end of the request.

If no request or format errors are found, TPL REPORT will draw an hour glass
on the screen as it begins to read your data. You will be able to tell how much of
your data has been processed by the amount of sand that has fallen to the bottom
of the hour glass. If your codebook does not match your data or if there are errors
in the data, messages will be displayed at the bottom of the screen.

When TPL REPORT has finished processing your data and calculating the values
for your reports, it will tell you whether the job has completed successfully.

You may examine the output file in the TPLR subdirectory to review any data er-
rors and determine whether you should print your reports. The output and report
files are described in the next section.

Example tpl report -r survey.req -d survey.dat -b -n <Enter>

Since -b.and.-n.have been specified, no output will be displayed on the screen
except for the final status of the job. You will not be given the opportunity of cor-
recting errors and continuing processing. Instead you must examine the output file
in your TPLR subdirectory and resubmit your job if an error is found. If the job
has run correctly, you may print your reports.

Controlling.the.Amount.of.Screen.Display.in.Foreground

You can use the statement display.output.=.no; in your profile to reduce the
amount of screen display when running in foreground.

You can also use the -E command line option with both codebook and report runs.
It provides a convenient way of running jobs in foreground, because it lets you see
what is happening but reduces the volume of screen display. Display of codebooks
or requests is suppressed. If an error is encountered in your codebook or request,
the output ends with the error message and the preceding line of your codebook
or request. This way, you can often see where the error is without looking at the

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 348

entire output file. Note that this option will not work if you have the statement
display.output.=.no; in your profile.

The.TPLR.Subdirectory

Each time you run TPL REPORT, it creates a subdirectory to hold the files it needs
to create your reports. The subdirectory always has the name TPLRnnnn. The
process id is used for the .nnnn part of the subdirectory name, unless there is al-
ready a subdirectory using that number. You can find these subdirectories with the
UNIX command ls.TPLR*. If you do not wish to let TPL REPORT select your
TPLR subdirectory number, you can specify one yourself by using -O.nnnn or -N.
nnnn on your command line. If you use -N, TPL REPORT will use nnnn only
if there is not already a subdirectory in your current directory named TPLRnnnn.
If such a subdirectory already exists, the -N argument will be ignored and a new
numbered subdirectory will be generated. If -O.nnnn is chosen, the subdirec-
tory will be TPLRnnnn regardless of whether there was already one by that name.
The old one will just be overwritten.

Most of the files that go into a subdirectory are illegible from your point of view
and are erased when they are no longer needed to make your reports. However,
there are two types of files in the subdirectory that you will want to see.

The File Called output
The first of these files is called output.. It contains all of the information that was
displayed on the screen while your job was running — all except the reports, that
is.

If the messages go by on the screen too fast for you to read while your job is run-
ning, you can find them in the output file. If you run your job in the background
or leave your computer while the job is running, you can find all the information
that was displayed on the screen in the output file.

To help you keep track of your jobs, the output file contains the names of your
data and request files, the date and time of execution for each part of the job, the
TPL version number, and, at the end, the name of the TPLR subdirectory in which
it was created.

The Report Files
The other files that you will want to see are the files containing the completed
reports. Multiple REPORT statements can be included in the same job. A separate
report file is created for each REPORT statement. A report file name begins with
the report-name assigned in the REPORT statement and ends with the suffix

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 349

.rep . For example, if the report-name is IND_REPT, the report is saved in a file
called ind_rept.rep.

If Postscript.=.yes; is specified, the suffix for the report files is .ps, for ex-
ample ind_rept.ps .

Printing.reports.and.output.

When a TPL REPORT job ends you will be asked:

Do you wish to print your TPL output file?

y or n ==>

and

Do you wish to print your reports?

y or n ==>

TPL REPORT will print your output and/or report files if you respond with a y to
the appropriate prompts. If you wish to prevent these prompts you may add print.
output.=.yes; (or no) and/or print.reports.=.yes; (or no) statements to your
profile.tpl.or format request. See the FORMAT chapter for explanations of these
commands. They are especially useful if you are running your job in background.
If you want to print the report or output files later, you can use the standard UNIX
lp command. You can also review the report and output files on the screen with
the UNIX commands more.report-name.rep and more.output. or you can look
at either file with your text editor.

Please note that the report files are formatted for the printer rather than the screen.
If you display them on the screen and you have included horizontal lines in your
reports, you may notice that some of the lines are missing or out of place. Also,
you should choose a fixed-width (non-proportional) font for screen display. Other-
wise, the columns will not be aligned properly. Regardless, the reports will print
correctly.

PostScript.Reports

If you are in PostScript mode, the file report-name.ps is a PostScript file. It
should not be sent through a PostScript filter before printing. It also does not look
like a report when listed with more or examined in your editor.

If you have specified a value for DISPLAY NAME in your profile, you will be
asked if you wish to display your report in the PostScript displayer you have speci-

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 350

fied. If you answer yes, the displayer will open your report in a separate process.
If you have multiple reports, each will be opened in a separate process.

The output file is never a PostScript file. It can be read using more or your edi-
tor. If you wish to print it on a PostScript printer, you may do so by a command
such as psp..TPLR123/output..|..lp . See the Appendix called Utilities for ad-
ditional information on the psp program.

EPS.and.CSV.Exports

If you have run your request in PostScript mode, you will get two additional ques-
tions:

Do you wish to create Encapsulated PostScript files for use by other programs?

and

Do you wish to create delimited (CSV) files for use by other programs?

Use of -e on the command line will cause EPS files to be created without the eps
prompt appearing. Use of -V will cause the CSV files to be created without the
csv prompt appearing. See explanations of these export formats below.

Another way to contol export prompts when running jobs in foreground is to put
either of the following in your profile.tpl or format request. For each, the value
should be yes, no, or prompt.

EPS OUTPUT = value;
CSV OUTPUT = value;

Encapsulated.PostScript.(eps)

Many desktop and professional publishing systems allow importation of Post-
Script files provided they are in EPS format. If you answer y to the Encapsulated
PostScript prompt, TPL REPORT will convert your report-name.ps files into a
collection of EPS files. If you answer n, you can create EPS files later by moving
into the TPL REPORT subdirectory and typing:

encaps . 0 report-name.ps <Enter>

ENCAPS will report the names of the EPS files as they are created.

Other options are available, such as naming the directory for the output instead
of specifying '.' for the current directory and running silently with no reporting (1
instead of 0). The current options will be displayed on the screen if you type:

encaps <Enter>

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 351

The ENCAPS program works only with .ps files created by TPL software. It can-
not be used with PostScript files created by other programs.

Reports can be most conveniently imported into another system if each page is in a
separate file. Consequently TPL REPORT creates one file for each page of report
output. The files are named by page and report number. For example, if you have
a two page report followed by a one page report, the report output will be divided
into three files with the following names:

P1R1.eps
P2R1.eps
P1R2.eps

The report-name.ps files containing the complete report outputs will still be
available for printing or you can print individual pages of your reports by printing
the EPS files.

If you have more than one report on a page, they will all be contained in the same
EPS file.

Delimited.or.Comma.Separated.Variable.(CSV).Files

Comma Separated Variable (CSV) format is a common data interchange format.
TPL can read CSV and other types of delimited files as data and can output reports
in CSV format for use by other programs.

Each report with data produces a separate CSV file in your TPLRnnnn directory.
The reports are labeled report-name1.csv, report-name2.csv, etc where
report-name1 is the name of the first report, etc.

Path.for.INCLUDE.files

For report or codebook runs, if you have %INCLUDE files that are in a directory
other than the run directory, you can use the -i argument to enter the path to the
directory where the %INCLUDE files are located.

For example, if you have an include file called recodes.txt that is located in the
directory called /usr3/tplwkgrp/ALB.FILES, you can use the -i argument on the
command line as follows:

-i /usr3/tplwkgrp/ALB.FILES

Then in your %include statement, use the file name:

%include recodes.txt

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 352

You may only have one include path.

Another way to access include files in another directory is to use the UNIX ln
command to make the include files appear to be in the local directory.

Removing.Subdirectories.with.the.rmtpl.Command

The rmtpl command makes it easy for you to erase TPLR subdirectories that you
no longer want to keep.

How.to.Run.rmtpl.

To erase a subdirectory, first be sure that you are in the directory that contains the
subdirectory. Then type the command

rmtpl nnnn <Enter>

where nnnn is the number of the subdirectory you want to erase.

You can delete multiple TPLR subdirectories by including multiple numbers on the
command line. For example,

rmtpl 123 456 7834 <Enter>

To delete all TPLR subdirectories contained in the current directory, type:

rmtpl all <Enter>

Note If you also have TPL subdirectories created by TPL TABLES in the same direc-
tory, the command rmtpl all will remove these subdirectories as well.

Creating.Your.Own.Environment.with.the.profile.tpl.File

The TPL REPORT installation process creates a file called profile.tpl and puts it
in the TPL REPORT system directory. This file allows TPL REPORT to adjust to
your operating environment.

The profile.tpl file contains statements that you can change with your editor after
installation if something changes in your operating environment. For example, if
you begin using a PostScript printer, you might want to edit profile.tpl.

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 353

You can also change report format defaults by including FORMAT statements in
profile.tpl. For example, if you always want your reports left-adjusted on the
page, you can make it a default by including the FORMAT statement align.re-
ports.left; in profile.tpl.

If you want to leave the system profile unchanged, but use a different profile for a
particular set of jobs, you can make a copy of profile.tpl in the directory where
you are working and change that copy to fit the reports you are preparing. The
profile in the directory where you are working will override the one in the TPL
REPORT system directory.

If your copy of TPL REPORT is being shared over a network, you may wish make
a copy of profile.tpl that is appropriate for the way you want to use TPL RE-
PORT.

Note.to.TPL.TABLES.Users

If you have installed TPL TABLES and TPL REPORT in the same directory, the
two applications will be sharing the same profile.tpl. In this case, you should be
aware of the fact that FORMAT statements entered in the profile will be shared by
the two applications. In addition, the words TABLE and REPORT are equivalent.
For example, the FORMAT statement ALIGN TABLES LEFT; will align reports to
the left as well.

Any FORMAT statement that applies only to TPL REPORT will be ignored by
TPL TABLES. The reverse is also true, so there is no problem with statements
that apply to only one of the applications.

There is a small possibility that you could put a FORMAT statement in the system
profile that is meaningful in both applications but has different results. Or, you
might wish to set a default for one application that is inappropriate for the other.
In the unlikely event that this occurs, we recommend one of the following. You
can install TPL REPORT in a separate directory, or you can make a new copy of
the profile in the directory where you are running your report job(s).

Piping.Data.to.TPL.REPORT

TPL REPORT supports standard piping of data into a request and also supports the
more flexible named pipes.

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 354

Standard.Piping

Standard piping is done by using just the standard ‘|’ symbol plus the TPL RE-
PORT keyword %pipe.

An example is:

cat datafile | tpl report -r request -d %pipe

The piped input may of course come from the output of any program which writes
to the standard output (console). The hourglass is not shown while data is being
read.

With this type of piping, TPL REPORT reads the piped data as if it were coming
from the standard input (the keyboard). Thus, the following rules apply:

1. Both the -r and -d arguments must be included and be
correct or the job will fail to execute.

2. TPL REPORT will not prompt you for missing or
incorrect arguments. Since the standard input (key-
board) is used for the pipe, there is no way to respond
to prompts using the keyboard.

3. Jobs can only be run in foreground. You cannot use
the -b argument to run TPL REPORT in background.

Named.Pipes

Named pipes or FIFOs provide a more flexible method for connecting the output of
one program to the input of another. TPL REPORT treats a named pipe just like a
file except that the hourglass is not displayed when a named pipe is used.

Named pipes are usually preferable to the type of piping described above as “stan-
dard piping”. Since the named pipe is not the standard input, but rather a separate
entity with its own name, the keyboard is free for reponding to prompts. In addi-
tion, you can use the -b argument to run jobs in background.

To use named pipes, first create a named pipe using the mknod command:

mknod /dev/your-name p

where your-name is whatever you want. The pipe need not be created in /dev
though this is customary. The p is required to indicate that the node is to be a
pipe. The pipe need only be created once as it will stay around between jobs.

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 355

Now you can direct the output from your data-generating program into the pipe.
Start TPL REPORT with the pipe name as the input file. TPL REPORT detects
that the input file is a pipe rather than a regular file and modifies the processing as
appropriate.

Suppose your pipe name is /dev/my_pipe. You can pipe a data file called my_
data into TPL REPORT with the following sequence:

cat my_data > /dev/my_pipe &
tpl report -d /dev/my_pipe

Most UNIX programs which write output to a user-specified file can write their
output to a named pipe and hence can pipe their output into TPL REPORT.

Silent.Use.of.Pipes

Named pipes can be used to run jobs silently in background in such a way that
there is no output on the screen. The following example shows how TPL REPORT
can read data from a pipe and run without displaying even a process id on the
screen.

cat datafile > named_pipe &
tpl report -r request -d named_pipe -b > /dev/null

Although TPL REPORT will run silently in this example, we will get a process id
displayed from the cat program. In a real case, we would not be using cat to fill
the pipe so there would be no problem.

For example, we can replace the cat with a trivial program called pipe_fill as fol-
lows:

main()
 {
 system(“cat datafile > named_pipe &”);
 }

Then pipe_fill will not display the process id so the following sequence will be
completely silent:

pipe_fill
tpl report -r request -d named_pipe -b > /dev/null

 .Appendix.E:..Run.Instructions.(UNIX/Linux). 356

Common.Error.Messages

Error messages are intended to be self-explanatory. However, three common errors
deserve special note.

Common.Error.Message.1
 *** ERROR: A syntax error was discovered while processing
 'element'. Look for the error at or before that point.

This message appears whenever there is a syntax error in a codebook, report re-
quest, format request or profile. Examples of syntax errors are misspelled key-
words or punctuation errors such as a missing colon (:) or semicolon (;). The point
at which TPL REPORT discovered the error is indicated by the element in quotes.

Example Following is an example showing the beginning of a REPORT statement and the
error message that would result:

REPORT ONE 'Employee Data'
 AGE THEN SEX THEN SALARY;

*** ERROR: A syntax error was discovered while processing 'AGE'.
 Look for the error at or before that point.

Since the error was found when the variable name AGE was encountered, we can
assume that there is something wrong with the name, or that an error preceded it
so that it appears to be in the wrong place. In this example, a colon (:) is missing
following the report title. TPL REPORT is looking for the colon when it finds the
variable name AGE.

Common.Error.Message.2
*** ERROR: The variable 'variable name' is undefined.

A frequent cause of this error is a misspelled name. Another cause is a reference
to a variable that has not yet been defined. For example, if a variable is created in
a COMPUTE statement and used in a REPORT statement that precedes the COM-
PUTE statement, the computed variable is unknown to TPL REPORT when it finds
it in the REPORT statement.

Example Misspelling of the variable name SALARY as SALRY produces the message
shown below.

COMPUTE TOTAL_INCOME = SALRY + INTEREST;

*** ERROR: The variable 'SALRY' is undefined.

Appendix.F:..TPL.Conditions.(UNIX). 357

a p p e n d i x F

TPL.Conditions.(Unix.Only).

What is tPL COnditiOns?
The tpl conditions program converts partial codebook sources into complete
codebook sources. In doing so, it saves you work in creating codebooks and also
assures that the codebook source accurately describes the data. It works with
codebooks for databases, fixed format files and delimited files such as CSV. The
program can also be used to update a codebook source when the data file or
database has changed in such a way that additional condition values are needed.
tpl conditions fills in condition values and labels for all types of codebooks. For
delimited (CSV) and database codebooks it also fills in field sizes. For database
codebooks, tpl conditions fills in data types of observation variables such as float.
See Producing A Codebook Source with the conditions Procedure in Run Instruc-
tions (UNIX) for details on how to run a tpl conditions job.

Control.Variable.Conditions

As the name of the procedure implies, the biggest use of tpl conditions is to fill in
condition values for control variables. If the codebook is new, the condition value
lists are presumably empty. In this case tpl conditions inserts all of the conditions
found in the data for each control variable. The conditions are assigned default
labels.

If the codebook is old and is merely being updated, all existing conditions and
their labels are retained. tpl conditions just adds the new conditions found in the
data. Where the new conditions are added depends upon the display as clause. If
there is no display as clause or display as sorted is specified, the old and new
conditions for a variable are intermixed and placed in sort order based on the
value. If display as listed is specified, the old conditions are retained at the start
of the condition list and the new conditions are placed at the end of the condition
list in the order they are encountered.

Appendix.F:..TPL.Conditions.(UNIX). 358

When tpl conditions has finished, you may edit the new codebook source to pro-
vide better labels for the new conditions and to rearrange them if desired.

Note tpl conditions cannot update codebooks that contain groups.

Fixed.Format.Sequential.File.Example

The following is an incomplete fixed format sequential file codebook before tpl
conditions has been run. Note that all fields must have a width since this is the
only way TPL can identify the boundaries of a field. aip has no conditions but it
must have parentheses. Complainant, shift_ and squad all have some condition
values.

Begin dispatch codebook ascii

dispatches 'Dis'-'patches' record level 0
 filler 6
 A_I_P 'A-I-P' control 1
 (
)
 filler 5
 STREET1 '1STREET' char 4
 STREET2 '2STREET' char 4
 COMPLAINANT 'Complainant' control 30
 (
 'Alarm Panel' = 'ALARM PANEL'
 'Blairs Florists/John' = 'BLAIRS FLORISTS/JOHN'
 'Cowden,George' = 'COWDEN,GEORGE'
 'Marion High School' = 'MARION HIGH SCHOOL'
)
 td obs 4
 tr obs 4
 ta obs 4
 tc obs 4
 unit 'Unit' char 4
 filler 36
 full_date 'Date' char 6
 shift_ 'Shift' control 1 display as sorted
 (
 'first shift' = '1'
 'third shift' = '3'
)
 filler 1
 squad 'Squad' control 1 Display as listed
 (
 'unknown' = ' '
 'squad 9' = '9'
)
End dispatch codebook

Appendix.F:..TPL.Conditions.(UNIX). 359

The following is the completed codebook source after tpl conditions has been run.
Note that filler has been removed. Instead, the field following the filler has a start
position. Complainant does not have a display as clause so the old conditions are
sorted into value order along with the new values. shift_ has a display as sorted
clause so the old conditions are also sorted into value order with the new condi-
tions. squad uses display as listed so the old conditions retain their order and the
new conditions are added after them.

Begin DISPATCH codebook ascii
DISPATCHES "Dis" - "patches" Record Level 0
A_I_P "A-I-P" start 6 Con 1
 (
 = "A"
 = "I"
 = "P"
)
STREET1 "1STREET" start 12 Char 4
STREET2 "2STREET" Char 4
COMPLAINANT "Complainant" Con 30
 (
 = " "
 = "7 AV STD"
 "Alarm Panel" = "ALARM PANEL"
 = "ALEXANDER,DICK"
 = "ARP,MICHAEL"
 = "BEETS,GENEVA"
 = "BEHNKE,MRS"
 "Blairs Florists/John" = "BLAIRS FLORISTS/JOHN"
 = "COOK,TOM"
 = "COOPER,DEB"
 "Cowden,George" = "COWDEN,GEORGE"
 = "CR 727"
 = "MARION 76/RANDI"
 = "MARION FIRE"
 "Marion High School" = "MARION HIGH SCHOOL"
 = "MATTESON,KENNETH"
 = "WORTMAN,DAVID"
 = "YATES,DOUG"
 = "YEISLEY,BILL"
 = "YIRKOUSKY,DARREL"
 = "YOUNG,MARVIN"
)
TD "TD" Obs 4
TR "TR" Obs 4
TA "TA" Obs 4
TC "TC" Obs 4
UNIT "Unit" Char 4
FULL_DATE "Date" start 106 Char 6

Appendix.F:..TPL.Conditions.(UNIX). 360

SHIFT_ "Shift" Con 1
Display as sorted
 (
 "first shift" = "1"
 = "2"
 "third shift" = "3"
)
SQUAD "Squad" start 114 Con 1
Display as listed
 (
 "unknown" = " "
 "squad 9" = "9"
 = "1"
 = "R"
)

End DISPATCH codebook

Delimited.(CSV).Sequential.File.Example

The following is a small incomplete CSV codebook before tpl conditions has been
run. Note that sizes are not specified but field number is. Some of the fields have
been skipped. For the field complaint some of the condition values have been
provided. aip has no fields provided but it does have the required parentheses.

Begin dispatch_csv Codebook CSV (Head = Yes Delimiter = COMMA)
dispatch_csv Record
ID "id" Field = 1 Char
AIP "aip" Field = 2 Control ()
COMPLAINANT "complainant" Field = 6 Control Right Blank Fill
 (
 "ALARM PANEL" = "ALARM PANEL"
 "BLAIRS FLORISTS/JOHN" = "BLAIRS FLORISTS/JOHN"
 "COWDEN,GEORGE" = "COWDEN,GEORGE"
 "MARION HIGH SCHOOL" = "MARION HIGH SCHOOL"
)
SQUAD "squad" Field = 22 obs
End dispatch_csv

The following shows the complete codebook after tpl conditions has been run.
Field widths have been filled in as have condition values for aip. Conditions have
also been filled in for complainant, Since there is no display as clause, the old
conditions are sorted in with the new conditions.

Begin DISPATCH_CSV codebook CSV
(Delimiter = Comma Head = Yes Quote = '"')

Appendix.F:..TPL.Conditions.(UNIX). 361

DISPATCH_CSV "DISPATCH CSV" Record Level 0
ID "id" Report Error = No
Field = 1 char 5
AIP "aip" Field = 2 Con 1
 (
 = "A"
 = "I"
 = "P"
)
COMPLAINANT "complainant" Field = 6 Con Right Blank Fill 28
 (
 = " "
 = "7 AV STD"
 "ALARM PANEL" = "ALARM PANEL"
 = "ALEXANDER,DICK"
 = "ARP,MICHAEL"
 = "BEETS,GENEVA"
 = "BEHNKE,MRS"
 "BLAIRS FLORISTS/JOHN" = "BLAIRS FLORISTS/JOHN"
 = "COOK,TOM"
 = "COOPER,DEB"
 "COWDEN,GEORGE" = "COWDEN,GEORGE"
 = "CR 727"
 = "MARION 76/RANDI"
 = "MARION FIRE"
 "MARION HIGH SCHOOL" = "MARION HIGH SCHOOL"
 = "MATTESON,KENNETH"
 = "WORTMAN,DAVID"
 = "YATES,DOUG"
 = "YEISLEY,BILL"
 = "YIRKOUSKY,DARREL"
 = "YOUNG,MARVIN"
)
SQUAD "squad" Field = 22 Obs 1

End DISPATCH_CSV codebook

Error Detection In addition to producing a new codebook source, tpl conditions detects errors. For
this example, the error messages were placed in DISPATCH_CSV.O. The field
squad is described as obs but it has some letters in it. The following is the last
part of the file DISPATCH_CSV.O where the errors are reported.

For record 255 Variable SQUAD: 'R' cannot appear in an ascii observation value.
For record 255 Variable SQUAD: An observation value must contain a digit.
For record 256 Variable SQUAD: 'R' cannot appear in an ascii observation value.
For record 256 Variable SQUAD: An observation value must contain a digit.
For record 267 Variable SQUAD: 'K' cannot appear in an ascii observation value.
For record 267 Variable SQUAD: An observation value must contain a digit.

Appendix.F:..TPL.Conditions.(UNIX). 362

For record 268 Variable SQUAD: 'K' cannot appear in an ascii observation value.
For record 268 Variable SQUAD: An observation value must contain a digit.
For record 280 Variable SQUAD: 'R' cannot appear in an ascii observation value.
For record 280 Variable SQUAD: An observation value must contain a digit.

285 records read.
60 data errors were found.

End CODEBOOK CONDITIONS processing

SQL.Database.Example

The following is a small incomplete SQL codebook before tpl conditions has
been run. Note that field sizes are not specified. Data types, such as float, have
not been filled in for observation variables and no conditions are provided for
the control variables. Instead, get conditions from data or get conditions from
table(label,code) are used. Since this codebook describes a Sybase database with
lowercase field names, each variable must have a defines clause.

begin sample codebook sql

employee defines "employee" table
company_id defines "company_id" obs
last_name defines "name" control from data
salary defines "salary" obs

company defines "company" table
company_name defines "name" control get conditions from data
company_id defines "company_id" obs
location defines "location" control
 get conditions from "locations"("location_name","location_id")
gross defines "gross" obs

company is parent of employee where company_id = company_id

After the incomplete codebook has been processed by tpl conditions the result is
as listed below. Last_name and Company_name have conditions obtained from
the data. Location has obtained its conditions from the location_name and loca-
tion_id of the locations table. Field widths are filled in. Since the program was
run against a Sybase data base, the begin statement references Sybase instead of
SQL.The fields Company_id and Gross are now obs float instead of just obs and
salary is now obs money and has a mask rather than just being obs.

Begin SAMPLE codebook Sybase
EMPLOYEE "EMPLOYEE" Defines "employee" table
COMPANY_ID "COMPANY ID" Defines "company_id" obs float 8

Appendix.F:..TPL.Conditions.(UNIX). 363

LAST_NAME "" Defines "name" control 9
 (
 "Balmer" = "Balmer"
 "Einstein" = "Einstein"
 "Gates" = "Gates"
 "Newton" = "Newton"
 "Watson" = "Watson"
 "Weeks" = "Weeks"
 "Weiss" = "Weiss"
)
SALARY "SALARY" Mask Center $ 999.99 Defines "salary" obs money
COMPANY "COMPANY" Defines "company" table
COMPANY_ID "COMPANY ID" Defines "company_id" obs float 8
COMPANY_NAME "" Defines "name" control 12
 (
 "IBM" = "IBM"
 "Microsoft" = "Microsoft"
 "QQQ Software" = "QQQ Software"
)
GROSS "GROSS" Defines "gross" obs float 8
LOCATION "" Defines "location" control 2
from "locations" ("location_name", "location_id")
 (
 "Arlington" = "01"
 "Everywhere" = "02"
 "Redmond" = "03"
 "New Carrollton" = "04"
 "Nowhere" = "05"
 "hometown" = "06"
 "Atlantis" = "07"
)

COMPANY is parent of EMPLOYEE where COMPANY_ID = COMPANY_ID

End SAMPLE codebook

Comments

tpl conditions preserves comments in your codebook source. To assure accurate
placement of your comments in the output, the comments should be put in one or
more of the following places:

At the start of your codebook
Before the end codebook statement
Before a variable or record entry
Before a condition entry
Before an association statement

 Appendix.G:..International. 364

a p p e n d i x G

International

fORmats, symbOLs and LanguagEs

Important The CODEPAGE and COUNTRY statements described in this appendix are special
statements that can be used in the profile for your jobs. If you add a CODEPAGE
or COUNTRY statement to your profile, change a CODEPAGE or COUNTRY
statement in your profile, or make changes to country.tpl, you need to restart TPL
to activate the changes.

Your codebook must be processed with the same CODEPAGE and COUNTRY
statements that you use when running your report requests. Otherwise, you will
have conflicting standards. In particular, conflicts in CODEPAGE will cause the
sort order to be scrambled.

Alphabets.and.Sort.Order:..The.CODEPAGE.Statement

The CODEPAGE determines the character set and sort order for your requests and
tables. The default CODEPAGE will work with many languages. If you need ad-
ditional characters for your alphabet, you can select a different CODEPAGE from
those shown in the Appendix called "Character Sets". See also the CODEPAGE
statement in the FORMAT chapter.

Entering characters, using them in labels and printing them. The most desir-
able way of entering characters is with a keyboard that is appropriate for the alpha-
bet of the language you are using and an editor that supports it.

Any character that can be entered on the keyboard, either directly or by using Alt
and the numeric keypad, can be used in TPL labels and other character strings
such as condition values.

Characters not on your keyboard can also be entered by typing in their numeric
code or by entering a character name.

 Appendix.G:..International. 365

Character Name. A character name is the name of a character preceded by &
and terminated with ;. For example É refers to the letter E with an acute
accent above it. Character names are case sensitive. é is the letter e with
an accute accent.The acceptable names are the names for the codepage you have
selected. See Special Character names in the "Character Sets" Appendix. Use of
character names instead of character codes has the advantage of being more por-
table. If you switch codepages, the table will look the same provided the character
name is in both code pages. Also, if you are using a table for multiple purposes
-- creating a pdf, creating a web page, and printing the table -- then use of a char-
acter name will in general result in a constant display of the character. Finally,
table requests written using character names area easier to read than requests using
character codes.

Character Code. A Character code is a \ followed by a 3 digit number which
identifies the character. Three digits are always required. If the character can be
represented by fewer than 3 digits, add leading zeros. For example, for a character
represented by the code 65, enter \065.

The value nnn must be the decimal code for the character. Note that the character
code tables in some software manuals show the octal or hexidecimal codes for the
characters. If you are using this type of table, you must convert the code to its
decimal equivalent. Character set tables showing decimal codes are included in the
Appendix called "Character Sets".

In line printer (non-PostScript) mode, the characters will print correctly in tables
if the corresponding characters are available on the printer. In PostScript mode,
these characters will print correctly if they are included in the character set for the
selected CODEPAGE.

Alphabet for user-specified names. If an alphabetic character is included in the
character set for the selected CODEPAGE and the character can be entered on the
keyboard, either directly or by using Alt and the numeric keypad, it can be used in
names for variables, tables, and other items.

The Sort Sequence. The proper order for sorting depends on the character set
used. TPL will use the sequence that goes with the character set selected by the
CODEPAGE statement. The sort sequences for all character sets are stored in a
file called sort.tpl that is installed in the TPL system directory.

Note Your should insert CODEPAGE at the beginning of your profile. You cannot do
this until after TPL is installed.

 Appendix.G:..International. 366

The.COUNTRY.Statement

The COUNTRY statement is fully described in the FORMAT chapter of the
manual. It lets you select standards for the characters to be used as decimal and
thousands separators, the currency symbols and format, and formats for date and
time. These standards are set in a file called country.tpl that is installed with TPL
REPORT. US is the default country.

Note You should insert COUNTRY at the beginning of your profile. You cannot do
this until after TPL REPORT is installed. Before inserting the COUNTRY state-
ment, you should check to see if there are any decimal numbers already used in the
profile. For example, decimal numbers can be used in the page size specifications.
If you have any such instances, you should edit your profile to match your country
standard.

Replacing.Default.English.Text

If you regularly use TPL REPORT to produce reports in a language other than
English, you may wish to replace the default text for labels such as NUMBER
("Row") or title continuation (" - Continued").

We recommend that you replace these labels by entering the appropriate FORMAT
statements in your profile.tpl file. The new labels will then automatically apply to
all of your reports.

Appendix.H:..Keywords. 367

a p p e n d i x h

Keywords

tPL REPORt kEyWORds

The following words are TPL REPORT keywords. They should not be used as
names for reports, variables, conditions, or codebooks.

ABS
AFTER
ALIGN
ALL
ALTERNATE
AND
AS
ASCENDING
ASCII
AT
AUTO
AUTOMATIC
BANK
BANKS
BEGIN
BINARY
BIT
BLANK
BLANKS
BOLD
BOTH
BOTTOM
BY
CELL
CELLFILE
CELLS
CENTER
CENTRE
CHANGE
CHAR

CHARACTER
CM
CODEBOOK
CODEPAGE
COLOR
COLOUR
COLUMN
COLUMNS
COMMAND
COMPRESS
COMPUTE
CON
CONDITION
CONDITIONS
CONT
CONTINUATION
CONTINUE
CONTINUED
CONTROL
COPY
COUNT
CREATED
CSV
DATA
DATE
DECIMAL
DEFAULT
DEFINE
DEFINES
DELETE

DELIMITER
DESCENDING
DISPLAY
DIV
DIVIDE
DIVIDER
DO
DOUBLE
DOWN
EACH
EIA
EJECT
EMPTY
END
EPS
EOF
EQUAL
EQUALS
EVALUATED
EVERY
EXCEPT
EXCLUDE
EXTRA
FETCH
FIELD
FILE
FILL
FILLER
FLOAT
FMEDIAN

Appendix.H:..Keywords. 368

FONT
FOOTNOTE
FOOTNOTES
FOR
FQUANTILE
FROM
GET
GRAND
GRANDTOTAL
GRAY
GREATER
GREY
GROUP
HEAD
HEADER
HEADERS
HEADING
HEADINGS
HEADNOTE
HEADS
HIERARCHIES
HTML
I
IF
IN
INCH
INCHES
INCOMPLETE
INCREMENT
INDENT
INPUT
INS
IS
ITALIC
JUSTIFIED
JUSTIFY
KEEP
KEY
LABEL
LABELS
LAST
LEADING
LEFT
LENGTH
LESS

LEVEL
LINE
LINES
LISTED
MARGIN
MARKER
MASK
MAX
MAXIMUM
MEAN
MEDIAN
MEMORY
MIN
MONEY
MONITOR
NAME
NAMES
NO
NORMAL
NOT
NOTE
NULL
NUMBER
NUMBERS
NUMERIC
OBS
OBSERVATION
ODBC
OF
ON
OR
ORACLE
OTHER
PAGE
PAPER
PARENT
PATH
PERCENT
PLAN
POINT
POINTS
POST
POSTCOMPUTE
POSTSCRIPT
PRIMARY*
PRINT
PT

PTS
QUANTILE
QUANTILES
QUOTE
RANK
RANKED
RECODE
RECORD
REDEFINES
REPEAT
REPEATS
REPLACE
REPORT
REPORTS
RETAIN
RIGHT
ROTATE
ROUND
ROW
ROWS
RULE
RULES
SCALE
SELECT
SEQUENCE
SET
SHADE
SHIFT
SIB
SIBLING
SIDE
SKIP
SORT
SORTED
SPACE
SPACES
SPAN
SPANNER
SPANNERS
SQL
SQRT
START
STARTS
STATCAN
STDERR
STDEV
STDEVP

STOP
STUB
STUBS
SUB
SUBSTR
SUBSTRING
SUBTOTAL
SUP
SUPER
SYBASE
SYM
SYMBOL
TABLE
TABLES
TABULATE
TEXT
THAN
THEN
TITLE
TITLES
TO
TOP
TOTAL
U
UNDERLINE
UNJUSTIFIED
UNJUSTIFY
UNLESS
UNSIGNED
UP
USE
USING
VALUE
VALUES
VAR
VARIABLE
VARIABLES
VARP
VARYING
WAFER
WAFERS
WEIGHTED
WEIGHTING
WHERE
WIDTH
WITH
YES

* Codebook only. You can continue to use this word as a variable name, if you precede it with a : in the code-
book. For example, :PRIMARY

Appendix.I:..Limits. 369

a p p e n d i x i

Limits

summaRy Of fEatuREs and systEm COn-
stRaints

Platforms.and.Operating.Systems

Windows 98, XP, 2000, Vista.

UNIX platforms, including Sun and HP.

Can be ported to other UNIX platforms.

Contact QQQ Software for current list.

Minimum.Hardware.Configuration

Hard disk space: 30 megabytes

Printer: any

Optional.Hardware

PostScript printer: On UNIX systems, a PostScript printer is required to print
PostScript reports. On Windows systems, PostScript reports can be printed from
TED on any printer. When PostScript reports are inserted in documents with
desktop publishing software, a PostScript printer may be required to correctly print
the reports. If you convert PostScript reports, or documents containing PostScript
reports, to Adobe Acrobat PDF format, they can be printed from Adobe Acrobat
Reader.

Hard disk space: The installed system occupies about 30 megabytes of hard disk
space. Additional space is needed for temporary work files and for your data and
output reports. Alternate drives can be substituted for anything other than the in-
stalled TPL REPORT system.

Appendix.I:..Limits. 370

Features/Constraints

There are very few fixed limits in TPL REPORT. The available computer resourc-
es are allocated according to the unique requirements of each job so that space not
needed for one feature can be used by another. Thus, it is highly unlikely that you
will ever encounter a limitation on the size of your job. If you do, please contact
Software Support for suggestions.

Maximum number of reports per request: no limit

Maximum number of variable references: no limit

Maximum number of values for a single control variable (including variables
created by RECODE statements): no system limit, although performance may
degrade with many hundreds of thousands of values, depending on the capacity of
your computer and what you are doing with the variable.

Maximum columns per report: no known limit

Maximum print label length: no limit

Maximum record types and groups in codebook: 30

Input data file requirements:

Record formats: fixed length records with data fields in fixed columns; variable
length CSV (comma separated) and other types of delimited files

Datafile type: sequential

Maximum record length: 32,764 bytes for fixed length records; 50,000 bytes for
CSV and other delimited files

Datafile organizations: flat (single level) and hierarchical (multi-level)

Data field types: character (ASCII), binary and floating point (single or double
precision)

SQL databases: The TPL-SQL Database Interface is optional. For Window
systems, databases can be accessed via ODBC. For UNIX systems, contact
QQQ Software for the current list of supported database systems.

Accuracy of computed results: Computations are done in ANSI standard double
precision floating point with special code to prevent comparison errors introduced
by radix conversion.

Appendix.I:..Limits. 371

Format for codebooks, report requests and format requests: free format

Variable name format: up to 30 characters long, starting with letter, # or under-
bar(_), and containing only letters, digits, # and _

Statement types: report, sort, subtotal, grand total, select, recode, compute, condi-
tional compute and use

Appendix.J:..Utilities. 372

a p p e n d i x J

Utilities

stand-aLOnE utiLity PROgRams

Several stand-alone utility programs are installed with TPL REPORT. You may
find some of these programs useful in applications other than TPL REPORT.

COMMENT

Location
Windows: Installed in the TPL system directory

UNIX: installed with TPL in the tpldebug subdirectory

File Name
comment.exe (PC version)
comment (UNIX version)

Purpose
Mainframe TPL uses @ to delimit comments. TPL for Windows or Unix uses /*
and */ to delimit comments. If you are converting mainframe TPL codebooks to
use with TPL for Windows or Unix, you can use the comment program to auto-
mate part of the process by converting the comments for you.

The comment program converts comments delimited by @ into comments delim-
ited by with /* */ pairs.

Appendix.J:..Utilities. 373

Instructions
Execute the program from the command line. The required arguments are source
file and target file. For example:

 comment survey.mf survey.cbk <enter>

where survey.mf is a mainframe TPL codebook. The codebook with converted
comments will be stored in the file survey.cbk.

Note The TPL CONVERT system can be used to automate the entire conversion process
for codebooks. If you are converting codebooks and do not already have the CON-
VERT system, contact QQQ Software for details.

FOR_WORD

Note FOR_WORD is a public domain program.

Location
Windows: Installed in the TPL system directory

UNIX: installed with TPL in the tpldebug subdirectory

File Name
for_word.exe (if Windows)
for_word (if UNIX)

Purpose
To take a file that was prepared with a line editor and convert it to word processing
format. By "line editor", we mean a program that puts one or more return charac-
ters at the end of each line. By "word processor", we mean a program that works
with paragraphs rather than lines. The FOR_WORD program will convert a line
editor file for use with a word processor by removing the return characters from
lines within paragraphs.

Instructions
The program is self-documenting. On the command line, type

for_word <Enter>

Instructions will be displayed on the screen.

Appendix.J:..Utilities. 374

HEXLIST

Location
Windows: Installed in the TPL system directory.

UNIX: installed with TPL in the tpldebug subdirectory

File Name
hexlist.exe (if Windows)
hexlist (if UNIX)

Purpose
The hexlist program displays the contents of a file as hexidecimal values and, when
possible, as ascii characters. Where there is no ascii character equivalent for the
hexidecimal value, a % symbol is displayed on the character line.

The hexlist program can be very useful in identifying problems in a data file when
the file has errors or is not in the format that you expected.

Instructions
On the command line, type

hexlist arg1 arg2 arg3 <Enter>

where

arg1 is file name
arg2 (optional) is a line width <= 75. 75 is the default
arg3 (optional) indicates that the file should be opened in ascii rather

than default binary mode. It must be a lower case letter “a” or
the word “ascii” (not in quotes).

If you want the file opened in ascii mode, you must provide both arguments 2 and
3.

If the file is opened in binary mode (the default), all characters in the file, includ-
ing any end-of-record or end-of-file indicators, will be displayed.

If the file is opened in ascii mode, carriage returns and end-of-file markers will not
be displayed. Line feeds will be displayed.

On Windows systems, most ascii files have a carriage return and line feed at the
end of each record and a control-Z at the end of file.

Appendix.J:..Utilities. 375

The hexidecimal codes for these end-of-record and end-of-file characters are:

0D <CR>
0A <LF>
1A control-Z

UNIX Note If you are working with a UNIX system, the binary/ascii distinction is irrelevant
since you will get the same result either way. Most UNIX ascii files have a line
feed (hexidecimal 0A) at the end of each record.

How to Stop
If you have a large file, you may wish to stop the hexlist after displaying just a part
of it. You can stop the hexlist by entering <Ctrl><Break> or <Ctrl>C.

UNIX Note In UNIX, you can stop the hexlist with the key or key combination that you nor-
mally use to cancel jobs.

Redirection
The screen output can also be redirected to a file. For example,

hexlist mydata > hexout <Enter>

will do a hexlist of the file mydata, displaying 75 characters per line and saving the
output in the file called hexout.

PSP.—.PostScript.Print.Program

Location
Installed in the TPL system directory.

File Name
psp.exe (if Windows)
psp (if UNIX)

Purpose
PSP is a powerful utility for printing regular ASCII character files on a PostScript
printer.

Instructions
The program is self-documenting. On the command line, type

psp <Enter>

Appendix.J:..Utilities. 376

Instructions will be displayed on the screen. Wild cards can be used to print mul-
tiple files that have a portion of the name in common. For example, to print all
files that have the suffix .txt, type:

psp *.txt <Enter>

Note For a line of text that ends with a return character and is longer that the width of
the page, PSP will "wrap" the long line, then go to a new line for the following
text. For example:

This is the first line of text. It is too long for the page width so it wraps when
it is printed.

This is the second line of text. It starts on a new line.

If you want to print this type of text file with PSP, you can get a better result by
using the FOR_WORD program to remove the return characters within paragraphs.
When you use FOR_WORD, write the output to a temporary file. Then print the
temporary file with PSP. For example,

for_word myfile tempfile <Enter>
psp tempfile <Enter>

TO_SHOW..(Windows.only)

Location
Windows: Installed in the TPL system directory.

UNIX: Not available

File Name
TO_SHOW.EXE

Purpose
When TPL REPORT formats a report in line printer (non-PostScript) mode, it
sometimes formats horizontal rules as extensions of other lines of the report. This
format will gives the best possible result on any type of line printer. The report
can be conveniently reviewed on the screen with the TED, the TPL Editor, because
TED is custom-programmed to work correctly with the report format. If, instead,
you try to edit the report or display it with other software, the horizontal rules may
not display the way you want.

Appendix.J:..Utilities. 377

You can use the program TO_SHOW to convert a report file to a format that will
work with line printers and editors (word processors), and display correctly on the
screen using any display software.

Instructions
On the command line, type

TO_SHOW report-in report-out <Enter>

where report-in is the original report file and report-out is the converted report
file.

Example TO_SHOW EMPLOYEE.REP EMPLOYEE.SHO <Enter>

Appendix.K:.Character.Sets. 378

a p p e n d i x K

Character.Sets

ChaRaCtERs and COdEPagEs

The WIN character sets are recommended for the Windows version; the
ISO character sets are recommended for the UNIX version.

The default for Windows is WIN88591. The default for UNIX is
ISO88591. To select a different character set, use the CODEPAGE state-
ment described in the Format chapter.

If you want your jobs to give identical results using both the Unix and
Windows versions, you should use Windows and ISO codepages with all
of the characters you need and use character names rather than character
codes in your request.

EURO.Symbol

TPL Tables provides full support for the euro symbol provided your printer
and computer fonts support it. Windows 2000 may not support the euro
symbol but Windows XP and Vista do. Sun Solaris 8 does not support the
euro but later versions do.

The country.tpl has been changed so the currency symbol is a euro for
those countries which have adopted it.

If you look in the codepage files such as win88591.cp, you will see 4 dif-
ferent euro entries, display_euro, pdf_euro, eps_euro, and psprint_euro.
This is because in certain computer environments the the correct way to
specify a euro for one purpose is different from the way to express it for a
different purpose. If for example you find that a euro symbol is displayed
correctly on the screen but does not convert to a pdf correctly, then you
should change the pdf_euro code but not the display_euro code. If you
then use € in your request, TPL Tables will select the correct euro
code to use for the action you are performing. If you have problems with
these, please give us a call.

Appendix.K:.Character.Sets. 379

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=WIN88591

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128 €
129
130 ‚
131 ƒ
132 „
133 …
134 †
135 ‡
136 ˆ
137 ‰
138 Š
139 ‹
140 Œ
141
142
143
144
145 ‘
146 ’
147 “
148 ”
149 •
150 –
151 —
152 ˜
153
154 š
155 ›
156 œ

Value Symbol

157
158
159 Ÿ
160
161 ¡
162 ¢
163 £
164 ¤
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ð

Value Symbol

209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 Ý
222 Þ
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ð
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ý
254 þ
255 ÿ

CODEPAGE.=.WIN88591

Appendix.K:.Character.Sets. 380

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=WIN88592

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128 €
129
130 ‚
131
132 „
133 …
134 †
135 ‡
136
137 ‰
138 Š
139 ‹
140 Ś
141 Ť
142 Ž
143 Ź
144
145 ‘
146 ’
147 “
148 ”
149 •
150 –
151 —
152
153
154 š
155 ›
156 ś....

Value Symbol

157 t’....
158 ž
159 ź....
160
161 ˇ
162 ˘
163 Ł
164 ¤
165 Ą....
166 ¦
167 §
168 ¨
169 ©
170 Ş....
171 «
172 ¬
173 -
174 ®
175 Ż
176 °
177 ±
178 ˛
179 ł
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ą....
186 ş....
187 »
188 ’L
189 ˝
190 l’....
191 ż....
192 Ŕ
193 Á
194 Â
195 Ă
196 Ä
197 Ĺ
198 Ć
199 Ç
200 Č
201 É
202 Ę....
203 Ë
204 Ě
205 Í
206 Î
207 Ď
208 Ð

Value Symbol

209 Ń
210 Ň
211 Ó
212 Ô
213 Ő
214 Ö
215 ×
216 Ř
217 Ů
218 Ú
219 Ű
220 Ü
221 Ý
222 Ţ....
223 ß
224 ŕ....
225 á
226 â
227 ă....
228 ä
229 ĺ
230 ć....
231 ç
232 č....
233 é
234 ę....
235 ë
236 ě....
237 í
238 î
239 d’....
240 ð
241 ń....
242 ň....
243 ó
244 ô
245 ő....
246 ö
247 ÷
248 ř....
249 ů....
250 ú
251 ű....
252 ü
253 ý
254 ţ....
255

CODEPAGE.=.WIN88592

Appendix.K:.Character.Sets. 381

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=WIN88599

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128 €
129
130 ‚
131 ƒ
132 „
133 …
134 †
135 ‡
136 ˆ
137 ‰
138 Š
139 ‹
140 Œ
141
142
143
144
145 ‘
146 ’
147 “
148 ”
149 •
150 –
151 —
152 ˜
153
154 š
155 ›
156 œ

Value Symbol

157
158
159 Ÿ
160
161 ¡
162 ¢
163 £
164 ¤
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ğ

Value Symbol

209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 İ
222 Ş....
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ğ....
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ı
254 ş....
255 ÿ

CODEPAGE.=.WIN88599

Appendix.K:.Character.Sets. 382

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=ISO88591

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128 –
129 —
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144 ı
145 `
146 ´
147 ˆ
148 ˜
149
150 ˘
151 ˙
152
153
154 ˚
155
156

Value Symbol

157 ˝
158 ˛
159 ˇ
160
161 ¡
162 ¢
163 £
164 €
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ð

Value Symbol

209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 Ý
222 Þ
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ð
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ý
254 þ
255 ÿ

CODEPAGE.=.ISO88591

Appendix.K:.Character.Sets. 383

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=ISO88592

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128 –
129 —
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

Value Symbol

157
158
159
160
161 Ą....
162 ¢
163 Ł
164 €
165 ’L
166 Ś
167 §
168 ¨
169 Š
170 Ş....
171 Ť
172 Ź
173 ›
174 Ž
175 Ż
176 °
177 ą....
178 †
179 ł
180 ·
181 l’....
182 ś....
183 •
184 ‚
185 š
186 ş....
187 t’....
188 ź....
189 ‰
190 ž
191 ż....
192 Ŕ
193 Á
194 Â
195 Ă
196 Ä
197 Ĺ
198 Ć
199 Ç
200 Č
201 É
202 Ę....
203 Ë
204 Ě
205 Í
206 Î
207 Ď
208 Ð

Value Symbol

209 Ń
210 Ň
211 Ó
212 Ô
213 Ő
214 Ö
215 ×
216 Ř
217 Ů
218 Ú
219 Ű
220 Ü
221 Ý
222 Ţ....
223 ß
224 ŕ....
225 á
226 â
227 ă....
228 ä
229 ĺ
230 ć....
231 ç
232 č....
233 é
234 ę....
235 ë
236 ě....
237 í
238 î
239 d’....
240 ð
241 ń....
242 ň....
243 ó
244 ô
245 ő....
246 ö
247 ÷
248 ř....
249 ů....
250 ú
251 ű....
252 ü
253 ý
254 ţ....
255

CODEPAGE.=.ISO88592

Appendix.K:.Character.Sets. 384

Mapping of Decimal Values to Postscript Codes for Standard Fonts using CODEPAGE=ISO88599

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 "
035 #
036 $
037 %
038 &
039 ’
040 (
041)
042 *
043 +
044 ,
045 -
046
047 /
048 0
049 1
050 2
051 3
052 4

Value Symbol

053 5
054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 @
065 A
066 B
067 C
068 D
069 E
070 F
071 G
072 H
073 I
074 J
075 K
076 L
077 M
078 N
079 O
080 P
081 Q
082 R
083 S
084 T
085 U
086 V
087 W
088 X
089 Y
090 Z
091 [
092 \
093]
094 ^
095 _
096 ‘
097 a
098 b
099 c
100 d
101 e
102 f
103 g
104 h

Value Symbol

105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |
125 }
126 ~
127
128 –
129 —
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

Value Symbol

157
158
159
160
161 ¡
162 ¢
163 £
164 €
165 ¥
166 ¦
167 §
168 ¨
169 ©
170 ª
171 «
172 ¬
173 -
174 ®
175 ¯
176 °
177 ±
178 ²
179 ³
180 ´
181 µ
182 ¶
183 ·
184 ¸
185 ¹
186 º
187 »
188 ¼
189 ½
190 ¾
191 ¿
192 À
193 Á
194 Â
195 Ã
196 Ä
197 Å
198 Æ
199 Ç
200 È
201 É
202 Ê
203 Ë
204 Ì
205 Í
206 Î
207 Ï
208 Ğ

Value Symbol

209 Ñ
210 Ò
211 Ó
212 Ô
213 Õ
214 Ö
215 ×
216 Ø
217 Ù
218 Ú
219 Û
220 Ü
221 İ
222 Ş....
223 ß
224 à
225 á
226 â
227 ã
228 ä
229 å
230 æ
231 ç
232 è
233 é
234 ê
235 ë
236 ì
237 í
238 î
239 ï
240 ğ....
241 ñ
242 ò
243 ó
244 ô
245 õ
246 ö
247 ÷
248 ø
249 ù
250 ú
251 û
252 ü
253 ı
254 ş....
255 ÿ

CODEPAGE.=.ISO88599

Appendix.K:.Character.Sets. 385

Mapping of Decimal Values to Postscript Codes for Symbol(Y) Font

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033 !
034 ∀
035 #
036 ∃
037 %
038 &
039 ∋
040 (
041)
042 ∗
043 +
044 ,
045 −
046
047 /
048 0
049 1
050 2
051 3
052 4
053 5

Value Symbol

054 6
055 7
056 8
057 9
058 :
059 ;
060 <
061 =
062 >
063 ?
064 ≅
065 Α
066 Β
067 Χ
068 ∆
069 Ε
070 Φ
071 Γ
072 Η
073 Ι
074 ϑ
075 Κ
076 Λ
077 Μ
078 Ν
079 Ο
080 Π
081 Θ
082 Ρ
083 Σ
084 Τ
085 Υ
086 ς
087 Ω
088 Ξ
089 Ψ
090 Ζ
091 [
092 ∴
093]
094 ⊥
095 _
096
097 α
098 β
099 χ
100 δ
101 ε
102 φ
103 γ
104 η
105 ι
106 ϕ

Value Symbol

107 κ
108 λ
109 µ
110 ν
111 ο
112 π
113 θ
114 ρ
115 σ
116 τ
117 υ
118 ϖ
119 ω
120 ξ
121 ψ
122 ζ
123 {
124 |
125 }
126 ∼
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

Value Symbol

160 €
161 ϒ
162 ′
163 ≤
164 ⁄
165 ∞
166 ƒ
167 ♣
168 ♦
169 ♥
170 ♠
171 ↔
172 ←
173 ↑
174 →
175 ↓
176 °
177 ±
178 ″
179 ≥
180 ×
181 ∝
182 ∂
183 •
184 ÷
185 ≠
186 ≡
187 ≈
188 …
189
190
191 ↵
192 ℵ
193 ℑ
194 ℜ
195 ℘
196 ⊗
197 ⊕
198 ∅
199 ∩
200 ∪
201 ⊃
202 ⊇
203 ⊄
204 ⊂
205 ⊆
206 ∈
207 ∉
208 ∠
209 ∇
210
211
212

Value Symbol

213 ∏
214 √
215 ⋅
216 ¬
217 ∧
218 ∨
219 ⇔
220 ⇐
221 ⇑
222 ⇒
223 ⇓
224 ◊
225 〈
226
227
228
229 ∑
230
231
232
233
234
235
236
237
238
239
240
241 〉
242 ∫
243 ⌠
244
245 ⌡
246
247
248
249
250
251
252
253
254
255

Mapping.of.Decimal.Values.to.PostScript.Codes.for.Symbol.Font

Appendix.K:.Character.Sets. 386

Mapping of Decimal Values to Postscript Codes for Dingbats(D) Font

Value Symbol

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Value Symbol

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106

Value Symbol

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128 €
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

Value Symbol

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

Value Symbol

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Mapping.of.Decimal.Values.to.PostScript.Codes.for.DINGBAT.Font

Appendix.K:.Character.Sets. 387

Special Character Names for WIN88591

Name Symbol

Aacute Á
aacute á
acircumflex â
Acircumflex Â
acute ´
Adieresis Ä
adieresis ä
ae æ
AE Æ
Agrave À
agrave à
Aring Å
aring å
atilde ã
Atilde Ã
brokenbar ¦
bullet •
caron ˇ
ccedilla ç
Ccedilla Ç
cedilla ¸
cent ¢
circumflex ˆ
copyright ©
currency ¤
dagger †
daggerdbl ‡
degree °
dieresis ¨
divide ÷
Eacute É
eacute é
Ecircumflex Ê
ecircumflex ê
Edieresis Ë
edieresis ë
egrave è
Egrave È
ellipsis …
emdash —

Name Symbol

endash –
Eth Ð
eth ð
euro €
exclamdown ¡
florin ƒ
germandbls ß
guillemotleft «
guillemotright »
guilsinglleft ‹
guilsinglright ›
hyphen -
Iacute Í
iacute í
icircumflex î
Icircumflex Î
Idieresis Ï
idieresis ï
igrave ì
Igrave Ì
logicalnot ¬
macron ¯
mu µ
multiply ×
ntilde ñ
Ntilde Ñ
Oacute Ó
oacute ó
ocircumflex ô
Ocircumflex Ô
odieresis ö
Odieresis Ö
oe œ
OE Œ
Ograve Ò
ograve ò
onehalf ½
onequarter ¼
onesuperior ¹
ordfeminine ª

Name Symbol

ordmasculine º
oslash ø
Oslash Ø
otilde õ
Otilde Õ
paragraph ¶
periodcentered ·
perthousand ‰
plusminus ±
questiondown ¿
quotedblbase „
quotedblleft “
quotedblright ”
quoteleft ‘
quoteright ’
quotesinglbase ‚
registered ®
Scaron Š
scaron š
section §
sterling £
Thorn Þ
thorn þ
threequarters ¾
threesuperior ³
tilde ˜
twosuperior ²
uacute ú
Uacute Ú
ucircumflex û
Ucircumflex Û
Udieresis Ü
udieresis ü
Ugrave Ù
ugrave ù
Yacute Ý
yacute ý
Ydieresis Ÿ
ydieresis ÿ
yen ¥

Special.Character.Names.for.WIN88591

Appendix.K:.Character.Sets. 388

Special Character Names for WIN88592

Name Symbol

Aacute Á
aacute á
Abreve Ă

ă...........................everba
Acircumflex Â
acircumflex â
acute ´
acute ´
Adieresis Ä
adieresis ä

ą........................kenogoa
Ą.......................kenogoA

breve ˘
breve ˘
brokenbar ¦
bullet •

ć...........................etucac
Cacute Ć
caron ˇ
caron ˇ
Ccaron Č

č...........................noracc
ccedilla ç
Ccedilla Ç
cedilla ¸
cedilla ¸
copyright ©
currency ¤
dagger †
daggerdbl ‡
Dcaron Ď
degree °
dieresis ¨
divide ÷
dotaccent ˙

d’....................thgiretouqd
eacute é
Eacute É
Ecaron Ě

ě...........................norace
edieresis ë
Edieresis Ë

Name Symbol

ellipsis …
emdash —
endash –

ę........................kenogoe
Ę.......................kenogoE

Eth Ð
eth ð
euro €
germandbls ß
guilsinglleft ‹
guilsinglright ›
hungarumlaut ˝
hungarumlaut ˝
hyphen -
iacute í
Iacute Í
Icircumflex Î
icircumflex î
Lacute Ĺ
lacute ĺ
logicalnot ¬

l’.....................thgiretouql
Lquoteright ’L
lslash ł
Lslash Ł
mu µ
multiply ×
Nacute Ń

ń...........................etucan
ň...........................noracn

Ncaron Ň
Oacute Ó
oacute ó
ocircumflex ô
Ocircumflex Ô
Odieresis Ö
odieresis ö
ogonek ˛
ogonek ˛
Ohungarumlaut Ő

ő..............tualmuragnuho
periodcentered ·

Name Symbol

perthousand ‰
plusminus ±
quotedblbase „
quotedblleft “
quotedblright ”
quoteleft ‘
quoteright ’
quoteright ’
quotesinglbase ‚

ŕ............................etucar
Racute Ŕ
Rcaron Ř

ř...........................noracr
registered ®
ring ˚
Sacute Ś

ś...........................etucas
scaron š
Scaron Š

ş..........................allidecs
Ş.........................allidecS

Tcaron Ť
tcedilla ţ

Ţ.........................allidecT
t’.....................thgiretouqt

uacute ú
Uacute Ú
Udieresis Ü
udieresis ü
Uhungarumlaut Ű

ű..............tualmuragnuhu
Uring Ů

ů..............................gniru
yacute ý
Yacute Ý
Zacute Ź

ź...........................etucaz
Zcaron Ž
zcaron ž

ż....................tneccatodz
Zdotaccent Ż

Special.Character.Names.for.WIN88592

Appendix.K:.Character.Sets. 389

Special Character Names for WIN88599

Name Symbol

Aacute Á
aacute á
acircumflex â
Acircumflex Â
acute ´
adieresis ä
Adieresis Ä
ae æ
AE Æ
Agrave À
agrave à
Aring Å
aring å
Atilde Ã
atilde ã
breve ˘
brokenbar ¦
bullet •
caron ˇ
ccedilla ç
Ccedilla Ç
cedilla ¸
cedilla ¸
cent ¢
circumflex ˆ
copyright ©
currency ¤
dagger †
daggerdbl ‡
degree °
dieresis ¨
divide ÷
dotaccent ˙
dotlessi ı
Eacute É
eacute é
ecircumflex ê
Ecircumflex Ê
Edieresis Ë
edieresis ë
egrave è

Name Symbol

Egrave È
ellipsis …
emdash —
endash –
euro €
exclamdown ¡
florin ƒ

ğ...........................everbg
Gbreve Ğ
germandbls ß
guillemotleft «
guillemotright »
guilsinglleft ‹
guilsinglright ›
hyphen -
iacute í
Iacute Í
Icircumflex Î
icircumflex î
idieresis ï
Idieresis Ï
Idotaccent İ
igrave ì
Igrave Ì
logicalnot ¬
macron ¯
mu µ
multiply ×
ntilde ñ
Ntilde Ñ
Oacute Ó
oacute ó
Ocircumflex Ô
ocircumflex ô
odieresis ö
Odieresis Ö
oe œ
OE Œ
ograve ò
Ograve Ò
onehalf ½

Name Symbol

onequarter ¼
onesuperior ¹
ordfeminine ª
ordmasculine º
Oslash Ø
oslash ø
Otilde Õ
otilde õ
paragraph ¶
periodcentered ·
perthousand ‰
plusminus ±
questiondown ¿
quotedblbase „
quotedblleft “
quotedblright ”
quoteleft ‘
quoteright ’
quotesinglbase ‚
registered ®
scaron š
Scaron Š

ş..........................allidecs
Ş.........................allidecS

section §
sterling £
threequarters ¾
threesuperior ³
tilde ˜
twosuperior ²
Uacute Ú
uacute ú
ucircumflex û
Ucircumflex Û
Udieresis Ü
udieresis ü
ugrave ù
Ugrave Ù
Ydieresis Ÿ
ydieresis ÿ
yen ¥

Special.Character.Names.for.WIN88599

Appendix.K:.Character.Sets. 390

Special Character Names for ISO88591

Name Symbol

Aacute Á
aacute á
Acircumflex Â
acircumflex â
acute ´
acute ´
Adieresis Ä
adieresis ä
ae æ
AE Æ
agrave à
Agrave À
aring å
Aring Å
atilde ã
Atilde Ã
breve ˘
brokenbar ¦
caron ˇ
Ccedilla Ç
ccedilla ç
cedilla ¸
cent ¢
circumflex ˆ
copyright ©
degree °
dieresis ¨
divide ÷
dotaccent ˙
dotlessi ı
eacute é
Eacute É
ecircumflex ê
Ecircumflex Ê
edieresis ë
Edieresis Ë

Name Symbol

Egrave È
egrave è
emdash —
endash –
eth ð
Eth Ð
euro €
exclamdown ¡
germandbls ß
grave `
guillemotleft «
guillemotright »
hungarumlaut ˝
hyphen -
iacute í
Iacute Í
Icircumflex Î
icircumflex î
Idieresis Ï
idieresis ï
igrave ì
Igrave Ì
logicalnot ¬
macron ¯
mu µ
multiply ×
Ntilde Ñ
ntilde ñ
Oacute Ó
oacute ó
Ocircumflex Ô
ocircumflex ô
odieresis ö
Odieresis Ö
ogonek ˛
Ograve Ò

Name Symbol

ograve ò
onehalf ½
onequarter ¼
onesuperior ¹
ordfeminine ª
ordmasculine º
oslash ø
Oslash Ø
Otilde Õ
otilde õ
paragraph ¶
periodcentered ·
plusminus ±
questiondown ¿
registered ®
ring ˚
section §
sterling £
thorn þ
Thorn Þ
threequarters ¾
threesuperior ³
tilde ˜
twosuperior ²
Uacute Ú
uacute ú
Ucircumflex Û
ucircumflex û
Udieresis Ü
udieresis ü
ugrave ù
Ugrave Ù
Yacute Ý
yacute ý
ydieresis ÿ
yen ¥

Special.Character.Names.for.ISO88591

Appendix.K:.Character.Sets. 391

Special Character Names for ISO88592

Name Symbol

Aacute Á
aacute á

ă...........................everba
Abreve Ă
Acircumflex Â
acircumflex â
acute ´
Adieresis Ä
adieresis ä

Ą.......................kenogoA
ą........................kenogoa

breve ˘
Cacute Ć

ć...........................etucac
caron ˇ
Ccaron Č

č...........................noracc
ccedilla ç
Ccedilla Ç
cedilla ¸
Dcaron Ď
degree °
dieresis ¨
divide ÷
dotaccent ˙

d’....................thgiretouqd
eacute é
Eacute É
Ecaron Ě

ě...........................norace
edieresis ë
Edieresis Ë

Name Symbol

emdash —
endash –

ę........................kenogoe
Ę.......................kenogoE

Eth Ð
eth ð
euro €
germandbls ß
hungarumlaut ˝
Iacute Í
iacute í
icircumflex î
Icircumflex Î
Lacute Ĺ
lacute ĺ

l’.....................thgiretouql
Lquoteright ’L
lslash ł
Lslash Ł
multiply ×
Nacute Ń

ń...........................etucan
Ncaron Ň

ň...........................noracn
Oacute Ó
oacute ó
Ocircumflex Ô
ocircumflex ô
odieresis ö
Odieresis Ö
ogonek ˛

ő..............tualmuragnuho
Ohungarumlaut Ő

Name Symbol

quoteright ’
Racute Ŕ

ŕ............................etucar
Rcaron Ř

ř...........................noracr
ring ˚
Sacute Ś

ś...........................etucas
Scaron Š
scaron š

ş..........................allidecs
Ş.........................allidecS

Tcaron Ť
tcedilla ţ

Ţ.........................allidecT
t’.....................thgiretouqt

uacute ú
Uacute Ú
udieresis ü
Udieresis Ü

ű..............tualmuragnuhu
Uhungarumlaut Ű

ů..............................gniru
Uring Ů
yacute ý
Yacute Ý
Zacute Ź

ź...........................etucaz
Zcaron Ž
zcaron ž

ż....................tneccatodz
Zdotaccent Ż

Special.Character.Names.for.ISO88592

Appendix.K:.Character.Sets. 392

Special Character Names for ISO88599

Name Symbol

Aacute Á
aacute á
Acircumflex Â
acircumflex â
acute ´
acute ´
adieresis ä
Adieresis Ä
AE Æ
ae æ
agrave à
Agrave À
aring å
Aring Å
Atilde Ã
atilde ã
breve ˘
brokenbar ¦
caron ˇ
ccedilla ç
Ccedilla Ç
cedilla ¸
cedilla ¸
cent ¢
copyright ©
degree °
dieresis ¨
divide ÷
dotaccent ˙
dotlessi ı
eacute é
Eacute É
Ecircumflex Ê
ecircumflex ê
edieresis ë

Name Symbol

Edieresis Ë
egrave è
Egrave È
emdash —
endash –
euro €
exclamdown ¡
Gbreve Ğ

ğ...........................everbg
germandbls ß
guillemotleft «
guillemotright »
hungarumlaut ˝
hyphen -
iacute í
Iacute Í
icircumflex î
Icircumflex Î
idieresis ï
Idieresis Ï
Idotaccent İ
igrave ì
Igrave Ì
logicalnot ¬
macron ¯
mu µ
multiply ×
Ntilde Ñ
ntilde ñ
oacute ó
Oacute Ó
ocircumflex ô
Ocircumflex Ô
odieresis ö
Odieresis Ö
ogonek ˛

Name Symbol

ograve ò
Ograve Ò
onehalf ½
onequarter ¼
onesuperior ¹
ordfeminine ª
ordmasculine º
Oslash Ø
oslash ø
otilde õ
Otilde Õ
paragraph ¶
periodcentered ·
plusminus ±
questiondown ¿
quoteright ’
registered ®
ring ˚

ş..........................allidecs
Ş.........................allidecS

section §
sterling £
threequarters ¾
threesuperior ³
twosuperior ²
Uacute Ú
uacute ú
Ucircumflex Û
ucircumflex û
Udieresis Ü
udieresis ü
ugrave ù
Ugrave Ù
ydieresis ÿ
yen ¥

Special.Character.Names.for.ISO88599

 TPL.Report..393

Index

Symbols
@

comment delimiter
converting to TPL Tables format 372

*
as multiplication symbol 34

**
as exponentiation symbol 34

*/
ending comment 34

/
as division symbol 34
as unconditional label break 134–135, 135

/*
beginning comment 34

\
for entering characters not on keyboard 132, 364
in labels 132–133
in string 33

\\
for \ in labels 133
for \ in string 33

#
in identifier 32

% 150
arguments for Windows scripts 326
as string in mask 150
used for name, label or number substitution 37

+
as addition symbol 34
in CHAR statement 103

||
in CHAR statement 103

$
as string in mask 150–151

4-digit year 266
(a)

ascending sort order 55
-b

UNIX argument 344, 346
-c

UNIX argument 342
in conditions run 344

Windows script argument 329

(c)
and mask replacement 281
for computation error 51
for divide by zero 84
in data reports 238

: (colon) in conditional COMPUTE 87
.cp 223
-d

UNIX argument
in conditions run 344
in tables run 346

Windows script argument 328
(d)

descending sort order 55
for data error 41, 51

tip on displaying the invalid value 42
for data in incomplete hierarchy 119

- (dash symbol). See also Dash
use in labels

for hyphenation 135
- (dash symbol)

as subtraction symbol 34
-e

UNIX argument 346
-E

UNIX argument for screen display 346
.eps

under Windows 318
-E (UNIX)

argument to control screen display 347
-f

UNIX argument
in tables run 346

Windows script argument 328
(f) 152

value does not fit 51
-i

include path argument
under UNIX 346, 351

%INCLUDE 35–39
in database codebooks 189
path to include file

under UNIX 346, 351
with REPLACE statements 38–39

.ini file for Windows version 309

 TPL.Report..394

-K
Windows script argument 329

.K
under UNIX 344
under Windows 314

-l
Windows script argument 328

.L
under UNIX 342
under Windows 314

-n
UNIX argument 346

(n)
for NULL value 51, 84, 90, 98

-N
argument to create new subdirectory

under UNIX 348
under Windows 316, 328

-O
argument to use old subdirectory

under UNIX 346, 348
under Windows 316, 328

.O
under UNIX 342

in conditions run 344
under Windows 314

-p
argument for path

under Windows 328, 329
-P

UNIX argument
in conditions run 344
in tables run 346

-P database password
Windows script argument 328, 329, 333

%pipe. See Piping, standard pipes
.profile (UNIX) 340
.ps

suffix for report file names
under UNIX 349
under Windows 317

-q
UNIX argument

in conditions run 344
in tables run 346

Windows script argument 328, 333
-Q

Windows script argument 328, 333
-r

UNIX argument 346
Windows script argument 328

.rep
suffix for report output files 46, 159

under UNIX 348
under Windows 317

-s
UNIX argument 344

-S
UNIX argument

in conditions run 344
in tables run 346

.S
under Windows 315

generated codebook source 178
-u

Windows script argument 329
-U

UNIX argument
in conditions run 344
in tables run 346

Windows script argument 328, 329, 333
_ (underscore character) 32
-V

argument for CSV output
under UNIX 346

A
A3 size paper 269
A4 size paper 269
Abbreviations for relational operators 72, 93
ABS built-in function 84
Absolute value 83, 84
Absolute values

in TOP n variable 61
Abstract of codebook

for SQL database 190–191
under Windows 314, 342

Accuracy of computations 83, 370
DIV function 85

Acrobat (Adobe) 171
Actions

conflicting 206
in profile 211–212
levels of 205
size specification 206

Addition operator 83
ALIGN. See also Alignment

CELLS 214
interaction with mask 214

COLUMN 215
interaction with mask 152, 215, 279

HEAD 216
HEADING 216
HEADING LABELS 216

 TPL.Report..395

HEAD LABELS 216
REPORT 217
TITLE 218

Alignment. See ALIGN
markers

defined 136
inserting in labels 136–139
more than one in same label 136–138

numbers. See Mask
of columns 215
of data in columns 51, 152, 214
of heading labels 216
of labels 136–140. See also ALIGN

above columns 215, 216
effect on sections 137–138
RIGHT to a specific location 139–140

of PAGE MARKER 265
defined 138

of report cells 51, 152, 214. See also Mask
of report on page 217
of report title 143–144, 218

ALL
in format FOR clause 207
in GRAND TOTAL statement 65
in RECODE statement 93, 98
in REPORT statement 47
in SUBTOTAL statement 63

Alphabet. See also ASCII
and CODEPAGE 222–223, 364
for languages other than English 222–223, 232, 364
for user-specified names 223, 365

AND
in TPL-SQL association statements 189

AND logical operator
in SELECT statement 77

ANSI 83, 370
rounding 149

Arithmetic operators 83
Ascending

sort order 55
ASCII 247, 370, 374, 375

editor (Windows) 312
Associations in TPL-SQL databases 174

in requests 192
with multiple fields 189

Asterisk
as exponentiation operator 83
as multiplication operator 83

AUTOMATIC
COLUMN WIDTH 230–231
PAGE LENGTH 261
PAGE WIDTH 268

Avant-Garde font 251

B
B5 size paper 269
Background (UNIX)

running in 341, 345
Background (Windows)

running in 325
Backslash

in labels 132–133
in string 33

BANK
AFTER COLUMN 219
SKIP AFTER 301–302

Banks 219, 220–221
effect on reports with subtotals 63

BANKS PER PAGE 220–221
Batch files

for running under Windows 322
Batch processing

under Windows 322
BAT file

for running under Windows 322
Binary

values in report 50
Blank

as mask 151
lines in reports 303–304
value in report

from RECODE with null 91, 98
when hierarchy is incomplete 119

Blank delimited data. See Delimited data files
Blank lines

adding. See Slash
Blanks

in CHAR variables 41, 50
in CONTROL variables 50
in RECODE values 50

BLANKS
DELETE or RETAIN

for CHAR variables 289
Blue. See COLOR
Bold font. See Font
Bold print labels with PostScript. See FONT
Bookman font 251
BOTH

NUMBER column 258–259
BOTTOM

MARGIN 256–257
PAGE MARKER 262, 265

Brackets. See Parentheses
Built-in function

ABS 83, 84
SQRT 83, 84

 TPL.Report..396

BY in FOR clauses
for increments 208

C
CALL

command in Windows scripts 330
Carriage return

treatment in labels 33
Case

ODBC database field names 185
Sybase field names 184

Case, treatment of 32
Categories

creating with RECODE statement 94, 99
CBUILDER

command in Windows scripts 329
Cells

ALIGN 214
default alignment 151
default font 152

replacing for cells only 283
defined 51, 214
large values 152
mask

replacing color only 169
replacing values with labels. See RECODE statement

Center
alignment of labels 136–139. See also ALIGN
alignment of reports. See ALIGN
mask alignment 151

Centering
data 151
of labels 136–139
page marker 264
reports 217

Centre. See Center
CHAR

SPLIT 104
Character data. See ASCII; See also CHAR variable
Character date (TPL-SQL)

TPL data type 181
Character Names 33, 132, 365
Characters

not on keyboard 33, 133, 364–365
printing

alphabets other than English 222–223, 365
unprintable 33

Character sets 378
and CODEPAGE 364
EURO symbol 378
for languages other than English 222–

223, 364, 378. See also CODEPAGE

Character variable. See CHAR variable
CHAR statement 103–104
CHAR variable

creating with CHAR statement 103–104
describing sections of data 41
display in report 49, 50
for display of invalid values 42
in codebook 40
in Conditional COMPUTE 88
in SELECT statement 73, 75
leading and trailing blanks 41, 289
uses in report request 40
with DATA REPORT 41, 289

Char varying (TPL-SQL)
TPL data type 181

CHDIR
command in Windows scripts 330

CMYK
color separations 167

Codebook 40–43
abstract

date and time stamping (UNIX) 342
date and time stamping (Windows) 314
under UNIX 342
under Windows 314

condition values
completing and updating list (UNIX) 343

conversion from mainframe 373
database 174
database source

under Windows 315
describing repeating groups 124
example

flat file 23–27
hierarchies 109

from TPL TABLES 46
hierarchical 109
interactive. See also Interactive codebook generation
object

under UNIX 344
under Windows 314

path
in USE statement 44

record length 370
shared with TPL TABLES 20
source

under UNIX 341, 342, 357
under Windows 313

TPL-SQL 174–191
flat file example 174–176
hierarchy example 186
using information from the database 176

 TPL.Report..397

CODEBOOK
command in Windows scripts 329

Codebook Builder (Windows)
for ODBC databases 173

Codebook processing
under UNIX 341–342

CODEPAGE 156, 222–223, 232, 235
and COUNTRY 222, 364
for alphabet and sort order 222–223, 364
selecting for languages other than English 223

Colon delimited data. See Delimited data files
COLOR 162–170

chart for print colors 163
colors.ps file 163
color.tpl file 165, 225

editing 165
example 165
installation 165

combined with FONT 228
DEFAULT 169, 224–226

changing for cells only 169
defaults 156, 162, 166, 168, 224–226
definitions in color.tpl 165, 225

changing 166–167
format 165

for report cells 225
GREY 167
in individual labels 168
in individual masks 168
in labels and masks

interaction with COLOR defaults 169, 224
in RECODE values 168
in reports

general information 162
LABEL 169, 224–226
LINE 169
names

assigning in color.tpl 165–167
in COLOR default statements 166, 225
in SHADE statements 166

NO 227–228
for monochrome printers 162, 227–228
to replace color with font 227–228

on monochrome printers 162, 227
printers

variation 163, 165
replacing for mask 169
replacing with a font 227–228, 274
r g b specifications 162

assigning names 165–167
in COLOR default statements 166, 224
in color.tpl 165–167

in SHADE statements 166
RULE 169
separations

CMYK 167
SYMBOL 169, 224–226
underlining 225

colors.ps file 163
color.tpl file. See COLOR
COLOUR. See COLOR
Column

banking 219
deleting 240
divider

inserting 287–288, 293–294
replacing 275

labels
alignment 216
default 51

width
default 49
minimum 229
optimal 49

COLUMN
ALIGN 215
DELETE 240
RETAIN 240
WIDTH 229
WIDTH AUTOMATIC

adjusting to available space 230–231
Column divider

replacing or removing. See DELETE DOWN
RULES; See also REPLACE DIVIDE CHAR-
ACTER

Combining
banks on page 220–221

Comma 149
replacing with non-US character 233
separator in REPORT statement 47
use in mask 149

Comma delimited data. See Delimited data files
Command line. See Running jobs
Comma separated data. See Delimited data files
Comment

utility program 372
Comments 34

converting from mainframe 372
in codebook source

treatment in tpl conditions (UNIX) 363
restriction in USE statement 45

Compound conditions
in conditional COMPUTE 88
in SELECT statement 77

 TPL.Report..398

Computations
dependent on conditions. See Conditional COMPUTE

COMPUTE statement 82–91
hierarchical file 114
weighting 86

CON. See Control variable
Concatenation in REPORT statement. See THEN con-

catenate operator
Conditional breaks in labels 135
Conditional COMPUTE 87–91

based on sets of values 88
depending on multiple variables 87
result when no conditions satisfied 89
SELECT style 87
term evaluation order 89

Condition labels
from SQL label-code tables 182

Condition names
in RECODE statement 97
in SELECT statement 75

conditions procedure (UNIX) 343. See also tpl condi-
tions

Condition values
completing and updating list (UNIX) 357–363
count in codebook abstract 314
from SQL label-code tables 182
generating list from SQL database 176
in RECODE statement 97
limit 370
updating list for database 329

CONTINUATION
replacing in title 285

CONTINUE option
in repeating groups 124–125

Control date (TPL-SQL)
TPL data type 181

Control variable
codebook entry

getting conditions from SQL data 176
CONTROL variable

display in report 49, 50
Con varying (TPL-SQL)

TPL data type 181
Conversion

mainframe codebooks 373
mainframe comments 372

CONVERT 373
COPY

command in Windows scripts 330
wild cards 324

Count
condition values in codebook abstract 314

COUNT
in files with repeating groups 125
in hierarchical files 110, 112, 113
in RECODE statement 102
in REPORT statement

compared to record name 47, 110, 113, 125
in SELECT statement 77
in SORT statement

TOP n clause 61
in SQL databases 198
in subtotal or grand total 69
pages in PAGE MARKER 264
to show selected record numbers 79

COUNTRY 366
effect on currency symbols and format 234, 366
effect on date and time formats 235, 366
effect on decimal point 233, 366
effect on PAGE MARKER 266
effect on thousands separator 233, 366

country.tpl
for 4-digit year 266
for non-US standards 232–235

Courier font 251
cpio (UNIX) 335
CSV

OUTPUT
under UNIX 350

CSV data. See Delimited data files
CSV DIVIDER statement 236
Currency formats

non-US 234–235
Currency symbols

non-US 234–235

D
Dash

in PostScript 161
Data 40–43

alignment using masks 148, 151–152
errors

displaying the invalid values 42–43
indicated by (d) 41

hierarchical file 105–119
in repeating group structure 123–128
in SQL databases 370

conversion to TPL data types 178
TPL data types for SQL only 181–182

piping (UNIX) 353–355. See also Piping
DATA. See Cells

ERROR 84

 TPL.Report..399

REPORT 203, 237–238
alignment of data 237
conflict with PostScript 238
incompatibility with PostScript 272
interaction with other statements 238
ZERO FILL instead of blank 237–238

Database interface 173–202. See also TPL-SQL
Data file

created using DATA REPORT 237–238
creating output file using DATA REPORT

with recoded values 101
shared with TPL TABLES 20

Data values
displayed in report 50

(c) 51
(d) 41, 51
(f) 51
(n) 51

grouping 92
recoding 92
replacing with labels 92

Date
displaying 4-digit year 266
effect of COUNTRY statement 235, 366
substituting with REPLACE statement 37

DATE
in PAGE MARKER 265

Date stamping
of codebook abstract

under UNIX 342
under Windows 314

Decimal
places 150

for RECODE values 96
point

displaying 150
replacing with non-US character 233
zeros to left 150, 242

printing. See Mask
shifting 85

in COMPUTE statement 85, 88
Decimal point

effect of COUNTRY statement 366
DEFAULT COLOR 169, 224

for report cells only 169, 225
DEFINE

with hierarchical file 115
Defines clause (TPL-SQL) 176, 183–185

for duplicate names 185
DELETE

ALL RULES 238, 239, 287–288
BLANKS 289

for CHAR variables 41, 239

COLUMNS 240
commands in Windows Script

wild cards 324
CROSS RULES 239, 290–292
DOWN RULES 239, 287–288, 293–294
FOOTNOTE 238
HEADING 238, 241
LEADING ZEROS 242
SIDE RULES 239, 295–296
TITLE 238, 244

Deleting records. See SELECT statement
Delimited data files

exporting
TED arguments in Windows scripts 331
under UNIX 346, 350, 351
under Windows 319, 331

Descending
sort order 55

Desktop publishing. See Encapsulated PostScript
Disk space 369
Display. See also TED

mask 148–154
DISPLAY

AS LISTED 98
AS SORTED 74, 99
OUTPUT

reducing amount (UNIX) 347
PostScript reports

NAME (UNIX) 244, 349
PostScript tables

Windows. See TED
DISPLAY AS LISTED

and report sort order 55
DISPLAY AS SORTED

and report sort order 55
DISPLAY clause

for grand totals 65
for subtotals 63

DIVIDE
CHARACTER 275

Division by zero 84
DIV operator 85

limits on accuracy 85
Dollar sign

in mask 150–151
Double lines

cross rules 290
DOWN LINE WEIGHT 245–246
DOWN RULE WEIGHT 156, 245–246

E
Edit

profile

 TPL.Report..400

under UNIX 352
under Windows 317

Editor
for FORMAT request 204
for report request 46

EDITOR 247
FILE 247
NAME 247

Editor (UNIX) 340
for viewing outputs 349
selection at installation time 338

Editor (Windows) 247, 312–313
TED 312

Edit/Print button (Windows) 316
Encapsulated PostScript 159

in desktop publishing
color separations 167

requesting
under Windows 318

use with desktop publishing software
under UNIX 350
under Windows 318

encaps (UNIX)
for encapsulating PostScript reports 350

ENCAPS (Windows)
for encapsulating PostScript reports 319

English text
built-in

replacing in other languages 366
Environment. See Profile
Environment Variables

TPL_INI 310
TPLPATH7.0 310

eps. See Encapsulated PostScript
EPS. See Encapsulated PostScript

OUTPUT
under UNIX 248, 350

Error
common messages

under UNIX 356
under Windows 319–320

displayed in output file
under UNIX 347

finding in data 374
in calculations 84–85
in codebook processing

under UNIX 342
in conditions run

under UNIX 344
in data

displaying the invalid value 42–43
indicated by (d) 41

in hierarchy 115, 116

in report run
under UNIX 346–347

SQL database field not found 185
transferring to editor for correction

under UNIX 340
under Windows 312

EURO 378
Evaluated to

TPL-SQL database codebook 178
TPL data types for SQL only 181–182
using label-code SQL tables 182–183

Evaluation order 83
in conditional COMPUTE 89

EXCEPT
in REPORT statement 48

EXCLUDE
in REPORT statement 48

Exponential notation 34
Exponentiation operator 83
Export

CSV files (UNIX) 346, 350, 351
file types. See also Encapsulated PostScript
from TED (Windows) 318, 319
in Windows scripts 331

core name for files 332
export directory 331

EXTRA LEADING 156, 248–249

F
Field. See Variable

in SQL database 174, 176
SQL 173

FIFO. See Piping, named pipes
File. See also Data

displaying in hexidecimal format 374–375
structure

hierarchical. See Hierarchical file
multiple data sets 28
single level (flat) 28
single level (flat) in database 174–176

Files
for substitutions in requests 35–39
%INCLUDE 35–39
output

for encapsulated PostScript 159
for reports 46, 159
for reports (UNIX) 348
for reports (Windows) 317

used in job
recorded in output file (UNIX) 348

 TPL.Report..401

recorded in OUTPUT file (Windows) 317
Filtering data. See SELECT statement
Flat file

SQL database 174–176
Floating point

values in report 50
Font

bold 145–146
global specifications 250–255
italic 145–146
profile defaults 254–255
proportional 254
replacing for mask 283
resetting 145
size 252
use in labels 144–146
varying in mask 153
with underlining 145–146

FONT 156, 159, 250–255
as replacement for COLOR 227–228
combined with COLOR 228
DEFAULT 152

replacing for cells only 250, 283
in masks 152–153
location in mask 153
with underlining 252

Footnote
changing built-in English text 366

FOR clause 204, 206–208
restriction on row references 207
use of ranges and increments 207–208
with multiple variables and conditions 207

Foreign language 156, 222–223
Format

automatic
data values 50
report 48

color definitions 165
COMPUTE statement 82
conditional COMPUTE statement 87
GRAND TOTAL statement 65

DISPLAY clause 65
label indent 140
PAGE MARKER 262
RECODE statement 92
report 49

wide values 50
REPORT statement 47
SELECT statement 71, 79
SORT statement 55
SUBTOTAL statement 62

DISPLAY clause 63

USE statement 44
Format request 22, 204
FORMAT statements

actions listed by type 208–212
composition 204
FOR clause 206
general information 203
language reference guide 213–249, 279–307
use in profile 211–212

shared with TPL TABLES (UNIX) 336, 353
shared with TPL TABLES (Windows) 318

FOR_WORD 373, 376
Four digit year

display 266
From data. See Get conditions (TPL-SQL)

G
Get conditions (TPL-SQL)

from data 176
using label-code SQL tables 182–183

Ghostscript 171
Grand totals 65

combined with subtotals 67
location in report 65
referencing in FORMAT statements 70
with record counts 69

GRAND TOTAL statement 65
Green. See COLOR
Grey. See Gray
GREY

color in reports 167
ignored in color.tpl file 165, 167
shading 162

Grouping banks on page. See BANKS PER PAGE
Grouping values

with RECODE statement 94, 99–102
GROUP variable. See also Repeating groups

repeating 123–128

H
Hardware

minimum 369
optional 369

Heading
deleting 241
label alignment. See ALIGN

Helvetica font 251
hexadecimal 374
HEXLIST 374
Hierarchical files 105–119

 TPL.Report..402

codebook 109
definition 105
effect on COMPUTE statement 114
effect on RECODE statement 115
effect on SELECT statement 113–114
errors 107
file structure 107
incomplete 115–119
interaction with repeating groups 105
marker 106, 107
MARKER 108
meaning of COUNT 110, 112, 113
missing levels in 107, 115–119
with SELECT number 80
with SELECT percent 80
with SELECT statement 71

when hierarchy incomplete 119
Hierarchical processing 109–110
Hierarchical unit 71, 106

incomplete 115
Hierarchies. See also Hierarchical files

database 174
codebook 186–189

incomplete
controlling treatment in codebook 117
controlling treatment in report request 117, 118
described 115–117
suppressing messages 119

interaction with TPL statements 109–119
missing middle levels 117
processing 105–119
TPL-SQL 174

hierarchical path 194–195, 195–196
Hourglass

running under UNIX 347
Hyphen

use in labels 135
Hyphenation of labels 135

I
Identifiers 32
IF 72

in conditional COMPUTE 87
INCLUDE. See %INCLUDE

path to include file
under UNIX 346, 351

Incomplete hierarchies 115–119. See also Hierarchies
error messages 116

Increments
in FOR clauses 208

Indent
default units 141, 143
interaction with SPACE TO

for multiline labels 143–144
positive and negative 141
restrictions 142
rules for use 141
use in labels 140–142
use with PostScript 142
with proportional fonts 142

Indexing SQL fields 187, 199
Installation. See also Setup

of color.tpl file 165
under UNIX 335–339

changing settings 339
TPL REPORT with TPL TABLES 335–337

under Windows 308–311. See also Windows
compatibility with previous versions 310
more than one version 309
profile settings for defaults 310
replacing an earlier version 309
TPL REPORT with TPL TABLES 308

utiltity programs 372
Integer division 85. See also DIV operator

limits on accuracy 85
Interactive

codebook generation
for ODBC databases (Windows) 173

Interface
to SQL databases 173–202

Italic print labels with PostScript. See Font

J
JOB

number in PAGE MARKER 265
Job Directory (Windows) 313
Joining banks on the same page. See BANKS PER

PAGE; See also SKIP AFTER BANKS
Justification

of report to width of page. See AUTOMATIC COL-
UMN WIDTH

K
Keywords

definition 33
list of 367–368

kghostview (Linux) 244

 TPL.Report..403

L
LABEL

as RECODE value 95, 100
REPLACE 276

Label-code SQL tables 182–183
LABEL COLOR 169, 224–226
Labels 33, 129–147

alignment of 136–140. See also ALIGN; See
also Alignment of labels

automatic 129, 130
breaking with slashes 134–135, 135
built-in

replacing English text 366
changing fonts in 144–146
characters in 132
color. See COLOR
COMPUTE 82
default 130
entering backslashes in 133
entering characters not on keyboard 132
FONT control with PostScript 250–255
font resetting in 145
for grand total 65, 70
for report column 51
for subtotal 62, 70
hyphen for conditional breaks 135
indent specification 140–142
in RECODE value 96, 129
long 132, 134
maximum size 133
multi-line 134–135
multiple segments 134
null 133
null strings as 133
quotes and backslashes in 132
report titles 129
result when omitted 130
rules for dividing 135
sections

for alignment purposes 137–138, 139
recommendation for alignment 138

skipping space with SPACE 143–144
SPACE 143
SPACE TO 143
substitution for with REPLACE statement

in codebook or request 37–39
superscripts and subscripts 146–147
suppressing 133
tabs in 132
tabs with SPACE TO 143–144. See also SPACE TO
title continuation 140

for multi-page reports 285
treatment of carriage returns in 132
treatment of <Enter> in 132
where used 129–130

Large values 152
LEADING 248–249
Leading zeros

deletion of 150, 242
display of 150

Left
alignment of labels 136. See also ALIGN
alignment of reports. See ALIGN

LEFT
MARGIN 256–257
NUMBER column 258–259

LEGAL
size paper 269

LENGTH
PAGE 259–260, 261

AUTOMATIC 261
LETTER

size paper 158, 269
LEVEL number 105–109
Levels

of FORMAT actions 205
Line

spacing 303–304
LINE

SKIP AFTER
to insert blank lines 303–304

Line break. See SKIP LINE EACH; See also Slash
LINE COLOR 169, 224–226
Line printer 158
Lines. See also Rules

adjusting thickness. See LINE WEIGHT
color. See COLOR

Line spacing 134, 248–249
LINE WEIGHT 300

for cross rules 290–292
for lines between columns 245–246
for side rules 295–296

Linux. See UNIX version
LISTED. See Display order
Log file for scripts 325
Logical connectors 71
lp 274
lp (UNIX) 339

for printing outputs 349
ls (UNIX)

to find TPLR subdirectories 348

 TPL.Report..404

M
Mainframe

codebooks
converting to TPL Tables format 373

comments
converting to TPL Tables format 372

MARGIN 238, 256–257
minimum 257

Margins
effect of PostScript 272
for laser printers 158

Marker
Hierarchical file 107

MARKER
PAGE 262–266

location 264
Mask 148–154

9's 148
alignment 148, 151–152
blank 151
character string only 151
color. See COLOR
decimal printing 149
effect of COUNTRY statement 233
FONT 152–153

location in mask 153
multiple 153
size interactions 153

format when no mask 148
in COMPUTE statement 85–86
REPLACE MASK COLOR 169
replacing color only 169
replacing FONT only 283
results when specifications conflict 281
rounding 151
smaller than values 152–154
strings in 150
zeros

for rounded digits 151
leading 150

MASK
REPLACE 279–281
REPLACE MASK FONT 283

MAXIMUM
automatic column width 230

Menus
for running under Windows 312

Minus sign 83
MKDIR

command in Windows scripts 330
mknod. See Piping, named pipes, creating

Money (TPL-SQL)
TPL data type 181

more (UNIX)
for viewing outputs 349

MOVE
command in Windows scripts 330

Moving the system
by installing under UNIX 335

Multiple banks on page. See BANKS PER PAGE; See
also SKIP AFTER BANKS

Multiplication operator 83

N
Name

substitution for with REPLACE statement 37–39
NAME

as RECODE value 96
Named pipes. See also Piping

for input under UNIX 354–355
Names

uniqueness 84
in TPL-SQL codebooks 185

Negative values
affect on TOP n 61

to get bottom ranking 60
Nested repeating groups 124
Network Installation 310
Networks

for PCs 311, 321
UNIX

treatment of profile 353
New Century Schoolbook font 251
Non-English alphabets 156
NORMAL

in label
after superscript or supscript 146–147

Notify
for UNIX jobs in background 345–346

Not logical operator
in SELECT statement 71, 72

NOT logical operator
in RECODE statement 97

NULL
in RECODE statement 93, 98

Null label 133
NULL value

assigning and testing in conditional compute 90–91
effect on COMPUTE statement 84
effect on conditional COMPUTE 91
effect on RECODE 91, 98
effect on SELECT 91

 TPL.Report..405

Number
substitution for with REPLACE statement 37–39

NUMBER
built-in variable

and mask replacement 279
and WIDTH AUTOMATIC 231
column width 50
deleting the column 240, 258
in banked reports 221
in FORMAT statements 49, 211
in reports 49, 50, 211–212
LEFT, RIGHT or BOTH 258–259
location of column 258
replacing label 276
retaining down rule for 293

page 263
Numbers

effect of COUNTRY statement 233
format for printing. See Mask

Numeric literals 83
in SELECT statement 73

O
OBS. See Observation variable
Obs date (TPL-SQL)

TPL data type 181–182
with time unit 181

Observation variable
display of values in report 50

Observation variables
grand totals 65
subtotals 63

Obs money (TPL-SQL)
TPL data type 181

Obs varying (TPL-SQL)
TPL data type 181

ODBC (Windows) 173–202. See also TPL-SQL
script arguments 333

Operating instructions. See Run instructions
Operating systems 369
Operators

arithmetic 83
relational

in SELECT statement 72
Oracle

data types 179, 180
Order

of report
columns 46
rows 46
sorted 55–57

Order of evaluation for compound conditions 77
OR logical operator

in SELECT statement 77
OTHER

in conditional COMPUTE 87, 89–90, 91
in RECODE statement 93, 98
in REPORT statement 47, 47–50

Output
file names 46, 53, 159

for Encapsulated PostScript (EPS) 159
under UNIX 348
under Windows 317

print 273
output file (UNIX)

date and time stamping 348
for error review 347
in TPLR subdirectory 348
names of files used in jobs 348

OUTPUT file (Windows) 317
date and time stamping 317
names of files used in job 317

Outputs. See also Run instructions

P
Padding. See FILL
Page

count 262–266, 264
numbering 262–266, 263
size

setting at installation time (UNIX) 337–338
setting at installation time (Windows) 310–311
when using PostScript 267

PAGE
AUTOMATIC LENGTH 261
LENGTH 238, 259–260
MARKER 262–266

alignment and spacing 265
and DATA REPORTS 238
location 264, 265
multiple markers 265

WIDTH 238
AUTOMATIC 268

Page break. See EJECT
PageMaker

color separations 167
PAGE MARKER

alignment 138
Page numbering. See PAGE MARKER
pageview (Sun Solaris) 244
PAGE WIDTH 267
Palatino font 251

 TPL.Report..406

PAPER 158, 269
Parent

in association of SQL tables 187
Parentheses

in arithmetic expressions 83
in compound conditions 77

Path
for running jobs (UNIX) 340
for running jobs (Windows) 328, 329
in USE statement 44

PC 369
PDF 171

in Windows scripts 331
Percent symbol 150
Performance

accessing multiple SQL tables 187
optimizing in TPL-SQL 199–202

Piping (UNIX)
named pipes 354–355

benefits 354
creating 354
silent use 355
with data from other programs 355

standard pipes 354–355
foreground only 354
no prompt for arguments 354

Plan for processing multiple SQL tables 193. See
also TPL-SQL

choosing a plan 196–197
specifying the chosen plan 197

Point
size 252

PostScript 155–161
and installation under UNIX 337, 338
and installation under Windows 310–311
character set 378

for languages other than English 378. See
also CODEPAGE

character sets 378
conflict with DATA REPORTS 238
display of reports

UNIX 244, 349
Display of Reports

Windows. See TED
effect on size specifications 271
output

under UNIX 349–352
printer 369

printing non-PostScript outputs 375
printing 156
TED arguments

in Windows scripts 331

PostScript printer
printing non-PostScript outputs. See PSP

POSTSCRIPT statement 270–272
Precision of computations 370

DIV function 85
PRIMARY

keyword 368
Print

on PostScript printer
under UNIX 349

reports and output
under UNIX 349

PRINT
OUTPUT 273

under UNIX 349
REPORTS

under UNIX 349
TABLES 273

PRINT COMMAND 274
and installation under UNIX 339

Printer 369
changing default under UNIX 339
changing the profile default

under UNIX 337
monochrome

and COLOR specifications 227
selection

PRINT COMMAND (UNIX) 159, 274
selection during installation

under UNIX 337
Printers

multiple. See also PRINT COMMAND; See
also PRINT PORT

under UNIX 339
Print label. See Label
Processing plan for multiple SQL tables 193–198. See

also TPL-SQL
Processing unit. See Hierarchical unit
Profile 273

and installation under Windows 309, 310–311
editing

under UNIX 352
font specifications 254–255
printer specification

and installation under UNIX 337
shared with TPL TABLES

under UNIX 336, 353
under Windows 308, 318

under UNIX 352–353
choosing editor 247
DISPLAY NAME for PostScript reports 244, 349

 TPL.Report..407

under Windows 317
use of format statements 211–212

under UNIX 353
profile.tpl. See Profile
Prompts (UNIX)

preventing 210, 350
Proportional fonts

size of blank space 254
PSP

PostScript print utility 375–376
under UNIX 349

Publication quality. See PostScript

Q
Qualified names

in TPL-SQL requests 192
Quit

how to
under UNIX 335, 341

Quotes 33, 129
in labels 129, 132–133

R
RAM. See Memory
Random selection of records. See SELECT statement
Range of values

in FOR clauses 207
in RECODE statement 97

Ranking records
in bottom categories 60
in top categories 57

RECODE
assigning special fonts 253

RECODE statement 92
ALL 93, 98
assigning colors 168
assigning new codes 101
condition name 97
condition value 97
display of values in report 50
entries

on the left 95
on the right 97–99

grouping values 99
NULL 93, 98
on built-in variable COUNT 102
on record name variable 102
on record number 102
OTHER 93, 98

range of values 97
overlapping 101

replacing values with labels 100
suppressing values 100

Record
count 69
length 370
level 105–109
name as observation variable

for record number in reports
41, 47, 54, 110, 113, 125

in RECODE statement 102
in SORT TOP n clause 60
in subtotals and grand totals 69
to select specific records 77

number 41, 47, 110, 113, 125
in SELECT statement 77

selection. See SELECT
Red. See COLOR
Redefine

in SQL databases 183
using substr to create subfields 185

REDEFINE
and repeating groups 124

Regrouping
with RECODE statement. See Grouping Values

Relational operators 93
in SELECT statement 72

Relational (SQL) 173
Relation (SQL) 173
Repeating groups 123–128

and REDEFINE 124
as control variable 124
continued 125

format for codebook description 124
format for codebook description 124
for questionnaire responses 123
for time series 123
interaction with hierarchies 105
interaction with TPL statements 125
labels for repetitions 123, 124
limits on use

in SQL databases 174
meaning of COUNT 125
nested 124

REPLACE
COLOR WITH FONT 274

for monochrome printers 156, 227
DIVIDE CHARACTER 275
LABEL 276

for subtotals and grand totals 70

 TPL.Report..408

MASK 279–281
MASK COLOR 156, 169
MASK FONT 156, 283
TITLE 284
TITLE CONTINUATION 285

REPLACE statement 37–39
in %INCLUDE file 38–39

Replacing
names, labels and numbers

with REPLACE statement 37
Report

alignment 217
automatic format 48
banked 49
cells 51
column widths 49
compared to tabulation 20
labels 51
location on page 217, 301–302
name

assigned to report output 46, 53, 159
assigned to report output (UNIX) 348
assigned to report output (Windows) 317
in REPORT statement 47

number
assigned to EPS output 159

NUMBER variable 49
output files 46, 159

Encapsulated PostScript (EPS) 159
naming conventions 46, 159
naming conventions (UNIX) 348
naming conventions (Windows) 317
under UNIX 348
under Windows 317

request 22, 46
example 24, 52–54
running under UNIX 344
running under Windows 315

row numbers 49
running jobs. See Run
sorted 55

with subtotals 62
with subtotals and grand totals 67

title 51
too wide for page 49, 219
with grand totals 65

REPORT
DATA 237–238

report file (UNIX)
formatted for printer 349
in TPLR subdirectory 348

.ps suffix 349

REPORT INCOMPLETE HIERARCHIES 117–119
in TPL-SQL databases 188

REPORT statement 46–54
ALL variables included 47

exceptions or exclusions 48
control variable

TOTAL 47
COUNT observation variable

47, 110, 112, 113, 125
general format 47
observation variable

COUNT 47, 110, 112, 113, 125
record name 47, 54, 110, 113, 125

order of report
columns 46
rows 46

record name in 47, 110, 113, 125
TOTAL control variable 47
weighted variables 86

REPORT Statement
title

format options. See Labels
Request

codebook
running under Windows 313–314

format 22, 204
report 22, 46

running under Windows 315
substituting sections with INCLUDE and REPLACE

35–39
Reserved words 367–368
Resource requirements 369
RETAIN

ALL RULES 287–288
as default 286
BLANKS 238, 289

for CHAR variables 41
COLUMNS 240
CROSS RULES 290–292

WEIGHT option 156
DOWN RULES 287–288, 293–294
HEADING 241
LEADING ZEROS 242
SIDE RULES 295–296

WEIGHT option 156
TITLES 244

r g b colors 162, 224
Right

alignment of labels 136. See also ALIGN
alignment of Reports. See ALIGN
mask alignment 151

 TPL.Report..409

RIGHT
MARGIN 256–257
NUMBER column 258–259

RIGHT IN SPACE
for aligning PAGE MARKER 139
labels 139–140
when space is insufficient 139

RMTPL
command in Windows scripts 329

rmtpl (UNIX)
for removing TPLR subdirectories 352

effect on TPL TABLES subdirectories 352
Roots

of negative numbers 84
ROTATE 156
Round even 149
Rounding 149

effect on totals 149
rule 149
using mask 151

Row
as label for NUMBER column 49, 211
in report

definition 303, 307
reference in FOR clause

restrictions 207
spacing 303–304

ROW
RULE EACH

for rules after rows 298–299
RULE EVERY

for rules after rows 298–299
RULE

COLOR 169
EACH or EVERY

for rules after rows 298–299
RULE COLOR 224–226
Rules 287–288, 290–292, 293–294, 295–296

changing thickness 245–246, 290–292, 295–
296, 300

color. See COLOR
deleting 239
double lines 290–292

RULE WEIGHT 156, 300
for lines between columns 245–246

Run. See Run Instructions; See also Running Jobs; See
also Run (Unix); See also Run (Windows)

RUN
command in Windows scripts 330

Run instructions
for UNIX version 340–356
for Windows version 312–321

Running jobs. See also Run; See also Windows
overview 30
under UNIX

in background 341, 345
with CSV output 350–356, 351–356
with PostScript output 349

Run (UNIX)
codebook 341–342

from command line 342
from prompts 341–342

conditions 343
report 344–352

from command line 346
from prompts 344

Run (Windows) 312–321. See also Windows
codebook 313–315

from menus 313
report 315–316

from menus 315
TPL REPORT

from menus 312

S
Sample. See SELECT statement
Screen display

of tables 376
reducing (UNIX) 347
suppressing (UNIX). See Background; See also Pip-

ing
Scripts (Windows) 322

commands and arguments 328–334
forground and background 325
ODBC database arguments 328, 333

eliminating prompts 334
REM for remarks or comments 330
Script log 325
substitution arguments 326
wild cards in commands 324–334
WTPL arguments 327

SELECT
TPL-SQL databases 199–201

Selecting subsets of data. See SELECT statement
SELECT statement 71–81

arithmetic expressions 74
based on COUNT 77
based on data values 71–78
based on record number 77
based on sets of values 73, 75–77
hierarchical files 113–114

incomplete hierarchies 119

 TPL.Report..410

IF 72
interaction of multiple statements 81
number

format 79
number and percent options 79–80
number of records 80
percent 79

displaying numbers of selected records 79
format 79

random subset of records 79
relations 72
sample 79
skipping part of the data file 80
types of conditions 73–75
UNLESS 72
use of AND and OR 77–78

SELECT style
conditional COMPUTE 87

Semicolon delimited data files. See Delimited data files
Sets of values

in Conditional COMPUTE 88
in SELECT statement 73, 74, 75–77

setup
for installation under UNIX 335

prompts 337–339
to move the system 335

Setup
for installation under Windows 309

SHIFT DECIMAL clause
and masks 150
effect on computations 85, 88

Sibling (or Sib)
in association of SQL tables 188

SKIP
AFTER BANKS 301–302
LINE EACH 303–304
LINE EVERY 303–304

Slash
as unconditional label break 134–135, 135
symbol for line spacing 134

Sort sequence
and CODEPAGE 223, 365
and sort.tpl 223, 365
dependence on character set 222–223, 365
for languages other than English 222–223, 365

SORT statement 55
and subtotals 62, 67
ascending order 55
descending order 55
to find top categories 57–61
TOP n option 57–61

and record name 60

sort.tpl 223, 365
SPACE

in labels 143–144
SPACE TO

for aligning PAGE MARKER 138
in labels 143–144
interaction with INDENT 143–144

Spacing of lines 248–249, 303–304
Special characters 378

in labels 132
SPLIT

CHAR 104
SQL databases 173–202, 370. See also TPL-SQL

data types 178–181
SQL FETCH COUNT statement 201–202
SQL SELECT statement 199–201
Square root

built-in function 83
SQRT 84

Standard pipes (UNIX) 354. See also Piping
Statements

rules for preparing 32–39
Stop (UNIX)

how to 335, 341
Strings

in CHAR statement 103
in mask 150

SUB
for subscripts 146–147

Subdirectories
TPLRnnnn

under Windows 316
Subdirectory

TPLR. See TPLR subdirectories
Subfields

for SQL database fields 185–186
Subscripts

in labels 146–147
Subset of data. See SELECT statement
Substitution

in requests
names, labels and numbers 37–39

of parts of request with %INCLUDE 35–39
Substitution arguments

in Windows scripts 326
Substr

creating subfields for SQL data 185–186
substrings in CHAR statements 103

Subtotals 62
combined with grand totals 67
display format 63–64
in banked reports 63
location in report 62

 TPL.Report..411

referencing in FORMAT statements 70
with record counts 69

SUBTOTAL statement 62–64
Subtraction operator 83
SUP

for superscripts 146–147
SUPER

for superscripts 146–147
Superscripts

in labels 146–147
Suppressing cell values. See Mask; See also REPLACE

MASK WITH TEXT
with RECODE statement 100

Sybase
data types 180

Symbol
PostScript font 252

uses 253–254
SYMBOL COLOR 169, 224–226
Syntax error

under UNIX 356
under Windows 320

T
Tab

in exported CSV (delimited) files 172, 331
Table

format for editing 376
printing of 273
screen display 376
SQL data 173

TABLE
command in Windows scripts 328

Tables
compared to reports 20

Tabs
in labels

converted to blanks 132
with SPACE TO 143–144

treatment in labels 33
TABULATE INCOMPLETE HIERARCHIES 117–119

in TPL-SQL databases 188
TED

for printing PostScript tables 369
TPL editor 247

TED (Windows)
commands in Script 331

export directory 331
export file names 332
for display, print, and export 331
wild cards 324

TPL editor 312
viewing reports and output files 316

Text
in cells. See Mask; See also RECODE

TEXT
masks

as labels 129
Text delimited files. See Delimited data files
THEN operator

in REPORT statement 47
Thousands separator

effect of COUNTRY statement 233, 366
Time

effect of COUNTRY statement 235, 366
TIME

in PAGE MARKER 265
Time series

as repeating group 123
Times font 251
Time stamping

of codebook abstract
under UNIX 342
under Windows 314

TITLE
ALIGN 218
DELETE 244
REPLACE 284

Titles
as labels 129
color. See COLOR
continuation option 140
report 51

TOP
MARGIN 256–257

TOP n
option for SORT 57

and negative values 61
reversing to get lowest-ranked records 60

TO_SHOW
converting tables to screen format 376

TOTAL control variable
in report 47
replacing English label 366

Totals. See also Grand Totals; See also Subtotals
tpl conditions (UNIX) 177, 357–363

CSV and other delimited files 360–362
error detection 361
fixed format sequential files 358–360
SQL databases 362–363
treatment of comments 363

TPL CONVERT 373

 TPL.Report..412

TPLDIR
command in Windows script 330, 333

TPL_INI
environment variable 310

tpl.ini file for Windows version 309
TPLPATH7.0

environment variable 310
TPLRnnnnn. See TPLR subdirectories
TPLR subdirectories (UNIX) 348–349

choosing your own number 346, 348
maintenance 352

TPLR subdirectories (Windows) 316
choosing your own number 316
maintenance 317

from menus 317
notes 317
where saved 317

TPLR subdirectory number
printing on report output 265

TPL-SQL 173–202
association statements

in codebooks 186–189
in requests 192

chains 193–194, 194
codebook 174–191

abstract 190–191
association statements 186–189
associations with multiple fields 189
databases with multiple SQL tables 186–189
defines clause 176, 183–185
duplicate database names 185
evaluated to 178
getting conditions from label-code SQL tables 176
hierarchies 186–189
%INCLUDE 189
parent-child relationship 187
sibling relationship 188
using information from the database 176, 178

conversions from database to TPL types 178–181
data type conversions

ODBC 179
Oracle 180
Sybase 180–181

effect on requests 191–202
qualified names 192

hierarchical paths 194–195, 195–198
incomplete hierarchies 188
optimizing performance 199–202

indexing for multi-table processing 199
indexing for SQL Select 199
over network 201–202

SQL Fetch Count statement 201–202
SQL Select statement 199–201

processing plans for multiple SQL tables 193–198
choosing a plan 196–197
specifying the plan of your choice 197
treatment of COUNT 198

terminology 173–174
TPL types for SQL databases only 181–182

TPL subdirectories (Windows)
choosing your own number

in scripts 328
maintenance

from scripts 329
where saved 328

TPL TABLES
and shared profiles

under DOS 308
under UNIX 336, 353
under Windows 318

installing with TPL REPORT
under DOS 308
under UNIX 335–337

sharing data and codebooks 20

U
Undefined variable error

under UNIX 356
under Windows 320

Underlining
color 225
data rows. See RULE EACH
with FONT specifications 145–146, 252

Underscore 32
UNIX version 369

installing for 335–339
running jobs 340–356

Unless 71, 72
USE statement 44

naming codebook 44
naming codebook with path 44
restriction on comments in 45
under Windows 315

Utility programs 372

V
VALUE

in RECODE statement 96
VALUE(-n)

in RECODE statement 96

 TPL.Report..413

VALUE(n)
in RECODE statement 96

Values 32. See also Cells; See also Data
in top categories 57
replacing

with RECODE statement 92–102, 100
sets of 73, 74, 75–77, 88
suppressing

with RECODE statement 100
Variable

CHAR. See CHAR variable
COUNT 47, 110, 112, 113, 125
default display formats 48
error when undefined

under UNIX 356
under Windows 320

in SQL table 173
duplicate names 185
using database information for codebook 176

RECORD 47, 110, 113, 125
repeating group 123–128
TOTAL 47
weight 86

vi editor (UNIX) 340

W
Warning message

in Windows script log 326
Weighting

in COMPUTE statement 86
Weight variables

applied in COMPUTE statements 86
creating with Conditional COMPUTE 89

Where
in associations for SQL tables 187

Width
column

default 49
WIDTH

COLUMN 229
AUTOMATIC 230–231

PAGE 267
AUTOMATIC 268

Wild cards
with PSP utility program 376

Wild cards (Windows)
in COPY Script commands 324, 330
in DELETE Script commands 324, 330
in TED Script commands 324, 331

Windows version 369
installing for 308–311

running jobs 312–321
Working directories. See TPLR subdirectories
Wrapped values

in DATA REPORT 237
WTPL (Windows)

script arguments 327

Y
Year

displaying 4 digits 266

Z
Zapf Chancery font 252
Zapf Dingbats font 252, 253–254

use in RECODE 253–254
Zero division 84
Zeros

instead of blanks in DATA REPORTS 237
leading to left of decimal

deleting 242
leading to left of decimal point 150

	Contents (Summary)
	Introduction
	Overview
	Entering Statements
	Data and Codebooks
	Use
	Report
	Sort
	Totals
	Select
	Compute
	Recode
	Char
	Hierarchies
	Repeating Groups
	Labels
	Masks
	PostScript
	Color and Grey
	Exports
	TPL-SQL
	Format
	Installation (Windows)
	Run Instructions (Windows)
	Scripts (Windows)
	Installation (UNIX)
	Run Instructions (UNIX/Linux)
	TPL Conditions (Unix Only)
	International
	Keywords
	Limits
	Utilities
	Character Sets
	Index

	Contents (Detail)
	Introduction
	What is TPL REPORT?
	How Does TPL REPORT Work?
	The Data File
	The Codebook
	The Report Request
	The Format Request
	An Example
	Overview
	An Overview of TPL REPORT Features
	Data Files
	Describing the Data
	Defining the Structure and Content of a Report
	Sorting the Report
	Totals
	Selecting Subsets of the Data
	Computing New Values
	Recoding Data
	Labels
	Masks
	Report Formatting
	Installing and Running TPL REPORT
	Entering Statements
	Rules and Notations for Codebooks and Requests
	Statement Rules
	Identifiers
	Values
	Keywords
	Print Labels
	Backslash
	Entering Characters that Are Not on the Keyboard
	Mathematical Operators
	Comment Entries
	Notation Used in Presenting Statement Formats
	The "INCLUDE" Feature
	Substitutions for Names, Labels and Numbers
	Putting REPLACE Statements in %INCLUDE Files
	Data and Codebooks
	CHAR Data Type
	Record Name Variables
	Treatment of Data Errors
	Use
	Accessing the Codebook
	Report
	The Report Statement
	Introduction
	Description of the REPORT Statement
	Using Record Names and Built-in Variables
	OTHER, ALL and EXCEPT in the Variable List
	Report Output Format
	Basic Format
	The NUMBER Variable
	Column Widths
	Display Format for Data Values
	Wide Values
	Alignment
	Special Indicators in Data Cells
	Titles and Labels
	Wide Labels
	Sample REPORT Request and Report Output
	Sort
	Sorting Reports
	TOP n Option for SORT
	To Get the Bottom-Ranked Records Instead of the Top
	Record Names, COUNT and TOTAL
	Note on TOP n and Negative Values
	Totals
	The SUBTOTAL and GRAND TOTAL Statements
	Subtotals
	The SUBTOTAL Statement
	The DISPLAY Clause
	How Subtotals Are Displayed
	Grand Totals
	Subtotals and Grand Totals in the Same Report
	Use of Record Names and COUNT in Subtotals and Grand Totals
	Referencing Subtotals and Grand Totals in FORMAT Statements
	Select
	Selecting Subsets of the Data
	Selection Based on Data Values
	Types of Conditions
	Relationships
	Sets of Values
	Compound Conditions
	Using Record Names and COUNT in Conditions
	Selection Using the NUMBER and PERCENT Options
	SELECT Percent
	SELECT Number
	Interaction Between Multiple SELECT Statements
	Compute
	Computing New Variables
	Introduction
	Compute Entries
	Absolute Value
	Square Root
	Integer Division
	Masks for Output Formatting
	Weighting
	The Conditional Compute Statement
	Introduction
	The Statement
	Condition Term
	Compute Term
	NULL Values
	Recode
	Replacing Original Values with Labels or New Values
	Introduction
	Description of the RECODE Statement
	New Variable Entries on the Left
	Old Variable Entries on the Right
	Unspecified Values
	Note on Value Order in Relations and Ranges
	More RECODE Examples and Applications
	Grouping Values into Larger Categories
	Suppressing Display of Selected Values
	Replacing Values with their Labels
	A Combination of Labels and Values
	Creating a New Data File with Recoded Values
	Results with Overlapping Ranges
	Recode on a Record Name Variable or COUNT
	Char
	Creating a new Character Variable
	Char Split: Divide a Character Variable
	Hierarchies
	Processing Hierarchical Files
	Introduction
	Codebook Entries
	How Hierarchies Interact with TPL REPORT Statements
	Record Names and the Built-in Variable COUNT
	REPORT Statement
	Reports Using a Single Level of the Hierarchy
	Reports Using Multiple Levels of the Hierarchy
	Comparison of Record Name Values and COUNT
	SELECT Statement
	COMPUTE Statement
	Conditional Compute Statement
	RECODE Statement
	Using Incomplete Hierarchies
	Default Treatment
	Complete Hierarchy
	Examples of Incomplete Hierarchies
	Forcing Incomplete Hierarchies to Be Included in Reports
	Interaction with SELECT Statement
	Message Suppression
	Repeating Groups
	Variables That Repeat Within Records
	Introduction
	Restrictions on the Use of Repeating Groups in Report
	Describing Repeating Groups in the Codebook
	How Repeating Groups Interact with TPL REPORT Statements
	Record Names, Group Names and the Built-in Variable COUNT
	REPORT Statement
	Reports that Do Not Use the Group Variables
	Reports that Use One or More Variables from a Repeating Group
	Using Repetition Values and Labels
	Labels
	Creating and Formatting Print Labels
	Automatic Print Labels
	Observation and Char Variables
	Control and RECODE Variables and Their Values
	Report Titles
	Subtotals and Grand Totals
	Creating Your Own Print Labels
	Characters Allowed in Label Strings
	Quotes and Backslashes in Labels
	Label Length
	The Null Label
	Labels with Multiple Segments
	Control of Label Breaks
	Slashes
	Conditional Hyphens
	Hierarchy of Label Break Points
	Label Alignment
	LEFT, RIGHT and CENTER
	Alignment in Page Markers
	RIGHT IN SPACE for Right-Alignment to a Selected Point in a Label
	Continuation Labels for Report Titles
	Indentation and Spacing in Labels
	Changing Label Alignment with INDENT
	Indent Restrictions
	Indent with PostScript Proportional Fonts
	Spacing within Labels Using SPACE and SPACE TO
	Using SPACE TO and INDENT Together
	PostScript Font Control in Labels
	Superscripts and Subscripts
	Masks
	Formatting Data Values with Masks
	Adding Decimal Points and Commas
	Rounding Rule
	Creating Decimal Places
	Leading Zeros
	$, % and Other Character Strings in Masks
	Replacing Rounded Digits with Zeros
	Alignment of Values
	Treatment of Large Values
	PostScript Font Control in Masks
	Sample Report Using Masks
	PostScript
	Publication Quality Reports Using PostScript
	PostScript FORMAT Statements
	Getting Started with PostScript
	Switching between Line Printer and PostScript Modes
	Report Output Files
	Printer Selection -- UNIX
	Using PostScript Reports with other Software
	Font Selection
	PostScript Examples
	Dashes in PostScript
	Color and Grey
	Using Color in Reports
	General Information on Color
	Effect on Monochrome Printers
	r g b colors
	Color Chart
	Color Definitions in color.tpl
	Printing Color Separations for Reports
	The Special Color GREY
	Color Specifications for Individual Labels and Masks
	Labels
	Masks
	RECODE Values
	Setting COLOR Defaults for Characters and Rules
	Replacing Mask Color
	Exports
	Converting PostScript Reports to Other Formats
	Introduction
	PDF Format
	CSV (delimited) Export
	CSV Files
	How to Request CSV Export
	Windows
	UNIX
	TPL-SQL
	Introduction to the Database Interface
	Terminology - Yes, you want to read this
	TPL-SQL Codebook
	A Simple TPL-SQL Codebook Example
	Defines Clause
	A Better Solution - Using Information from the Database
	Unix
	Windows
	Conversions from Database to TPL Data Types
	ODBC Data Type Conversions
	Oracle Data Type Conversions
	Sybase Data Type Conversions
	New Data Types
	Label-Code Tables
	Alternate Names - The DEFINES Clause
	Creating Subfields with Substr
	Multiple SQL Tables and Association Statements
	An Example
	More on Association Statements
	Use of %INCLUDE in Codebooks
	Codebook Abstract
	Table and Report Requests for SQL Databases
	Qualified Names
	Association Statements in Table or Report Requests
	The Processing Plan
	What is a Chain?
	How Can A SQL Table Be Chained to Itself?
	What is a "Single Hierarchical Path"?
	Why Does TPL Need a Single Hierarchical Path?
	Plan Selection
	How to Specify a Plan
	Plans and the COUNT Variable
	Optimizing Performance
	Indexing for Multi-Table Processing
	SQL Select
	Importance of Indexing and an Efficient SQL Select Statement
	Description of SQL Select
	Difference in Results between Regular Select and SQL Select
	SQL Fetch
	Summary
	Format
	The Format Language
	Introduction
	Note for Users of TPL TABLES
	Where to Put FORMAT Statements
	Composition of FORMAT Statements
	Action Levels
	Action Conflicts
	Action Size Specifications
	What can be in the FOR Clause?
	The Format Actions
	Print and Export Control (UNIX only)
	The NUMBER Variable in FORMAT Statements
	Use of FORMAT Statements in Profile
	Format Language Reference
	Introduction
	ALIGN CELLS
	ALIGN COLUMN
	ALIGN HEAD
	ALIGN REPORT
	ALIGN TITLE
	BANK AFTER COLUMN
	BANKS PER PAGE
	CODEPAGE (PROFILE only)
	Alphabet for Names
	The Character Set for Printing PostScript
	The Sort Sequence
	If You Need to Select a CODEPAGE
	COLOR Defaults
	Note on Cell Color
	Note on Underlining
	Alternate Format for the COLOR Statements
	COLOR = NO
	Alternate Approach
	COLUMN WIDTH
	COLUMN WIDTH AUTOMATIC
	COUNTRY (PROFILE only)
	Separators in Masks and Decimal Constants
	Effect on Currency Formats
	Special Treatment for Currency Symbols in Output
	Date and Time Formats
	CSV DIVIDER
	CSV OUTPUT (UNIX only)
	DATA REPORT
	ZERO FILL
	DELETE
	DELETE COLUMNS
	DELETE HEADING
	DELETE LEADING ZEROS
	DELETE REPORT
	DELETE TITLE
	DISPLAY NAME (UNIX/Linux Profile only)
	DOWN RULE WEIGHT
	EDITOR (UNIX Profile only)
	Editor Name
	Editor File
	EPS OUTPUT (UNIX only)
	EXTRA LEADING
	FONT
	Report Elements
	Font Names
	Font Sizes
	Adding Underline to Fonts
	Using the Symbol and Zapf Dingbats Fonts
	Spaces in Proportional Fonts
	MARGINS (LEFT, RIGHT, TOP, BOTTOM)
	NUMBER (LEFT, RIGHT, BOTH)
	PAGE LENGTH
	PAGE LENGTH AUTOMATIC
	PAGE MARKER
	Page Numbering
	ODD and EVEN
	Page Count
	Marker Location
	Multiple Page Markers
	Alignments and Spacing within Page Markers
	Other Options
	4-Digit Year
	PAGE WIDTH
	PAGE WIDTH AUTOMATIC
	PAPER
	POSTSCRIPT
	Interaction of Size Specifications with PostScript
	Page and Margin Sizes
	PRINT (UNIX only)
	PRINT COMMAND (UNIX profile only)
	REPLACE COLOR
	REPLACE DIVIDE CHARACTER
	REPLACE LABEL
	REPLACE MASK
	Replacing Mask by Location
	Replacing Mask by Variable
	Treatment of Conflicting Masks
	REPLACE MASK COLOR
	REPLACE MASK FONT
	REPLACE TITLE
	REPLACE TITLE CONTINUATION
	RETAIN
	RETAIN ALL RULES
	RETAIN BLANKS
	RETAIN CROSS RULES
	RETAIN DOWN RULES
	RETAIN SIDE RULES
	ROTATE
	RULE EVERY
	RULE WEIGHT
	SKIP AFTER BANKS
	SKIP LINE EVERY
	USE CONDITION LABEL, NAME, VALUE
	USE VARIABLE NAME
	Installation (Windows)
	How To Install TPL REPORT Under Windows
	Note to TPL TABLES Users
	Shared profile.tpl
	Installing from the CD
	If You Have an Earlier Version of TPL REPORT
	.tpl Files
	Replacing a Previous Version
	Using More than One Version of TPL REPORT
	tpl.ini
	Network Installation
	Compatibility
	"Source" Files
	Codebooks and TPLR Subdirectories
	Default Settings in Profile.tpl
	Networks
	Licensing Note
	Run Instructions (Windows)
	Instructions For Running TPL REPORT Under Windows
	Introduction
	TED and Other Editors
	Description of Jobs and Files
	Getting Started
	Selecting the Job Directory
	Creating and Processing Codebooks
	Codebook Abstract
	Codebook Object
	Database Codebook Source
	Producing Reports
	The TPLR Subdirectory
	The Report Files
	The OUTPUT File
	Subdirectory Maintenance
	Customizing with PROFILE.TPL
	Shared profile.tpl
	Encapsulated PostScript (EPS)
	ENCAPS
	Exporting CSV (delimited) files
	Common Error Messages
	Networks
	Licensing Note
	Scripts (Windows)
	Running Batch Jobs with Tpl Scripts
	Introduction
	Job Script Example
	Wild Cards (* and ?) in TED, COPY, and DELETE Commands
	Running a Script in Foreground or Background
	Script Log
	Substitutions in Scripts
	Example Using Substitution Arguments
	Commands and Arguments
	WTPL Arguments for Starting Scripts
	Script Commands and Arguments
	Setting the TED Export Directory in Scripts
	Export Core Name in Scripts
	TPLDIR Script Command
	Arguments for ODBC
	Installation (UNIX)
	How To Install TPL REPORT Under UNIX
	How to Stop
	Before You Start
	Note to TPL TABLES Users
	Shared profile.tpl
	Installation Steps
	Detailed Description of Setup Prompts
	Where Do You Want the System Installed?
	Printer
	Page Size
	For Line Printers (non-PostScript)
	For PostScript Printers
	Editor
	If You Change Your Mind
	If You Have Multiple Printers Connected to Your Computer
	Run Instructions (UNIX/Linux)
	Instructions For Running TPL REPORT Under UNIX
	General Information
	Editor
	Where to Run Jobs: Paths and Files
	How to Stop
	Note on Running in Background
	Codebook Processing
	How to Run codebook
	Codebook Command Line Arguments
	Error Handling
	Codebook Abstract
	Producing A Codebook Source with the conditions Procedure
	How to Run a conditions Request
	Command Line arguments for conditions
	Error Handling
	Producing Reports with the report Procedure
	How to Run a Report Request
	Report Command Line Arguments
	Report Request Processing
	Controlling the Amount of Screen Display in Foreground
	The TPLR Subdirectory
	The Report Files
	Printing reports and output
	PostScript Reports
	EPS and CSV Exports
	Encapsulated PostScript (eps)
	Delimited or Comma Separated Variable (CSV) Files
	Path for INCLUDE files
	Removing Subdirectories with the rmtpl Command
	How to Run rmtpl
	Creating Your Own Environment with the profile.tpl File
	Note to TPL TABLES Users
	Piping Data to TPL REPORT
	Standard Piping
	Named Pipes
	Silent Use of Pipes
	Common Error Messages
	TPL Conditions (Unix Only)
	What is tpl conditions?
	Control Variable Conditions
	Fixed Format Sequential File Example
	Delimited (CSV) Sequential File Example
	SQL Database Example
	Comments
	International
	Formats, Symbols and Languages
	Alphabets and Sort Order: The CODEPAGE Statement
	The COUNTRY Statement
	Replacing Default English Text
	Keywords
	TPL REPORT Keywords
	Limits
	Summary Of Features And System Constraints
	Platforms and Operating Systems
	Minimum Hardware Configuration
	Optional Hardware
	Features/Constraints
	Utilities
	Stand-Alone Utility Programs
	COMMENT
	FOR_WORD
	HEXLIST
	PSP — PostScript Print Program
	TO_SHOW (Windows only)
	Character Sets
	Characters and Codepages
	EURO Symbol
	CODEPAGE = WIN88591
	CODEPAGE = WIN88592
	CODEPAGE = WIN88599
	CODEPAGE = ISO88591
	CODEPAGE = ISO88592
	CODEPAGE = ISO88599
	Mapping of Decimal Values to PostScript Codes for Symbol Font
	Mapping of Decimal Values to PostScript Codes for DINGBAT Font
	Special Character Names for WIN88591
	Special Character Names for WIN88592
	Special Character Names for WIN88599
	Special Character Names for ISO88591
	Special Character Names for ISO88592
	Special Character Names for ISO88599

	Index

